
Computational 
Design of 
Ligand Binding 
Proteins

Barry L. Stoddard Editor

Methods in 
Molecular Biology   1414



   M E T H O D S  I N  M O L E C U L A R  B I O L O G Y    

        Series Editor 
   John       M.   Walker   

  School of Life and Medical Sciences 
 University of Hertfordshire 

  Hatfield, Hertfordshire, AL10 9AB  ,   UK      

 For further volumes: 
 http://www.springer.com/series/7651     

http://www.springer.com/series/7651
http://www.springer.com/series/7651


                                  



    Computational Design of Ligand 
Binding Proteins 

 Edited by 

    Barry   L.   Stoddard

Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA                       



       ISSN 1064-3745       ISSN 1940-6029 (electronic) 
   Methods in Molecular Biology  
 ISBN 978-1-4939-3567-3      ISBN 978-1-4939-3569-7 (eBook) 
 DOI 10.1007/978-1-4939-3569-7 

 Library of Congress Control Number: 2016937968 

   © Springer Science+Business Media New York   2016 
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is 
concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction 
on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, 
computer software, or by similar or dissimilar methodology now known or hereafter developed. 
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not 
imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and 
regulations and therefore free for general use. 
 The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed 
to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, 
express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. 

 Printed on acid-free paper 

   This Humana Press imprint is published by Springer Nature  
 The registered company is Springer Science+Business Media LLC New York 

 Editor 
   Barry   L.   Stoddard    
  Division of Basic Sciences 
 Fred Hutchinson Cancer Research Center 
  Seattle ,  Washington ,  USA   



v

    Introduction: Design and Creation of Ligand-Binding Proteins 

 The appropriate balance of ligand binding affi nity and specifi city is a fundamental feature of 
most if not all biological processes, including immune recognition, cellular metabolism, 
regulation of gene expression, and cell signaling. The ability to accurately predict and reca-
pitulate the physical basis for ligand binding behavior is therefore a crucial part of under-
standing and manipulating such biological phenomena. It also represents a critical technical 
requirement in the reciprocal fi elds of drug design and protein engineering. 

 This book provides a collection of protocols and approaches, compiled and described 
by many of today’s leaders in the fi eld of protein engineering, that they apply to the prob-
lem of creating ligand-binding proteins that display desirable combinations of target affi nity 
and specifi city. The descriptions provided by each chapter’s authors also provide a snapshot 
of their current “belief system” regarding the challenging problem of protein engineering 
and design, as it is applied to the creation of novel ligand binding functions. 

 The problem of how to effectively engineer novel binding properties onto protein scaf-
folds, and how to do so while exploiting the information that is provided by high- resolution 
protein structures, has been under investigation for almost 40 years if not longer. Such 
efforts date back at least to the design of small folded peptides and proteins capable of bind-
ing individual nucleosides and single-stranded DNA, followed by subsequent attempts to 
generate additional ligand binding functions using various protein scaffolds ( see  Refs. [1, 2] 
for early examples of such work). By the early 1990s, some of the fi rst computational algo-
rithms intended to design novel ligand binding sites into proteins of known structure had 
been described [3], and the fi eld of structure-based protein engineering as it is known 
today was underway. 

 Although the fi eld of protein engineering, including the specifi c problem of designing 
novel ligand binding capabilities onto engineered protein folds, now comprises an extensive 
and growing publication record, signifi cant challenges regarding the accurate calculation or 
prediction of protein–ligand binding affi nities (even when provided a high-resolution struc-
ture of the actual complex) still represent signifi cant hurdles to the fi eld’s advancement. 
For example:

 ●    Several recent studies have demonstrated that current methods for structure-based 
calculation of binding affi nities display variable accuracies. At least three broad (and 
somewhat overlapping) classes of scoring functions for predicting binding affi nities 
from high-resolution structures have been developed:  force - fi eld  (formulated by calcu-
lating the individual energetic contributions of physical interactions between the pro-
tein and ligand) [4, 5],  knowledge - based  (produced by statistical mining of large 
databases of protein–ligand structures to deduce rules and models that govern binding 
affi nity) [6–9], and  empirical  (in which binding energy is calculated to be a product of 
a collection of weighted energy terms fi t to a training data set of known binding affi ni-
ties, with the weighting coeffi cients calculated via linear regression analyses) [10–14]. 
Even with all these tools, the accuracy of many methods that are intended to calculate 
structure-based binding affi nities (as well as the ability to identify and rank the most 
tightly bound ligands to a given protein) has been shown to often be somewhat poor 

  Pref ace    



vi

[15–17], leading to the conclusion by one group that “more precise chemical descrip-
tions of the protein–ligand complex do not generally lead to a more accurate predic-
tion of binding affi nity” [17]. Therefore, the reliable prediction of affi nity remains a 
signifi cant challenge in biophysical chemistry [15].  

 ●   Even for the most thoroughly studied of ligand-binding proteins, the basis for tight, 
specifi c binding is not well understood. For example, avidin and streptavidin exhibit 
some of the highest known affi nities to their cognate molecular ligand (Ka ~ 10 15  M −1 ). 
Over 20 years of studies on these proteins have produced a wide range of hypotheses 
regarding their high affi nities, including exceptional shape complementarity across a 
stabilized network of hydrophobic side chains and precisely arranged hydrogen bond 
partners [18], the precisely tuned dynamic behavior of the protein [19], a large free 
energy benefi t upon ligand binding due to the strengthening of noncovalent interac-
tions within the protein scaffold [20], or the induction of polarized moieties within the 
bound complex that create a cooperative effect between neighboring hydrogen bonds 
[21]. Not surprisingly, attempts to engineer altered binding properties onto avidin or 
streptavidin have yielded constructs with unexpected and unpredictable properties [22].  

 ●   Attempts to computationally engineer novel ligand-binding proteins have either been 
unsuccessful [23, 24] or have produced computationally designed constructs that dis-
play low affi nities. Optimization of those designed proteins has then required laborious 
rounds of random mutagenesis and affi nity maturation [25, 26].    

 The sources of error in calculating and modeling protein–ligand binding interactions 
and affi nities are myriad, and their relative importance is still not entirely clear. These 
include: (1) Inaccuracies in the treatment of solvent and desolvation effects during binding 
[27–29]. (2) Limited consideration of protein dynamics [30–32]. (3) Diffi culties incorpo-
rating the contribution of entropic changes into calculations of binding energies, leading to 
examples where modifi cations of ligand binding sites that lead to favorable enthalpic gains 
are confounded by substantial losses in entropy, with no improvement in overall binding 
affi nity (recently reviewed extensively in Ref. [33]). Even for the most straightforward 
aspect of a protein–ligand interface (i.e., the observation of direct interatomic interactions 
and corresponding estimation of their enthalpic contributions to binding), uncertainties 
exist regarding interatomic distance cutoffs [17] and best strategies for estimating charge 
and protonation states [34]. 

 Therefore, the creation of novel ligand-binding proteins that display tight binding 
affi nity to their desired target and that also can discriminate between closely related targets 
remains an important goal, but is plagued by rather poor understanding of how to accu-
rately calculate binding affi nities or predict binding specifi city, even when armed high struc-
tural information of protein–ligand complexes. As a result, the creation of highly specifi c 
ligand-binding proteins with high affi nity remains extremely challenging and generally 
requires a substantial investment of time and effort to identify designed protein scaffolds 
that are actually active, and then to manually optimize their behavior. Nevertheless, studies 
from groups around the world have recently demonstrated that engineered proteins can, 
with considerable effort, be created that perform as desired, even in highly demanding 
in vivo applications. In this book, a series of 21 author groups present individual chapters 
that describe, in considerable detail, the types of overall thought processes and approaches, 
as well as very detailed computational and/or experimental protocols, that are used in their 
research groups as they attempt to address and resolve the diffi culties associated with the 
design and creation of engineered ligand-binding proteins. 
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 The reader will fi nd a wide variety of technical issues and variables described in this 
volume. The fi rst three chapters are largely concerned with a fundamental challenge that 
precedes actual protein engineering: identifying, characterizing, and modeling protein–
ligand binding sites and predicting their corresponding modes and affi nities of molecular 
interaction. Various strategies are shown to rely on both sequence-based and structure- 
based methods of analysis, and often utilize evolutionary information to determine the rela-
tive importance of positions within individual protein scaffolds that are important for form 
and function. With the development of controlled, blind binding site prediction challenges 
within the protein informatics and design community, the number of methods available to 
perform such analyses has exploded, as summarized in Chapter   2    . Virtually all structure-
based methods for binding site evaluation rely on accurate modeling of protein–ligand 
conformational sampling and scoring of individual docked solutions, which is further dis-
cussed in Chapters   3     and   4    . 

 Beyond the basic ability to identify and model protein–ligand binding sites and their 
interactions, the fi eld of protein engineering also now has at its disposal a number of increas-
ingly powerful and robust computational platforms for structure-based engineering, includ-
ing the widely used and rapidly evolving ROSETTA program suite as well as other programs 
such as POCKETOPTIMIZER and PROTEUS. Many of the fundamental features of these 
computational program suites, as well as individual examples of their utility and application 
for the design of a protein binding site for a defi ned small molecular ligand, are found in 
Chapters   5     through   7    . 

 The output of even the most powerful structure-based computational design algorithms 
is usually augmented by considerable experimental time and effort, generally consisting of 
the preparation of combinatorial protein libraries or the systematic generation of large num-
bers of individual protein mutants on top of designed protein constructs, which are then 
subjected to selections or screens for optimal activity. While the ultimate goal of protein 
design is to eliminate the need for such manual intervention and effort, at this time many 
strategies for protein design involve combining information from computational design to 
the subsequent creation and screening of protein mutational libraries. Several examples of 
such approaches, which have resulted in particularly notable recent successes in protein engi-
neering and the creation of designed ligand-binding proteins’, are outlined and described in 
Chapters   8    –  10     and can then be found at various points within the remaining chapters. 

 Finally, the exact technical hurdles and necessary approaches required for the creation 
of ligand-binding proteins obviously are dependent upon the chemical and structural nature 
of the ligand to be recognized and bound with high affi nity and specifi city. The remaining 
12 chapters describe a variety of specifi c scenarios and methodological approaches, ranging 
from the design of metal-binding proteins and light-induced ligand-binding proteins, to 
the creation of binding proteins that also display catalytic activity, to binding of larger pep-
tide, protein, DNA, and RNA ligands. 

 The continued development of approaches to design and create ligand-binding pro-
teins, beyond enabling the creation of unique protein-based reagents and molecules for 
biotechnology and medicine, will continue to test and refi ne the ability of modern biophysi-
cal chemistry to fundamentally understand and exploit the forces and principles that drive 
molecular recognition. The behaviors and properties of designed ligand-binding proteins 
resulting from the types of methods described in this book (including the “failures”—those 
constructs that fail to bind their intended targets and those that bind to unintended ligands) 
will eventually be explained by systematically examining their structures and properties. As 
has been famously attributed to Richard Feynman, “That which I cannot create, I do not 
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    Chapter 1   

 In silico Identifi cation and Characterization 
of Protein- Ligand Binding Sites                     

     Daniel     Barry     Roche      and     Liam     James     McGuffi n     

  Abstract 

   Protein–ligand binding site prediction methods aim to predict, from amino acid sequence, protein–ligand 
interactions, putative ligands, and ligand binding site residues using either sequence information, struc-
tural information, or a combination of both. In silico characterization of protein–ligand interactions has 
become extremely important to help determine a protein’s functionality, as in vivo-based functional eluci-
dation is unable to keep pace with the current growth of sequence databases. Additionally, in vitro bio-
chemical functional elucidation is time-consuming, costly, and may not be feasible for large-scale analysis, 
such as drug discovery. Thus, in silico prediction of protein–ligand interactions must be utilized to aid in 
functional elucidation. Here, we briefl y discuss protein function prediction, prediction of protein–ligand 
interactions, the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the 
Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping the fi eld. 
We also discuss, in detail, our cutting-edge web-server method, FunFOLD for the structurally informed 
prediction of protein–ligand interactions. Furthermore, we provide a step-by-step guide on using the 
FunFOLD web server and FunFOLD3 downloadable application, along with some real world examples, 
where the FunFOLD methods have been used to aid functional elucidation.  

  Key words     Protein function prediction  ,   Protein–ligand interactions  ,   Binding site residue prediction  , 
  Biochemical functional elucidation  ,   Critical Assessment of Techniques for Protein Structure Prediction 
(CASP)  ,   Continuous Automated EvaluatiOn (CAMEO)  ,   Protein structure prediction  ,   Structure-
based function prediction  ,   Quality assessment of protein–ligand binding site predictions  

1      Introduction 

 Proteins play an essential role in all cellular activity, which includes: 
 enzymatic   catalysis, maintaining cellular defenses, metabolism and 
catabolism, signaling within and between cells, and the mainte-
nance of the cells’ structural integrity. Hence, the identifi cation 
and characterization of a protein binding site and associated ligands 
is a crucial step in the determination of a protein’s functionality 
[ 1 – 3 ]. 
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    Protein–ligand interaction prediction methods can be categorized 
into two broad groups: sequence-based methods and 
 structure- based methods [ 1 ,  3 ,  4 ]. Sequence-based methods uti-
lize evolutionary conservation to determine residues, which may 
be structurally or functionally important. These methods  include 
  fi restar [ 5 ,  6 ],    WSsas [ 7 ],    INTREPID [ 8 ],    Multi-RELIEF [ 9 ], 
   ConSurf [ 10 ],    ConFunc [ 11 ],    DISCERN [ 12 ],    TargetS [ 13 ],  and 
  LigandRFs [ 14 ]. Structure-based methods can additionally be sep-
arated into geometric-based methods (   FINDSITE [ 15 ],    Surfl ex-
PSIM [ 16 ],    LISE [ 17 ],    Patch-Surfer2.0 [ 18 ],    CYscore [ 19 ], 
   LigDig [ 20 ],  and   EvolutionaryTrace [ 21 ,  22 ]), energetic methods 
(   SITEHOUND [ 23 ]), and miscellaneous methods that utilize 
information from homology modeling (   FunFOLD [ 3 ], FunFOLD2 
[ 2 ],    COACH [ 24 ],    COFACTOR [ 25 ],    GalaxySite [ 26 ],  and 
  GASS [ 27 ]), surface accessibility (LigSite CSC  [ 28 ]), and physio-
chemical properties, utilized by methods including SCREEN [ 29 ].  

  
 In recent years, there has been an explosion in the development 
and availability of protein–ligand binding site prediction meth-
ods. This is a direct result of the inclusion of a  ligand   binding 
site prediction category in  the   Critical Assessment of Techniques 
for Protein Structure Prediction (CASP) competition [ 30 – 32 ], 
along with the subsequent inclusion of ligand  binding site   pre-
diction in  the   Continuous Automated EvaluatiOn (CAMEO) 
competition [ 33 ]. 

 Ligand binding site residue prediction was fi rst introduced in 
CASP8 [ 30 ], where the aim was to predict putative binding site 
residues, in the target protein, which may interact with a bound 
biologically relevant ligand. The top methods in CASP8 (LEE [ 4 ] 
and 3DLigandSite [ 34 ]) utilized homologous structures with 
bound biologically relevant ligands in their prediction strategies. 
In both CASP9 [ 31 ] and CASP10 [ 32 ], protein–ligand interaction 
methods converged on similar strategies; the structural superposi-
tion of models, onto templates bound to biologically relevant 
ligands [ 1 ]. 

 After the CASP10 competition, the protein–ligand interaction 
analysis moved to  the   CAMEO [ 33 ] continuous evaluation com-
petition. This was a direct result of a lack of targets for evaluation, 
over the 3-month prediction period of  the   CASP competition, 
although predictions were still accepted for the CASP11 competi-
tion. This also resulted in a change of prediction format, where 
methods not only have to predict potential ligand binding site resi-
dues, but also predict the probability that each residue binds to a 
specifi c ligand type: I, Ion; O, Organic ligand; N, nucleotide; and 
P, peptide. In addition, the most likely type that a protein may bind 
is also predicted [ 33 ]. The continuous weekly assessment  of 
  CAMEO allows for a much better picture, of how a method per-
forms, on a large diverse data set, containing a wide diversity of 
ligand types [ 33 ].  

1.1   Predicting 
  Protein–Ligand 
Interactions

1.2  The Role  of   CASP 
 and   CAMEO 
on the Development 
of Protein–Ligand 
Interaction Methods

Daniel Barry Roche and Liam James McGuffi n



3

    Both   CASP  and   CAMEO utilize a number of  different   metrics to 
analyze protein–ligand interaction predictions. The fi rst score uti-
lized in CASP8 [ 30 ] was  the   Matthews Correlation Coeffi cient 
(MCC) score [ 35 ].  The   MCC score is a statistical score for the 
comparison of predicted ligand binding site residues to observed 
ligand binding site residues, by analyzing the number of residues 
assigned as true positives, false positives, true negatives, and false 
negatives, resulting in a score between −1 and 1 (1 is a perfect pre-
diction, 0 is a random prediction). The disadvantage of  the   MCC 
score is that it is a statistical measure, which does not take into 
account the 3D nature of a protein. Additionally, it is often a sub-
jective matter to assign observed ligand binding site residues, even 
in an experimental structure, which is another disadvantage of 
using a purely statistical metric. 

 Thus, we proposed a new scoring metric: the Binding-site 
Distance Test (BDT) score [ 36 ], which addresses some of the 
problems associated with  the   MCC score. The BDT score takes 
into account the distance in 3D space a predicted binding site resi-
due is from an observed binding site residue. The BDT score 
ranges from 0 to 1 (1 is a perfect prediction, 0 is a random predic-
tion). Binding sites which are predicted close to the observed bind-
ing site score higher than binding sites predicted far from the 
observed site. The BDT score was used in addition to  the   MCC 
score in both the CASP9 [ 31 ] and CASP10 [ 32 ] assessments and 
is now a standard assessment metric used  in   CAMEO [ 33 ].  

   
  The   FunFOLD server has been developed with the user in mind, 
 providing   an intuitive interface (Fig.  1 ), which allows users to eas-
ily  predict   protein–ligand interactions for their protein of interest 
[ 2 ]. Additionally, for the more expert user, a PDB fi le of the top 
IntFOLD2-TS [ 37 ] model containing the biologically relevant 
ligand cluster can be downloaded for further interrogation, along 
with predicted ligand–protein interaction quality scores. 
Additionally, the results are available  in   CASP FN and CAMEO-LB 
format. The  FunFOLD2   server takes as input a protein sequence, 
and optionally a short name for the target protein. Also, the user 
has the option to include an email address, to allow for easy results 
delivery or the submission page can be bookmarked and returned 
to later, when results are available. The  FunFOLD2   server runs the 
IntFOLD2-TS structure prediction algorithm to produce a set of 
models and related templates that can be used to  predict   protein–
ligand interactions. The FunFOLD2 [ 2 ] method combines the 
 original   FunFOLD method [ 3 ] for ligand binding site residue pre-
diction, the FunFOLDQA method [ 1 ] for ligand binding site 
quality assessment, and a number of scores to comply with the 
CAEMO-LB prediction format [ 33 ].

   The  original   FunFOLD method [ 3 ] was designed based on the 
following concept: protein structural templates from the PDB con-

1.3     Metrics 
to Assess Protein–
Ligand Interactions

1.4  The  FunFOLD2 
  Server 
for the Prediction 
of Protein–Ligand 
Interactions

Identifi cation  and Characterization of Ligand Binding Sites
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taining biologically relevant ligands, and having the same fold 
(according to TM-align [ 38 ]), as the model built for the target 
under analysis, may contain similar binding sites. Firstly, the 
FunFOLD algorithm takes as input a model and a set of template 
PDB IDs (generated by IntFOLD2-TS [ 37 ]). Secondly, TM-align 
[ 38 ] is used to superpose each template determined to contain a 
biologically relevant ligand onto the target model (originally the 
method used an in-house curated ligand list, now the latest ver-
sion, FunFOLD3, described below, makes use of the BioLip data-
base [ 39 ]). Template- model superpositions having a TM-score ≥ 
0.4 are used in the next step. TM-scores ranging from 0.4 to 0.6 
has been shown to mark the transition step of signifi cantly related 
folds [ 40 ]. Thirdly, all retained templates are superposed onto the 
model and ligands are assigned to clusters using an agglomerative 
hierarchical clustering algorithm, identifying each continuous mass 
of contacting ligands, thus locating potential binding pockets. 
Ligands are determined to be in contact within a cluster if the con-
tact distance is less than or equal to the Van der Waal radius of the 
contacting atoms plus 0.5 Å. The location of the largest ligand 
cluster is thus determined to be the putative binding site. 

 Fourthly, putative ligand binding site residues are deter-
mined using a novel residue voting method. The distance between 
all atoms in the ligand cluster and all atoms in the modeled 3D 

  Fig. 1    Submission page for the FunFOLD server       
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protein is calculated. Again, residues are determined to be in 
contact with the ligand cluster, if the contact distance between 
any atom in the residue and any atom in the ligand cluster is less 
than or equal to the Van der Waal radius of the contacting atoms 
plus 0.5 Å. Finally, the next step is “residue voting,” where all 
residues determined to be in contact with the ligand cluster are 
further analyzed and included in the fi nal prediction if a residue 
has at least one contact to 2 ligands within the cluster and at 
least 25 % of the ligands in the cluster [ 3 ]. 

 The next tool utilized by the  FunFOLD2   server [ 2 ] is the 
FunFOLDQA algorithm [ 1 ], which assesses the quality of  the 
  FunFOLD prediction [ 3 ], outputting a set of quality scores. The 
FunFOLDQA algorithm produces fi ve feature-based scores: 
BDTalign, Identity, Rescaled BLOSUM62 score, Equivalent 
Residue Ligand Distance Score, and 3D Model Quality (using 
ModFOLDclust2 [ 41 ]), which are subsequently combined using a 
neural network to produce predicted MCC and BDT scores. The 
 predicted   MCC and BDT scores can be used to rank  the   FunFOLD 
predictions of the top 10 IntFOLD2-TS models, to fi nd the best 
prediction. This has been shown to provide statistically signifi cant 
improvements of protein–ligand prediction quality over using 
FunFOLD alone [ 1 ]. The BDTalign score basically determines the 
fi t of the model binding site into the binding sites of the templates 
used in the prediction. The Identity score assesses the relationship 
between the binding site residues, which are equivalent in 3D space, 
between the model and the templates, scoring them according to 
their amino acid identity. The Rescaled BLOSUM62 score utilizes 
the same concept as the Identity score, but scores equivalent resi-
dues in 3D space according to the BLOSUM62 scoring matrix. 
Furthermore, the Equivalent Residue Ligand Distance score scores 
equivalent residues in 3D space between the model and each tem-
plate according to their distance from the bound ligand. 

 The fi nal component of the FunFOLD2 server [ 2 ] is to score 
the resultant ligand binding site residues, from the top prediction, 
based on the CAMEO-LB criteria. The fi rst score is a global func-
tional propensity metric, which calculates the probability that the 
protein will bind to each ligand type (I, Ion; O, Organic; N, 
Nucleotide; P, Peptide). The second score is the per-residue func-
tional propensity metric, which determines the propensity that 
each predicted ligand binding site residue is in contact with each 
ligand type (I, O, N, & P) [ 2 ].  

  
 The FunFOLD3 algorithm is the  latest   implementation  of 
  FunFOLD. FunFOLD3 was designed to produce predictions to 
comply with the CAMEO-LB prediction format [ 33 ], including 
the development of  new   metrics to predict per-atom  P-values . 
Another major change in FunFOLD3 is the use of the BioLip data-
base [ 39 ], for the determination of biologically relevant ligands at 

1.5  The FunFOLD3 
Algorithm 
for the Prediction 
of Protein–Ligand 
Interactions

Identifi cation  and Characterization of Ligand Binding Sites
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multiple binding sites. In addition to the provision of functional 
annotations, namely EC [ 42 ] numbers and GO terms [ 43 ]. The 
FunFOLD3 algorithm along with FunFOLDQA [ 1 ] has been 
integrated into the latest version of the IntFOLD server pipeline 
[ 44 ] and is available as an executable JAR fi le. The executable ver-
sion of FunFOLD3 does not incorporate the FunFOLDQA bind-
ing site quality  scoring   module, however, the FunFOLDQA 
program may be downloaded as a separate JAR executable if 
desired. 

 The FunFOLD2 method and its previous implementations 
have been benchmarked at CASP9 and CASP10 and were amongst 
the top performing methods [ 31 ,  32 ]. In addition  to   CASP, the 
FunFOLD2 and FunFOLD3 methods are now continuously 
benchmarked  by   CAMEO [ 33 ] (http://www.cameo3d.org). 
Furthermore,  the   FunFOLD algorithms have been utilized in 
numerous studies, including the investigation of barley powdery 
mildew proteins [ 45 ,  46 ], calcium binding proteins [ 47 ], and 
olfactory proteins [ 48 ], which have resulted in biologically signifi -
cant fi ndings. 

 In summary, the use of computational methods for the predic-
tion  of   protein–ligand interactions is essential in the era of high- 
throughput next- generation   sequencing, as experimental methods 
are unable to keep pace. The prediction of protein–ligand interac-
tions can lead to the interpretation of a protein’s general function. 
These predictions can be further utilized in subsequent in silico, 
in vivo and in vitro studies, for the discovery of new functions, as 
well as in drug discovery, which can impact on issues such as health 
and disease.   

2    Materials and Systems Requirements 

  
     1.    For the FunFOLD2 web server [ 2 ],  internet   access and a web 

browser are required. The server is freely accessible at: http://
www.reading.ac.uk/bioinf/FunFOLD/ ( See  Fig.  1  and  Note 
1 ). The FunFOLD2 server has been extensively tested on 
Google Chrome and Firefox, which are recommended for 
proper use. The server also works on other browsers such as 
Internet Explorer, Safari and Opera, but these browsers have 
not been tested as extensively.   

   2.    To run your protein–ligand interaction predictions on the 
FunFOLD2 server you require an amino acid sequence for your 
protein of interest, in single-letter code format. Additionally, a 
short name can be given for the target sequence submitted and 
an email address can be included to inform the user when the 
prediction is complete. If the length of the target amino acid 
sequence is longer than 500 amino acids, it is best to divide the 

2.1  Web Server 
Requirements

Daniel Barry Roche and Liam James McGuffi n
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target sequence into domains, using PFAM [ 49 ] or SMART 
[ 50 ], then submit each domain sequence separately. For a more 
detailed explanation along with potential problems that can be 
encountered at the submission stage  see   Note 1 .      

   
  A   downloadable version of  the   FunFOLD3 method is available as 
an executable JAR fi le, which can be run locally. The executable 
has several dependencies and system requirements which are briefl y 
described below. The executable along with a detailed README 
fi le and example input and output data can be downloaded from 
the following location: http://www.reading.ac.uk/bioinf/down-
loads/ ( See   Note 2  for potential errors that may be encountered).

  The system requirements are as follows: 

   1.    A linux-based operating system such as Ubuntu.   
   2.    A recent version of Java (www.java.com/getjava/).   
   3.    A recent version  of   PyMOL (www.pymol.org).   
   4.    The TM-align program [ 38 ] (http://zhanglab.ccmb.med.

umich.edu/TM-align/). Please ensure the TM-align program 
is working on your system before attempting to run FunFOLD3. 
Ensure that you have the correct 32-bit/64-bit version for your 
hardware and that the TMalign fi le is made executable: chmod 
+x TMalign.   

   5.    wget and ImageMagick installed system wide.   
   6.    The CIF chemical components database fi le [ 51 ] should be 

downloaded from here: ftp://ftp.wwpdb.org/pub/pdb/data/
monomers/components.cif.   

   7.    The BioLip databases [ 39 ] containing ligand and receptor PDB 
fi les are also required (up to 30 GB or disc space may be 
required). The databases need to be downloaded in two sec-
tions: fi rstly all annotations prior to 2013-03-06 can be down-
loaded from here for the receptor database: http://zhanglab.
c c m b . m e d . u m i c h . e d u / B i o L i P / d o w n l o a d / r e c e p -
tor_2013-03-6.tar.bz2 (3.6 G) and from here for the ligand 
database: http://zhanglab.ccmb.med.umich.edu/BioLiP/
download/ligand_2013-03-6.tar.bz2 (438 M). The Text File 
of the BioLip annotations can be downloaded from here: 
http://zhanglab.ccmb.med.umich.edu/BioLiP/download/
BioLiP.tar.bz2. To update the databases to include annotations 
after 2013-03-6 it is recommended to download and use this 
perl script which will update the databases: http://zhanglab.
ccmb.med.umich.edu/BioLiP/download/download_all_sets.
pl. The BioLip text fi le: http://zhanglab.ccmb.med.umich.
edu/BioLiP/download/BioLiP.tar.bz2 and all the weekly 
update text fi les should be concatenated to form a large text fi le 
containing all of the annotations. Furthermore, it is recom-
mended to regularly update your BioLip and CIF databases. 

2.2  Requirements 
for the FunFOLD3 
Downloadable 
Executable

Identifi cation  and Characterization of Ligand Binding Sites
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Additionally, a shell script is available as downloadBioLipdata.
sh, which can be downloaded from here: http://www.reading.
ac.uk/bioinf/downloads/, in a compressed directory: 
FunFOLD3Package.tar.gz. To run the shell script simply edit 
the fi le paths for the location of the BioLip databases and the 
executable directory.   

   8.    Please ensure your system environment is set to English, as uti-
lizing other languages may cause problems with the FunFOLD 
calculations: export LC_ALL=en_US.utf-8.   

   9.    Note the FunFOLD3 executable does not contain the 
FunFOLDQA code. The FunFOLDQA code is available to 
download as a separate executable if desired.    

3       Methods 

 In this section we present a step-by-step guide on utilizing the 
 FunFOLD2   server and the  FunFOLD3   downloadable executable, 
to produce protein–ligand interaction predictions for the user’s 
sequence of interest. We also describe interesting case studies of 
the FunFOLD3 method and its previous implementations. 

  
     1.    Navigate to the  FunFOLD2   submission page: http://www.

reading.ac.uk/bioinf/FunFOLD/FunFOLD_form_2_0.html.   
   2.    The next step is to paste the full single-letter format amino acid 

sequence of your protein of interest into the text box provided 
on the submission page ( see  Fig.  1 ).   

   3.    Optionally, the user can provide a short name for their target 
sequence.   

   4.    The user has the option to supply their email address, which 
enables an email to be sent to the user once the results of the 
target sequences become available.   

   5.    Once all of the required information boxes, on the submission 
page, have been fi lled, the user then needs to click on the sub-
mit button to enable submission of their prediction.   

   6.    Presently, submissions are limited to one per IP address, to 
enable the maintenance of speed and server capacity. Upon 
completion of the user’s prediction, their IP address is auto-
matically unlocked and they can then submit their next target 
sequence.  See   Note 1  for common problems encountered at 
the submission step.   

   7.    Upon job completion an email is sent to the user, which con-
tains a link to the prediction results for the target sequence.  See  
Fig.  2  for an example results page (FunFOLD3 via the 
IntFOLD server) and Fig.  3  for example results from CASP11.

3.1  The 
FunFOLD2 Server
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        8.    The results page contains graphical results for the target 
sequence, in addition to downloadable machine readable results 
in CASP format. Firstly, a graphical representation of the ligand 
binding site, showing putative binding site residues, rendered 
using PyMOL (www.pymol.org) is shown. The backbone of the 
protein is shown as a green ribbon, while the putative ligand 
binding site residues are labeled and shown as blue sticks. 
Secondly, a link is also available to download a PDB fi le contain-
ing the putative ligand binding site cluster within the top 

  Fig. 2    The IntFOLD3-FN (FunFOLD3) server results page for CASP11 target T0807 (PDB ID 4wgh)       
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  Fig. 3    Comparison of FunFOLD3 ligand binding site predictions (A, C, E, G) for 4 CASP11 targets, compared to 
the observed ligand binding sites (B, D, F, H). ( a ) Predicted ligand binding site for T0854 (PDB ID 4rn3), with cor-
rectly predicted binding site residues in  blue  and under- and over- predictions in  red , the MG ligand is colored by 
element. BDT score of 0.845 and MCC score of 0.745. ( b ) The observed ligand binding site for T0854 (PDB ID 
4rn3), with binding site residues colored in  blue  and the ligand MG colored by element. ( c ) Predicted ligand 
binding site for T0798 (PDB ID 4ojk), with correctly predicted binding site residues in  blue  and under- and over-
predictions in  red , the GDP ligand is colored by element. BDT score of 0.797 and MCC score of 0.754. ( d ) The 
observed ligand binding site for T0798 (PDB ID 4ojk), with binding site residues colored in  blue  and the ligand 
GDP colored by element. ( e ) Predicted ligand binding site for T0807 (PDB ID 4wgh), with correctly predicted 
binding site residues in  blue  and under- and over-predictions in  red , the NAP ligand is colored by element.
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IntFOLD [ 52 ] model. Thirdly,  the   CASP FN format results are 
shown. This includes a list of putative ligand binding site resi-
dues. The list also includes, the most likely ligand, which is the 
most likely ligand to be bound to the target protein according 
to  the   FunFOLD prediction. This is followed by the centroid 
ligand and a list of all ligands within the putative ligand cluster 
is also included. The centroid and most likely ligand have an 
associated residue number that corresponds to their residue 
number in the downloadable PDB fi le, the residue number can 
be easily used to locate the ligand in the PDB fi le for a more 
detailed examination of the results.   

   9.    The fi nal section of the results page is a JSmol view of the 
ligand binding site within the target protein, which can be eas-
ily used to examine the prediction in 3D space. There are a 
number of options to rotate the protein, show and hide the 
ligands as well as alter the way the ligands are represented.   

   10.    Moreover, for the version  of   FunFOLD (FunFOLD3) inte-
grated into the IntFOLD pipeline [ 44 ], putative EC [ 42 ] and 
GO [ 43 ] codes, derived from templates used in the prediction 
from the BioLip [ 39 ] database are included ( See   Note 3  for 
details on the  IntFOLD   server [ 44 ,  53 ]).   

   11.    In addition, predicted quality scores from FunFOLDQA [ 1 ] 
are also provided: BDTalign, Identity, Rescaled BLOSUM62 
score, Equivalent Residue Ligand Distance Score, and Model 
Quality along with the  predicted   MCC and BDT scores ( See  
Subheading  1.4  for a description of these scores). Furthermore, 
the propensity that the target protein binds to each ligand type 
(I, Ion; O, Organic; N, Nucleotide; P, Peptide) is also pro-
vided in CAMEO-LB format [ 33 ] ( See   Note 2  for potential 
errors that may be encountered and  Note 4  for current method 
limitations).      

    
     1.    For large-scale analysis or to integrate the FunFOLD3 method 

into a structure prediction pipeline or  web   server ( See   Notes 2  
and  5 ) a downloadable executable JAR fi le, which has been 
developed to run on linux-based operating systems is available 
(http://www.reading.ac.uk/bioinf/downloads/). This version 

3.2  The FunFOLD3 
Executable

Fig. 3 (continued) BDT score of 0.849 and MCC score of 0.771. ( f ) The observed ligand binding site for T0807 
(PDB ID 4wgh), with binding site residues colored in  blue  and the ligand NAP colored by element. ( g ) Predicted 
ligand binding site for T0819 (PDB ID 4wbt), with correctly predicted binding site residues in  blue  and under- 
and over-predictions in  red , the PLP ligand is colored by element. BDT score of 0.753 and MCC score of 0.877. 
( h ). The observed ligand binding site for T0819 (PDB ID 4wbt), with binding site residues colored in  blue  and 
the ligand PLP colored by element. All images were rendered using PyMOL (http://www.pymol.org/)       
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of the program has been tested on recent versions of Ubuntu, 
but it should work on all linux-based systems that have bash 
installed and meet the system requirements ( See  Subheading 
 2.2  and  item 1 ).   

   2.    To run the program you can simply edit the shell script 
(FunFOLD3.sh) or you can follow the steps below.   

   3.    The user can optionally set the bash environment variable for 
Java, TM-align, and PyMOL if they have not installed it system 
wide, along with the location of the databases and database fi les, 
e.g. 

 export LC_ALL=en_US.utf-8 

 export PYMOL_HOME=/usr/bin/ 

 export TMALIGN_HOME=/home/roche/bin/ 

 export JAVA_HOME=/usr/bin/ 

  export BIOLIP_Directory=/home/roche/bin/BioLip/FunFOLD
 BioLip/ 

  export BIOLIP_LIGAND=/home/roche/bin/BioLip/FunFOLD-
BioLip/ligand/ 

  export BIOLIP_RECEPTOR=/home/roche/bin/BioLip/Fun-
FOLDBioLip/receptor/ 

  export BIOLIP_TXT=/home/roche/bin/BioLip/FunFOLD
BioLip/BioLiP.txt 

  export CIF=/home/roche/bin/BioLip/FunFOLD BioLip/com-
ponents.cif 

  $BIOLIP_Directory = BioLip directory location 

  $BIOLIP_TXT = BioLip database text fi le including the 
full directory path 

 $BIOLIP_LIGAND = BioLip ligand directory 

 $BIOLIP_RECEPTOR = BioLip receptor directory 

  $CIF = CIF fi le including the full directory path   

   4.    For example, if the path of your model was “/home/roche/
bin/FunFOLD3/MUProt_TS3”, your list of templates was “/
home/roche/bin/FunFOLD3/T0470_PARENTNew.dat” 
(all templates should be listed on a single line separated by a 
space), your FASTA sequence fi le was “/home/roche/bin/
FunFOLD3/T0470.fasta”, your output directory was “/
home/roche/bin/FunFOLD3/” and your target was called 
T0470: 

 $JAVA_HOME/java -jar FunFOLD3.jar /home/roche/
bin/FunFOLD3/MUProt_TS3 T0470 /home/roche/bin/Fun-
FOLD3/ /home/roche/bin/FunFOLD3/T0470_PARENTNew.dat /
home/roche/bin/FunFOLD3/T0470.fasta $BIOLIP_TXT $BIOLIP_
LIGAND $BIOLIP_RECEPTOR $CIF 

 Or, using the shell script provided: 
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 ./FunFOLD3.sh /home/roche/bin/FunFOLD3/MUProt_TS3 
T0470 /home/roche/bin/FunFOLD3/ /home/roche/bin/Fun-
FOLD3/T0470_PARENTNew.dat /home/roche/bin/FunFOLD3/
T0470.fasta   

   5.    Basically, the user requires a model generated for their target 
protein, this can be achieved using a homology modeling 
method either in-house or via a web server such as IntFOLD 
[ 37 ] ( see   Note 3 ). Additionally, the user needs a list of structur-
ally similar templates. Again this list of templates can be gener-
ated from the list of templates used to generate the target 
protein model. The program utilizes the templates that have the 
same fold and contain biologically relevant ligands in the predic-
tion process. Furthermore, it is important to download and 
install the BioLip databases [ 39 ] and CIF chemical components 
library fi le [ 51 ]. Additionally, it is important that the full paths 
for all input fi les are used, the  output directory should also end 
with a "/" and must contain the input model, template list, and 
FASTA sequence fi le.   

   6.    Additionally, a shell script is available called downloadBioLip-
data.sh, which can be used to download and update the BioLip 
and CIF libraries. The shell script and the required perl script 
can be found on the downloads page, in a compressed direc-
tory: FunFOLD3Package.tar.gz. To run the shell script simply 
edit the fi le paths for the location of the BioLip databases and 
the executable directory.   

   7.    A number of output fi les are produced in the output directory 
(e.g. “/home/roche/bin/FunFOLD3/”) and a log of the pre-
diction process is output to screen as standard output. A descrip-
tion of the output fi les are as follows:

    (a)     The fi nal  ligand   binding site prediction fi le “T0470_
FN.txt” is supplied, conforming  to   CASP FN format. This 
fi le contains a list of predicted binding site residues, 
ligands, along with associated EC and GO terms.   

   (b)      The   fi nal binding site prediction fi le “T0470_FN2_
CAMEO- LB.txt” is additionally supplied in CAMEO-LB 
format. This fi le contains the predicted propensity that 
each ligand type is in contact with the predicted binding 
site residues.   

   (c)     A PDB fi le “T0470_lig.pdb”, which contains superposi-
tions of all templates, having the same fold and containing 
biologically relevant ligands, onto the model is produced.   

   (d)     A reduced version of  the   PDB fi le “T0470_lig2.pdb”, 
which contains only the target model with all possible 
ligands is also produced.   

Identifi cation  and Characterization of Ligand Binding Sites
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   (e)     Another reduced version of  the   PDB fi le “T0470_lig3.
pdb”, which contains only the target model with the pre-
dicted centroid ligand, is additionally output.   

   (f)     A graphical representation of the protein–ligand interac-
tion prediction “T0470_binding_site.png” is automati-
cally generated  using   PyMOL.   

   (g)     Finally, the PyMOL script “pymol.script” that was used to 
generate the image fi le is also output.       

   8.    An example of output produced by FunFOLD3 for target T0470 
can be found in the compressed directory: “T0470_Results.tar.
gz” along with an example of the required input: “T0470_Input.
tar.gz”. These example directories can be found on the down-
loads page: http://www.reading.ac.uk/bioinf/downloads/, as 
part of the FunFOLD3 package - FunFOLD3Package.tar.gz.      

  
 To enable timely  throughput   and wide use of the server, a fair 
usage policy is implemented. Users are allowed to submit one pre-
diction per IP address. Once the fi rst job is complete, a notifi cation 
is sent to the user via email, if an email address has been provided. 
If a user does not provide an email address, then a link to the 
results page is provided, which users are recommended to book-
mark during the submission process. Once the job has been com-
pleted, the user’s IP address is unlocked and the server is ready to 
receive the next submission. The results for each complete job is 
saved for 30 days. It is recommended for large-scale analysis of a 
large number of proteins (proteome level) to download the exe-
cutable version of FunFOLD3 (See Subheading  3.2  and  Notes 2  
and  5 ).  

  
 The FunFOLD3 method and its previous implementation have 
been used in a number of studies [ 45 – 48 ], which have led to bio-
logically signifi cant fi ndings, here we discuss one such study. 
Furthermore, in-house analysis of the CASP11 FN predictions 
produced by the FunFOLD3 algorithm, via the IntFOLD server 
are evaluated (CASP11 group ID: TS133).  

  
 The fi rst study combined proteogenomic and in silico structural 
and functional annotations (prediction  of   protein–ligand interac-
tions), to enable the investigation of the pathogen proteome of 
barley powdery mildew [ 45 ,  46 ]. Basically, genomic scale structure 
prediction was carried out using IntFOLD [ 53 ]. Both the global 
and per- residue model quality were assessed utilizing ModFOLD3 
[ 52 ,  54 ] and putative protein–ligand interactions were additionally 
predicted  using   FunFOLD [ 3 ]. The results lead to interesting con-
clusions about the structural and functional diversity of the pro-
teomes. Firstly, only six proteins could be modeled with a model 

3.3  Server Fair 
Usage Policy

3.4  Case Studies

3.5  Analysis 
of the Barley Powdery 
Mildew Proteome
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quality score above 0.4, leading to a conclusion that the genome is 
very structurally diverse and may have many novel folds. Secondly, 
for the six predicted structures, FunFOLD [ 3 ] was able to predict 
that the proteins were carbohydrate binding, and using the models 
and other additional data it was concluded that they were probably 
glycosyl hydrolases. Furthermore, the putative functionality was 
experimentally verifi ed. In conclusion  the   FunFOLD method was 
crucial in the putative functionality assignment of these enzymes, 
which were subsequently experimentally verifi ed.  

  
 The second case study focuses on the analysis of FunFOLD3 blind 
predictions from the CASP11 competition. Briefl y, all CASP11 
targets with associated PDB IDs were analyzed. Firstly, targets 
were analyzed using the BioLip [ 39 ] database to determine if they 
contained biologically relevant ligands. Secondly, targets deemed 
to contain biologically relevant ligands were further investigated to 
determine ligand binding site residues, using the  standard   CASP 
distance cut- off; the Van der Waal radius of the contacting atom of 
a residue and the contacting ligand atom plus 0.5 Å. This resulted 
in a set of 11 proteins containing biologically relevant ligands and 
binding site residues. 

 In CASP11, the FunFOLD3 method was integrated into the 
IntFOLD-TS predictions (TS133).    Protein–ligand interactions 
were predicted for 8 out of the 11 FN targets (described above), 
with a  mean   MCC score of 0.554 and a mean BDT score of 0.478. 
Four of the top predictions are subsequently discussed in detail. 
Fig.  3  highlights the four assessed predictions, compared to the 
observed binding sites, with BDT scores ranging from 0.753 to 
0.849. Figure  3a  shows the predicted ligand binding site for a 
HAD-superfamily hydrolase, subfamily IA, variant 1 from  Geobacter 
sulfurreducens  (   CASP ID T0854 and PDB ID 4rn3), with cor-
rectly predicted binding site residues in blue (16,18 and 173) and 
under (177) and over- predictions [ 18 ] in red, the MG ligand is 
colored by element. The prediction resulted in a BDT score of 
0.845 and  an   MCC score of 0.745. Figure  3b  shows the observed 
binding site for T0854 (PDB ID 4rn3), with binding site residues 
colored in blue and the ligand MG colored by element. A minority 
of residues were either under or over- predicted for this target as a 
result of the centroid ligand and the ligand cluster not being well 
superposed. The binding sites of the templates were not well super-
posed onto the model binding site, thus, the ligand cluster was not 
optimally located in the binding site. 

 The second CASP11 target is a cGMP- dependent   protein 
kinase II from  Rattus norvegicus  (CASP ID T0798 and PDB ID 
4ojk). Figure  3c  shows the predicted ligand binding site, with cor-
rectly predicted binding site residues (14, 15, 16, 17, 18, 19, 29, 30, 
31, 117, 118, 120, 121, 147, 148, 149) in blue and under [ 11 ,  31 ] 

3.6  CASP11 
Functional Prediction
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and over-predictions (13, 33, 35, 36, 61, 62) in red, the GDP 
ligand is colored by element. This prediction has a BDT score of 
0.797 and  an   MCC score of 0.754. The observed ligand binding 
site for T0798 (PDB ID 4ojk), with binding site residues colored 
in blue and the ligand GDP colored by element can be seen in Fig. 
 3d . Again, the minority of under- and over-predictions are caused 
by fi rstly having a very large ligand binding site, which did not have 
the ligands cluster in the correct location within the large binding 
site, in part due to a number of templates having larger cofactor 
ligands and others having an additional MG ion bound with the 
cofactor. 

 The third example is of an aldo/keto reductase from  Klebsiella 
pneumoniae  (   CASP ID T0807 and PDB ID 4wgh). Figure  3e  
shows the predicted ligand binding site, with correctly predicted 
binding site residues (20, 21, 22, 50, 55, 143, 165, 193, 194, 195, 
196, 198, 199, 201, 224, 240, 241, 242, 244, 248, 251) in blue 
and under- (80, 142, 243, 245, 252) and over-predictions (23, 54, 
113, 197, 200, 207) in red, the NAP ligand is colored by element. 
This prediction resulted in a BDT score of 0.849 and an MCC 
score of 0.771. In addition, the observed ligand binding site can 
be seen in Fig.  3f , with binding site residues colored in blue and 
the ligand NAP colored by element. Furthermore, the over- and 
under-predictions seem to be a direct result of a number of tem-
plates having an additional ligand bound along with the cofactor, 
resulting in an extended ligand binding site. 

 The fi nal CASP11 target that we will analyze is a histidinol- 
phosphate aminotransferase from  Sinorhizobium meliloti  (   CASP 
ID T0819 and PDB ID 4wbt). Figure  3g  shows the predicted 
ligand binding site, with correctly predicted binding site residues 
(93, 94, 95, 119, 167, 194, 197, 223, 225, 226, 234) in blue and 
under- (161, 196) and over-predictions (347) in red, the PLP 
ligand is colored by element. The prediction results in a BDT score 
of 0.753 and  an   MCC score of 0.877. In addition, Fig.  3h  shows 
the observed ligand binding site for T0819 (PDB ID 4wbt), with 
binding site residues colored in blue and the ligand PLP colored by 
element. Here, the under- and over-predictions are a result of the 
incorrect orientation of residues in one case away from the binding 
site (TYR 161), in the other cases the under-predicted residue 
(ALA 196) and the over-predicted residue (ARG 347) are located 
on fl exible loops. 

 These four CASP11 examples and the results [ 30 – 32 ] from 
 previous   CASP assessments, along with in-house evaluations [ 1 , 
 3 ], highlight the usefulness of  the   FunFOLD methods for the 
accurate prediction  of   protein–ligand interactions, for a wide range 
of proteins and ligand binding sites.  See   Note 4  for current method 
limitations.   
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4    Notes 

     1.    When using  the    FunFOLD   server [ 1 – 3 ], several problems may 
be encountered. These mainly include, but are not limited to, 
providing the incorrect data to the server. It is important to 
input a sequence in plain text and single-letter code format, into 
the text box labeled “Input sequence of target protein”. 
Additionally, it is recommended not to submit sequences longer 
than 500 amino acids. Firstly, these sequences usually contain 
multiple domains, thus it may not be possible to fi nd a good 
template to model multiple domains, resulting in one or more 
domains not being modeled well. Secondly, if both domains 
contain ligand binding sites only one will be predicted and dis-
played in the results page. Hence, it is advisable to partition the 
sequence into domains and submit each domain sequence as a 
separate job. 

 The next place where errors can occur is the next submission 
box “Short name for protein target”; inputting a short name for 
your protein sequence is useful to keep track of your prediction 
by providing a meaningful description. The short descriptor is 
limited to a set of characters: letters A–Z (either case), the num-
bers 0–9, and the following characters: .~_-. The protein 
descriptor supplied by the user is subsequently utilized in the 
subject line of the email sent to the user, which contains a link 
to  the   FunFOLD results for their target protein. 

 The fi nal text box to be completed is the “E-mail address”. 
This will enable a link of the graphical and machine readable 
results to be sent to the user, upon job completion. Here errors 
can occur if the user incorrectly inputs their email address.   

   2.    For  the   downloadable Java application FunFOLD3, errors can 
occur but are not limited to the following reasons: Firstly, errors 
can occur if the dependencies—Java, TM-align [ 38 ], BioLip 
[ 39 ], and PyMOL—are not installed or not installed correctly; 
secondly, if the full paths to the input fi les, BioLip database, CIF 
database, and output directory are not included; thirdly, if the 
target model to be analyzed is not in the output directory; 
fourthly, if the list of templates used in the prediction contains 
non-existent PDB IDs or the PDB IDs (including chain identi-
fi ers) are not all on the same line of the text fi le, the program 
will not run; fi fthly, if the input sequence fi le is not in FASTA 
format; fi nally, it is recommended to limit the template list to 40 
template structures, for effi cient prediction and this is near the 
limit of the number of structure  fi les   PyMOL can handle ( See  
Subheading  3.2  and the README fi le downloaded with the 
executable). 
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 Moreover, downloading the BioLip database may be time- 
consuming and is an area where problems may occur if the 
instructions available on the BioLip website and contained in 
the README are not followed. Alternatively, if the user has the 
I-TASSER [ 55 ] pipeline installed on their system, the BioLip 
databases [ 39 ] will have been installed as part of the I-TASSER 
installation process.   

   3.    The  IntFOLD   server [ 44 ,  53 ] is a novel independent server, 
which gives users easy access to a number of cutting-edge meth-
ods, for the prediction of structure and function from sequence. 
The idea behind the IntFOLD server is to provide easy access to 
our methods from a single location, producing easily under-
standable integrated output of results, enabling ease of access 
for the non-expert user. The IntFOLD server provides output 
in graphical form, enabling users to interpret results at a glance 
as well  as   CASP formatted text fi les, allowing a more in-depth 
analysis of the prediction results. The IntFOLD pipeline inte-
grates a number of methods, to enable users to simply input a 
target sequence and produce a set of models (IntFOLD3-TS 
[ 37 ]), with associated global and per- residue model quality 
(ModFOLD5 [ 54 ]), disorder prediction (DISOclust3 [ 56 ]), 
domain partitioning (DomFOLD3), and  function   prediction 
results utilizing FunFOLD3 [ 1 – 3 ].  The   component methods of 
the IntFOLD server have been ranked amongst the top meth-
ods in their respective categories at  recent   CASP and CAMEO 
competitions.   

   4.     Predicting   protein–ligand interactions is a diffi cult task, which 
results in a number of limitations to current prediction meth-
ods. The following is a non-exhaustive list of the most common 
limitations currently encountered in the fi eld: (1) If the server 
or prediction algorithm is unable to build a model for the target 
sequence, then no protein–ligand interactions are predicted. 
The solution to this problem is to utilize sequence-based meth-
ods ( see  Subheading  1.1  for suggestions of sequence-based pre-
diction methods), which are less accurate. (2) If structurally 
similar templates to the target, which containing biologically 
relevant ligands cannot be found, then no prediction can be 
made. (3)  The    FunFOLD   server currently outputs predictions 
based on the top IntFOLD model, which has the highest global 
model quality score. This model may not have the best per-res-
idue model quality around the binding site location, resulting in 
under- or over-predicted ligand binding site residues.   

   5.    The user has the option of using  the   server version  of   FunFOLD, 
IntFOLD, or the downloadable java application. The user has 
to leverage the option most appropriate to meet their needs. 
The server only permits users to submit one job at a time due to 
server load balancing. If the user would like to carry out large-
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scale analysis, for example  predicting   protein–ligand interac-
tions for a proteome, it is then recommended to download and 
use the executable java application for FunFOLD3. This allows 
the user the freedom in the number of structures they can ana-
lyze, provided they have adequate CPU capacity.     

 For light use (several predictions a week),    server prediction is 
adequate for the user, whereas for heavy users (greater than 5–10 
predictions a week) the downloadable application would be the 
most useful. Extensive help pages are available for  the    FunFOLD 
  server. Furthermore, at least 30 GB of disc space is required to 
download the complete BioLip libraries. In addition, an extensive 
README fi le, example input and output fi les are available to aid 
the user in the installation and running of the  FunFOLD3   down-
loadable java application.     
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    Chapter 2   

 Computational Modeling of Small Molecule Ligand 
Binding Interactions and Affi nities                     

     Marino     Convertino     and     Nikolay     V.     Dokholyan      

  Abstract 

   Understanding and controlling biological phenomena via structure-based drug screening efforts often 
critically rely on accurate description of protein–ligand interactions. However, most of the currently avail-
able computational techniques are affected by severe defi ciencies in both protein and ligand conforma-
tional sampling as well as in the scoring of the obtained docking solutions. To overcome these limitations, 
we have recently developed MedusaDock, a novel docking methodology, which simultaneously models 
ligand and receptor fl exibility. Coupled with MedusaScore, a physical force fi eld-based scoring function 
that accounts for the protein–ligand interaction energy, MedusaDock, has reported the highest success rate 
in the CSAR 2011 exercise. Here, we present a standard computational protocol to evaluate the binding 
properties of the two enantiomers of the non-selective β-blocker propanolol in the β2 adrenergic recep-
tor’s binding site. We describe details of our protocol, which have been successfully applied to several other 
targets.  

  Key words     Flexible docking  ,   MedusaDock  ,   MedusaScore  ,   Induced Fit  ,   Gaia  ,   Chiron  ,   Protein–ligand 
interactions  ,   Protein structure refi nement  

1      Introduction 

 The interactions between small molecules or small peptides and 
protein targets are at the basis of many biological processes; there-
fore, the scientifi c community has been very prolifi c in developing 
algorithms, protocols, and methodologies to describe, understand, 
and control the process of recognition and formation of protein–
ligand and protein–peptide complexes [ 1 – 5 ]. The ability to eluci-
date the pharmacodynamical properties of low molecular weight 
compounds or small peptides, along with the possibility of ratio-
nally designing novel drugs, relies on the accurate prediction of 
atomic interactions between ligands and target proteins. However, 
the ligands’ large number of degrees of freedom and proteins’ 
backbone and  side chains   fl exibility present a critical challenge for 
an effective computational description of the ligand–receptor 
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interaction (i.e., docking calculations) [ 6 – 8 ]. Modeling  the 
  induced fi t phenomenon, whereby both the target and the ligand 
undergo mutually adaptive conformational changes upon binding, 
is particularly demanding due to signifi cant conformational sam-
pling required for computational optimization of such interactions 
[ 8 – 10 ]. In order to properly account for this effect, experimentally 
(via X-ray crystallography  or   NMR spectroscopy) and/or compu-
tationally (via molecular dynamics or normal mode analysis) deter-
mined protein conformations have been included in current 
docking calculations [ 11 – 15 ]. However, multiple conformations 
of the protein may not be available, or be biased toward the pro-
tein–ligand complex conformations, and, thus not able to capture 
new rearrangements of protein binding sites upon binding of novel 
compounds. 

 To overcome these limitations, we have recently developed a 
new docking algorithm, namely MedusaDock [ 16 ], which accounts 
for ligand  and    receptor   fl exibility at the same time.  In   MedusaDock, 
we build a stochastic rotamer library for each ligand, and simulta-
neously model the protein sidechain conformation using  a   rotamer 
library for all natural amino acids. The effi cient sampling of our 
docking is associated with the use of MedusaScore [ 17 ], a physical 
force fi eld-based scoring function accounting for the protein–
ligand interaction energy. The adoption  of   MedusaScore circum-
vents the problem of low transferability among different targets 
and ligands, which is typical of empirical scoring functions classi-
cally used in docking calculations [ 18 ,  19 ].    MedusaDock and 
MedusaScore have been successfully adopted in the evaluation of 
the binding properties of both peptides [ 5 ] and small molecules 
[ 16 ,  20 ,  21 ]. 

 Our docking approach has successfully predicted the native 
conformations of 28 out of the 35 study cases proposed in the 
recent CSAR-2011 competition [ 20 ], more than any other group 
in the exercise (H. Carlson, personal communications). In this 
chapter, we present a standard protocol to perform the docking of 
the propanolol enantiomers in the binding site of the β2  adrenergic 
  receptor (β2AR). We (1) assess the structural quality of this G pro-
tein-coupled receptor’s structure using our in-house developed 
 software   Gaia, which compares the intrinsic properties of protein 
structural models to high-resolution crystal structures (http://
chiron.dokhlab.org [ 22 ]); (2) generate the optimized starting 
structures of ligands using widely used molecular modeling tools; 
and fi nally (3) calibrate and run docking calculations using 
MedusaDock [ 16 ], which will eliminate any possible bias origi-
nated from the starting conformations of the amino acids in β2AR 
binding pockets.  
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2    Materials 

 To implement the reported docking calculation procedure, it is 
necessary to have access to an internet-connected computer run-
ning a Linux operative system and mount a licensed copy of the 
Schröedinger Suite (Schröedinger, LLC), as well as a licensed copy 
of  the   MedusaDock software (Molecules in Action, LLC).  

3    Methods 

       1.    Navigate through the Protein Data Bank (PDB) website [ 23 ] 
to download the crystallographic coordinates of the human 
β2AR at 2.8 Å resolution (PDB-ID: 3NY8 [ 24 ]). From the 
downloaded fi le, remove the coordinates of (1) the co-crystal-
lized inverse agonist ICI 118,551; (2) water molecules not 
mediating the binding of ICI 118,551 to β2AR; and (3) mol-
ecules used for technical purposes and present in the fi nal crys-
tal structure.   

   2.    In order to estimate the quality of the resulting  β2AR   protein 
structure, run the in-house developed  software   Gaia [ 22 ]. 
Navigate to the following address http://chiron.dokhlab.org. 
Click on the Submit Task button in the starting page (Fig.  1a ). 
In the  step 1  section, enter a Job Title in the dedicated win-
dow, and upload the fi le containing the β2AR crystallographic 
structure in pdb format. You can choose to receive an e-mail 
notifi cation when the submitted job is completed. In the  step 
2  section, choose the task Gaia to validate the submitted pro-
tein structure. The status of the calculation can be monitored 
via the panel Gaia, which is accessible by clicking the Home/
Overview button in the starting page (Fig.  1a ). Upon comple-
tion of the job (indicated by a green mark in the Status), a 
short report of some protein features will be presented on the 
web page (Fig.  1b ). The user can download a detailed report 
on the structural features of the protein clicking on the eye 
icon in the table (Fig.  1b ,  see   Note 1 ).

              1.    Several applications can be used to prepare the structure of 
ligands to be used in docking calculations. In this specifi c case, 
we will use a number of applications available via the 
Schrödinger Suite. Starting from the Maestro interface (v. 
9.3.5), use the 2D Sketcher tool to draw the chemical struc-
tures of the inverse agonist ICI 118,551, co-crystallized with 
the β2AR protein, as well as the two propanolol enantiomers, 
whose binding modes will be investigated through docking.   

3.1  Protein 
Preparation

3.2  Ligand 
Preparation

Modeling Ligand Interactions and Affi nities
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  Fig. 1    ( a ) Home page of Chiron/Gaia server for protein structure refi nement, which is available at the follow-
ing link: http://chiron.dokhlab.org. ( b ) Short report of protein’s structural features from the Chiron/Gaia server.
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   2.    The ligand structures need to be further optimized using the 
LigPrep application. The user can choose the appropriate force 
fi eld (in this case MMFFs [ 25 ]) for the optimization of atom 
distances, angles, and dihedral angles, along with the most 
appropriate pH for the determination of the formal charges of 
titratable groups ( see   Note 2 ). Several options are available for 
the determination of the ligands’ stereochemistry. Since we 
have manually drawn the ligand structures, we determine the 
appropriate chiralities from the generated 3D structures with-
out constructing any tautomers. The optimized structures of 
ligands are saved in mol2 format for docking calculations, and 
in Structure Data Format (i.e., SDF format by MDL 
Information Systems) for storage.      

       1.    Docking calculations are executed via our Monte Carlo-based 
 algorithm   MedusaDock [ 16 ], which simultaneously accounts 
for ligands’  and   receptors’ (side chains)    fl exibility. We calibrate 
docking calculations to the target protein by performing a self- 
docking of any co-crystallized binder as retrieved from the 
PDB to assess both the convergence of docking calculations, 
and the ability of reproducing the native pose of the co-crystal-
lized ligand (i.e., ICI 118,551) in the β2AR binding site.   

   2.    In order to test the convergence of docking results, submit 
several independent docking calculations of ICI 118,551 in 
the β2AR binding site (e.g., 100, 200, 500)  using   MedusaDock 
[ 16 ] ( see   Note 3 ), and plot the distributions of the binding 
energies as estimated  by   MedusaScore [ 17 ] (Fig.  2a ). The 
number of calculations by which there is no more variation of 
the poses’ binding energy distributions will be the minimal 
number of docking runs normally submitted to explore the 
binding modes of compounds (with similar molecular weight 
and rotatable bonds to ICI 118,551) in the β2AR binding site.

       3.    The estimated binding energies for all of the docking poses of 
ICI 118,551 (as for any docked compound) show a normal 
distribution (Fig.  2b ). Therefore, according to the central 
limit theorem [ 26 ], it is possible to retrieve as statistical sig-
nifi cant solutions from only those docking poses for which the 

3.3  Docking 
Calibration

Fig. 1 (continued) The green mark below the Status column indicates the completion of the job; the eye icon 
in the table gives access to a detailed report, which can be downloaded in pdf format. ( c ) Initial summary 
about protein’s structural features as downloaded from the Chiron/Gaia server. Values highlighted in red usu-
ally need the user attention in order to further refi ne the submitted protein structure ( see   Note 1 ). A detailed 
report about steric clashes, hydrogen bonds in the shell and in the core of the protein, solvent accessible 
surface area, and void volume is also available to the user       
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 Z -score is lower than −2 (i.e., less than 5 % probability that the 
specifi c docking pose is extracted by chance). In this case,  Z  is 
defi ned as: 

  
Z

x
=

- m
s    

where  x  is the estimated binding energy of a specifi c docking 
poses, and  μ  and  σ  are the mean and the standard deviation of 
the binding energies in the population of binding poses, 
respectively.   
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  Fig. 2    ( a ) Convergence of the distributions of docking pose’s binding energies extracted from 200 and 500 
independent MedusaDock calculations are reported in  green  and  blue , respectively. ( b ) Normal distribution ( red 
dashed curve ) of docking pose’s binding energies extracted from 200 independent MedusaDock calculations 
( green bars )       
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   4.    On the subset of extracted docking poses (i.e., poses with 
 Z -score lower than −2), perform  a   cluster analysis to retrieve 
the most representative docking pose (i.e., centroid of the most 
populated cluster of poses). Cluster the ensemble of docking 
solutions according to the root mean square deviation (RMSD) 
computed over the ligand’s heavy atoms. The optimal number 
of highly populated clusters can be identifi ed by applying the 
average linkage method [ 27 ] and the Kelley penalty index [ 28 ] 
in order to minimize the number of clusters and the spread of 
internal values in each cluster. The clustering level with the low-
est Kelley penalty represents a condition where the clusters are 
highly populated and concurrently maintain the smallest inter-
nal spread of RMSD values ( see   Note 4 ). The centroid of the 
most populated cluster is chosen as the representative confor-
mation of the ICI 118,551 bound to β2AR.   

   5.    Calculate the RMSD of the extracted solution of ICI 118,551 
with respect to the original co-crystallized conformation of the 
ligand in β2AR. The RMSD computed over the ligand’s heavy 
atoms (1.4 Å) is below the X-ray resolution (2.8 Å). Therefore, 
the applied strategy is successful in reproducing the native pose 
of ICI 118,551 as also demonstrated by the consistency with 
the  electron- density map of the crystal as downloaded from 
the Uppsala Electron  Density   Server [ 29 ] (Fig.  3a ).

              1.     Using   MedusaDock submit the number of independent dock-
ing calculations determined in the  step 2  of docking calibra-
tion ( see   Note 5 ).   

   2.    Isolate, cluster, and retrieve the obtained docking poses of pro-
panolol enantiomers (Fig.  3b ) as described in the  steps 3 – 5  of 
docking calibration.       

4    Notes 

     1.    Starting  from   Gaia panel in the Home/Overview page (Fig. 
 1b ), the user can download a detailed report of the structural 
properties of the  submitted   protein in comparison with what 
observed in high-resolution crystal structures. The initial sum-
mary is reported in Fig.  1c . Values highlighted in red usually 
need the user attention in order to further refi ne the submitted 
protein structure. Such operation can be performed using the 
 software   Chiron [ 30 ], which minimizes the number of non-
physical atom interactions (clashes) in the given protein 
structure.   

   2.    The user can choose several options for the ligands’ optimiza-
tion. Available force fi elds are MMFFs [ 25 ] or OPLS_2005 

3.4  Docking 
Calculations 
for Propanolol 
Enantiomers

Modeling Ligand Interactions and Affi nities
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[ 31 ,  32 ]. The ionization state of titratable groups can be 
refi ned at the appropriate pH (the user should retrieve any 
available information about the pH value at the protein bind-
ing site) using either the Epik or the Ionizer application. The 
user can also decide to generate tautomers or all possible com-
binations of stereoisomers for each optimized ligand.   

   3.       MedusaDock command can be submitted in a machine run-
ning a Linux operating system using the following command: 

  $>   ./medusaDock.linux –i   TARGET_PROTEIN   –m  
 MOLECULE_TO_DOCK   –o   DOCKING_SOLUTION   –p ./   MEDUSADOCK_
PARAMETERS/   -M   BINDING_SITE_CENTER   –r   BINDING_SITE_
RADIUS   –S   SEED_NUMBER   –R  

 In this specifi c case  TARGET_PROTEIN  is β2AR;  MOLECULE_
TO_DOCK  is ICI 118,551;  DOCKING_SOLUTION  is the output name 
for the calculation;  MEDUSADOCK_PARAMETERS  is the directory 
where parameters for docking calculations are stored;  BINDING_
SITE_CENTER  is the centroid of the ICI 118,551’s crystallo-
graphic coordinates as retrieved from the PDB (PDB ID: 3NY8), 

  Fig. 3    ( a ) Superimposition of MedusaDock docking solution of ICI 118,551 to its crystallographic conformation 
in the β2AR binding site (PDB-ID: 3NY8). The described docking procedure demonstrates high reliability as it 
reproduces the binding pose of the original co-crystallized molecule with a RMSD computed over the ligand’s 
heavy atoms of 1.4 Å, which is below the X-ray resolution (2.8 Å). The binding energy as estimated by 
MedusaDock is −39.4 kcal/mol and −37.9 kcal/mol for ICI 118,551 in its docked and crystallized conforma-
tion, respectively. Carbon atoms are represented in blue and green for ICI 118,551 in its docked and crystal-
lized conformation, respectively. β2AR electron density map available from the Electron Density Server is 
reported as white mesh. ( b ) R/S propanolol bound conformations obtained by combining the MedusaScore 
values with a hierarchical cluster analysis of statistically signifi cant docking solutions (i.e., poses with  Z -score 
lower than −2, main text). The binding energy as estimated by MedusaScore is −38.1 kcal/mol and −38.8 
kcal/mol for R- and S-propanolol, respectively. The reported solutions represent the centroids of the most 
populated clusters of statistically signifi cant docking poses of R- and S-propanolol (i.e., 61.5 % and 57.7 % of 
the conformational ensembles, respectively). Carbon atoms are represented in pink and cyan for R- and 
S-enantiomers, respectively. The same color code is adopted to indicate the sidechains of β2AR amino acids 
when in complex with the two enantiomers       
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which has been chosen as center of the β2AR binding site; 
 BINDING_SITE_RADIUS  is 8 Å;  SEED_NUMBER  is a random number 
to be used to defi ne a new  independent   Monte Carlo cycle; and 
 –R  is the fl ag which specify the initialization of a docking calcula-
tion  in   MedusaDock. The command is customizable for running 
multiple independent docking calculations as in the following 
 bash  script: 

  $> for i in $(seq –w 1 200 )  

  $> do  

  $>    rng = \$RANDOM    #random number generation  

  $>     ./medusaDock.linux –i   TARGET_PROTEIN   –m  
 MOLECULE_TO_DOCK   –o   DOCKING_SOLUTION   –p ./  
 MEDUSADOCK_PARAMETERS/   -M   BINDING_SITE_
CENTER   –r   BINDING_SITE_RADIUS   –S   ${rng}   –R  

  $> done  

 In this case, we perform 200 independent docking calcula-
tions of ICI 118,551 in β2AR. Even  though   MedusaDock can 
perform on a single 8-core CPU, each docking calculation 
requires on average 8 min to be completed, therefore the user 
should consider the use of supercomputer for the docking of 
small libraries of compounds.   

   4.    We perform  the   cluster analysis using an  ad hoc  developed pro-
gram. The less experienced user is advised to refer to the 
 Conformer Cluster script available in the Resources of the 
Schrödinger Suite.   

   5.     Perform   MedusaDock calculations for propanolol enantiomers 
by adapting the command reported in  Note 3  to the new 
compounds.         
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    Chapter 3   

 Binding Site Prediction of Proteins with Organic 
Compounds or Peptides Using GALAXY Web Servers                     

     Lim     Heo    ,     Hasup     Lee    ,     Minkyung     Baek    , and     Chaok     Seok      

  Abstract 

   We introduce two GALAXY web servers called GalaxySite and GalaxyPepDock that predict protein com-
plex structures with small organic compounds and peptides, respectively. GalaxySite predicts ligands that 
may bind the input protein and generates complex structures of the protein with the predicted ligands 
from the protein structure given as input or predicted from the input sequence. GalaxyPepDock takes a 
protein structure and a peptide sequence as input and predicts structures for the protein–peptide complex. 
Both GalaxySite and GalaxyPepDock rely on available experimentally resolved structures of protein–ligand 
complexes evolutionarily related to the target. With the continuously increasing size of the protein struc-
ture database, the probability of fi nding related proteins in the database is increasing. The servers further 
relax the complex structures to refi ne the structural aspects that are missing in the available structures or 
that are not compatible with the given protein by optimizing physicochemical interactions. GalaxyPepDock 
allows conformational change of the protein receptor induced by peptide binding. The atomistic interac-
tions with ligands predicted by the GALAXY servers may offer important clues for designing new mole-
cules or proteins with desired binding properties.  

  Key words     GALAXY  ,   Binding site prediction  ,   Peptide docking  ,   Ligand docking  ,   Ligand design  

1      Introduction 

  Proteins are involved in numerous biological  processes   such as 
enzymatic activities and signal transductions [ 1 – 3 ]. The biological 
functions of proteins result from  their   molecular interactions with 
other molecules such as metal ions, small organic compounds, lip-
ids, peptides, nucleic acids, or other proteins. Typically, proteins 
interact with other molecules by binding them at specifi c sites. 
Therefore, identifi cation of the binding sites on the three- 
dimensional protein surfaces can be an important step for inferring 
protein functions [ 4 ,  5 ] and for designing novel molecules that 
 control   protein functions [ 6 ,  7 ] or designing new proteins with 
desired interaction properties [ 8 ,  9 ]. Various methods have been 
developed to predict ligand binding sites of proteins from protein 
sequences or structures. Those methods are based on geometry, 
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energy,  evolutionary information, or combinations of them [ 10 ]. 
Methods utilizing available experimentally resolved structures of 
homologous protein–ligand complexes were proven to be success-
ful in predicting binding sites in the community-wide blind predic-
tion experiments [ 11 – 13 ]. Those methods predict binding sites by 
transferring the available binding information for homologs, 
assuming that binding sites are conserved among homologs. 
However, methods based on evolutionary information alone may 
not be suffi cient to predict interactions at the binding sites in 
atomic detail, and physicochemical interactions may have to be 
considered in addition. 

 In this chapter, we introduce two methods that predict bind-
ing sites of small organic compounds and peptides that are avail-
able on the GALAXY web server  called   GalaxyWEB [ 14 ]. These 
methods effectively search  the   protein structure database to fi nd 
available experimental structures of related proteins complexed 
with ligands, build three-dimensional protein–ligand complex 
structures from the available information, and further refi ne the 
complex structure to go beyond the available information by opti-
mizing physicochemical energy.  The   GalaxySite server predicts 
binding sites of small organic compounds from  input   protein 
structure or sequence [ 15 ].    Binding ligands are fi rst predicted and 
the predicted ligands are then docked to the given protein struc-
ture or a  predicted   protein structure if sequence is given. The pre-
dicted complex structures are optimized by protein–ligand docking 
simulations which take into account the binding information 
derived from related proteins and additional physicochemical 
energy that do not rely on evolutionary information.    GalaxySite 
was ranked among top methods in the recent critical assessment 
techniques  for   protein structure prediction (   CASP) experiments 
when evaluated in terms of predicted binding site residues [ 16 , 
 17 ].    GalaxyPepDock predicts protein–peptide complex structures 
from input protein structure and peptide sequence [ 18 ]. It also 
combines information on interactions found in homologous com-
plexes in  the   protein structure database and additional physico-
chemical energy to optimize the protein–peptide complex 
structures. The protein structure is allowed to change fl exibly 
according to its interaction with the peptide ligand during 
optimization. 

 The method proved its usefulness in the  recent   critical assess-
ment of prediction of interactions (CAPRI) experiments ([ 19 ], 
http://www.ebi.ac.uk/msd-srv/capri/round28/round28.html). 
 Both   GalaxySite ligand binding site prediction server and  the 
  GalaxyPepDock peptide binding site prediction server rely on simi-
larity to the protein–ligand complexes of known structures and 
provide detailed protein–ligand atomic interactions by sophisti-
cated energy optimization.  
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2    Materials 

     1.    A personal computer or device and a web browser are required 
to access  the   GalaxyWEB server through the Internet. A 
JavaScript enabled web browser is highly recommended to see 
the results on the web browser: The server compatibility was 
tested on Google Chrome, Firefox, Safari, and Internet Explorer.   

   2.    The following input materials are required to  use   GalaxySite 
and GalaxyPepDock on GalaxyWEB.
   (a)    To  run   GalaxySite for ligand binding site prediction, a 

sequence in FASTA format or a structure fi le in standard 
PDB format for the protein of interest is required. The input 
target protein sequence/structure fi le must contain 20 stan-
dard amino acids in one/three-letter codes. The input should 
be a single- chain protein, and the number of amino acids 
should be greater than 30 and less than 500. The user may 
judiciously delete irrelevant protein chains or termini before 
job submission to meet this requirement and/or to save 
computational cost. An example input sequence (Fig.  1 , 

  Fig. 1    The GalaxySite input page       
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 Label 1 ) and structure fi le (Fig.  1 ,  Label 2 ) can be obtained 
from  the   GalaxySite web page.

      (b)    To  run   GalaxyPepDock for peptide binding site predic-
tion, a structure fi le in standard PDB format for  the   recep-
tor protein of interest and a sequence fi le in FASTA format 
for the peptide of interest are required. The number of 
amino acids of the receptor protein should be less than 
900 and that of the peptide less than 30. The input peptide 
sequence fi le must contain 20 standard amino acids in one-
letter codes. Example input fi les (Fig.  2 ,  Label 1 ) can be 
obtained from  the   GalaxyPepDock web page.    

3          Methods 

       1.    Go to GalaxyWEB, http://galaxy.seoklab.org. Click “Site” in 
the “Services” tab at the top of the page.   

   2.    In the “User Information” section, enter job name (defaults to 
“None”). The user can provide e-mail address so that the server 
sends progress reports of the submitted job automatically. 

3.1  Ligand Binding 
Site Prediction  Using 
  GalaxySite

  Fig. 2    The GalaxyPepDock input page       
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Otherwise, the user should bookmark the report page (Fig.  3b ) 
after submitting the job.

       3.    In the “Query Protein Information” section, provide a FASTA- 
formatted protein sequence or a standard PDB- formatted   pro-
tein structure fi le. If the structure of query protein has been 
already determined or predicted, the user may simply upload 
the protein structure fi le in PDB format (Fig.  1 ,  Label 3 ). 
If only the sequence of the query protein is known, the user 
may provide a FASTA-formatted protein sequence by copying 
the sequence and pasting it into the text box (Fig.  1 ,  Label 4 ). 
When sequence information is provided,  the   GalaxySite server 
predicts  its   protein structure by using a simplifi ed version of 
GalaxyTBM [ 20 ], a template-  based   protein structure predic-
tion method ( see   Note 1 ).   

  Fig. 3    ( a ) A summary page showing the submission information of a GalaxySite job. ( b ) An example report page 
showing the status of the GalaxySite job       
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   4.    Press the submit button to queue the job. If any errors occur 
with the provided input, the user will get a notice about the 
errors that need to be corrected. If the submission is successful, 
the user will be directed to the summary page of the submis-
sion information which has a link to the report page (Fig.  3a ). 
The number of jobs in the “WAIT” or “RUN” status allowed 
per user is limited to three.   

   5.    Click “LINK” in the submission information page to access to 
the report page. The user can track the status of the submitted job 
in the report page which will be refreshed every 30 s (Fig.  3b ). 
When the job is completed, predicted results will be automatically 
presented. Average run time of GalaxySite is 2–4 h.   

   6.    Ligands predicted to bind:    GalaxySite predicts up to three 
ligands that are likely to bind to the target protein ( see   Note 
2 ). The predicted ligands are presented in the descending 
order of the estimated likelihood of binding (Fig.  4 ). For each 
ligand, ligand name in a three-letter code (Fig.  4 ,  Label 1 ) and 
two- dimensional chemical structure (Fig.  4 ,  Label 2 ) are 
shown. Ligand name is hyperlinked to the ligand summary 
page of RCSB PDB (http://www.rcsb.org) [ 21 ] for detailed 
information on the molecule. PDB IDs for protein–ligand 
complexes used for the prediction are also provided and 

  Fig. 4    An example of the “Ligands predicted to bind” section on the GalaxySite report page       
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hyperlinked to the structure summary page of RCSB PDB 
(Fig.  4 ,  Label 3 ).

       7.    Predicted ligand binding residues: For each predicted ligand, 
information on the predicted ligand binding residues is pro-
vided (Fig.  5a ). Ligand binding residues are defi ned from the 
protein–ligand complex structure obtained by molecular dock-
ing  in    GalaxySite (Fig  4a ,  Label 1 ). If the distance of any amino 
acid residue from any ligand atom is less than the sum of van 
der Waals radii of the two atoms + 0.5 Å, the residue is consid-
ered to bind the ligand. In addition, detailed atomic interac-
tions between ligand and ligand binding residues are analyzed 
by using LIGPLOT [ 22 ] and can be seen through LINK (Fig 
 4a ,  Label 2 ). On the LIGPLOT page (Fig.  5b ), the ligand mol-
ecule and the protein amino acid residues are depicted in violet 
and brown, respectively. Hydrogen bonds are shown in green 
dashed lines with their lengths, and hydrophobic contacts are 
shown in red spikes. Ideas for designing ligands or ligand bind-
ing site residues may be gained from this interaction analysis.

  Fig. 5    ( a ) An example of the “Predicted ligand binding residue” section on the GalaxySite report page. ( b ) An 
example of interaction analysis between ligand and ligand binding residues made by LIGPLOT. ( c ) An example 
of the “Predicted binding poses” section on the GalaxySite report page       
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       8.    Predicted binding poses: For each predicted ligand, a pre-
dicted protein–ligand complex structure can be seen on the 
page using PV (http://biasmv.github.io/pv/), a JavaScript 
protein viewer, if the web browser supports JavaScript (Fig. 
 5c ). Users can zoom in and out by scrolling mouse wheel 
and change the focusing center by double clicking. Different 
predicted protein–ligand complex structures are shown by 
clicking the model number in the “View in PV” line (Fig  4c , 
 Label 3 ). Predicted protein–ligand complex structures can 
be downloaded in PDB-formatted fi le for further analyses 
(Fig  4c ,  Label 4 ).   

   9.    Re-submission with other ligands: Other ligands that are likely 
to bind to the query protein are listed in another table (Fig.  6 ). 
Similarly to the top three ligands with the highest estimated 
likelihood of binding ( see   step 6 ), ligand names, two- 
dimensional chemical structures, and PDB IDs for the corre-
sponding protein–ligand complexes are shown in the table. By 
clicking the “Submit” button (Fig.  6 ,  Label 1 ), the user can 
re-submit a new ligand binding site prediction job with a 
selected ligand.

       10.    Detailed explanations on  the   GalaxySite web server are also 
provided on the GalaxySite help page; click “Help” tab at the 
top of the page, and then click “   GalaxySite” on the right of the 
help page. The prediction method used for the GalaxySite pro-
gram is described in the original paper [ 15 ].      

  
     1.    Go to GalaxyWEB, http://galaxy.seoklab.org. Click 

“   PepDock” in the “Services” tab at the top of the page.   
   2.    In the “User Information” section, enter job name (defaults to 

“None”). The user can provide e-mail address so that the 
server sends progress reports of submitted job automatically. 

3.2  Peptide Binding 
Site Prediction  Using 
  GalaxyPepDock

  Fig. 6    An example of the “Re-submission with other possible ligands” section on the GalaxySite report page       
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Otherwise, the user should bookmark the report page after 
submitting job.   

   3.    In the “Protein–peptide Docking” section, provide a standard 
PDB-formatted protein structure fi le (Fig.  2 ,  Label 2 ) and a 
FASTA- formatted peptide sequence fi le (Fig.  2 ,  Label 3 ).

       4.    Press the submit button to queue the job. If the submission is 
successful, a “Submission Information” page will appear (Fig.  7a ).

       5.    Click “LINK” of the submission information page to access 
the report page. The report page will be refreshed every 30 s, 
updating the status of the submitted job. When the job is com-
pleted, the predicted results will be presented. Average run 
time of GalaxyPepDock is 2–3 h (Fig.  7b ).   

   6.    Predicted protein–peptide complex structures: Predicted struc-
tures of the query protein–peptide complex can be visualized 
on the report page using PV (http://biasmv.github.io/pv/), a 
JavaScript protein viewer, if the web browser supports JavaScript 

  Fig. 7    ( a ) A summary page showing the submission information of a GalaxyPepDock job. ( b ) An example report 
page showing the status of the GalaxyPepDock job       

 

Prediction of Ligand Binding Sites with GALAXY Webserver



42

(Fig.  8 ). Users can zoom in and out by scrolling mouse wheel 
and change the focusing center by double clicking. Template 
structures selected from the database of protein–peptide com-
plex structures to be used in the prediction are shown in light 
colors; protein and peptide structures are in light red and blue, 
respectively. Different protein–peptide complex model struc-
tures can be seen by clicking the model number in the “View 
in PV” line (Fig.  8 ,  Label 1 ). Predicted protein–peptide com-
plex structures can also be downloaded in PDB-formatted fi les 
for further analyses (Fig.  8 ,  Label 2 ).

       7.    Additional information: Additional information on predicted 
models and intermediate results generated during the 
GalaxyPepDock run is provided in a table (Fig.  9a ). Structures 
of protein template and peptide template are given as PDB IDs 
and can also be downloaded (Fig.  9a ,  Labels 1 and 2 , respec-
tively). Sequences and alignments of the query and the tem-
plate used for the prediction are provided (Fig.  9a ,  Label 3 ) for 
both protein and peptide (Fig.  9b ). Structure similarity 
between the predicted protein  structure and the   protein tem-
plate structure is presented in terms of TM-score [ 23 ] and 
RMSD (Fig.  9a ,  Label 4 ). A score called interaction similarity 
score [ 18 ] that was designed to describe the similarity of the 
amino acids of the query complex aligned to the interacting 

  Fig. 8    An example of the “Predicted protein–peptide complex structures” section 
on the GalaxyPepDock report page       
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residues of the template complex is reported for each predic-
tion. This is to give an idea on the degree of the relative 
 differences in similarity to the selected templates among differ-
ent models (Fig.  9a ,  Label 5 ).

       8.    Predicted binding site residues: Binding site residues of the pro-
tein taken from the predicted complex structure (Fig.  9a ,  Label 
7  and  9c ) and the estimated prediction accuracy of the binding 
site (Fig.  9a ,  Label 6 ) are provided ( see   Note 3 ). Those residues 
with any heavy atom within 5 Å from any peptide heavy atom 
in the predicted structure are reported as binding residues.   

   9.    GalaxyPepDock help page is also available; click the “Help” 
tab at the top of the page, and click “GalaxyPepDock” on the 
right of the help page. More detailed description of the predic-
tion method of GalaxyPepDock can be found in the original 
paper [ 18 ].       

4    Notes 

     1.    When a protein sequence is provided as input,    GalaxySite pre-
dicts  its   protein structure fi rst by using a simplifi ed version of 
the GalaxyTBM template- based   protein structure prediction 
program. Protein structure is required because ligand binding 

Query protein : AEYVRALFDFNGNDEEDLPFKKGDILRIFDKPEEQWWNAEDSE-GKRGMIPVPYVEKY
Templ protein : —TFVALYDYESRTETDLSFKKGEPLQIVNNTEGDWWLAHSLTTGQTGYIPSNYVAPS
Query peptide : –PPPALPPKK
Templ peptide : AFAPPLPRR–

8 PHE

a

b

c
9 ASP

10 PHE
12 GLY
13 ASN
14 ASP
16 GLU

33 GLU
35 GLN
36 TRP
48 MET
50 PRO
52 PRO
53 TYR

17 ASP

  Fig. 9    An example of the “Additional information” section on the GalaxyPepDock report page. ( a ) A summary 
table showing the results of the protein–peptide complex structure predictions. ( b ) An example of structure/
sequence alignments between the query protein/peptide and the template protein/peptide. ( c ) An example of 
the list of predicted binding residues of protein       
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sites are predicted by structure-based protein–ligand docking 
with additional information from available protein–ligand 
complex structures in the database. For computational effi -
ciency, loop/termini modeling and further refi nement step 
employed in the original GalaxyTBM are skipped during  the 
  GalaxySite runs. If the user desires to use a protein structure 
predicted by the full components of GalaxyTBM, he/she can 
run the GalaxyTBM program  on   GalaxyWEB. Select “TBM” 
in the “Services” tab at the top of the GalaxyWEB page. The 
same FASTA-formatted protein sequence described in the 
Materials section is suffi cient to run GalaxyTBM.   

   2.     Because   GalaxySite predicts ligand binding sites using available 
protein–ligand complex structures, it cannot predict ligand 
binding sites if no structures for similar protein–ligand com-
plexes are identifi ed. In such cases,    GalaxySite generates the 
message, “No template for binding site prediction has been 
found”.   

   3.    The estimated prediction accuracy in GalaxyPepDock means 
the estimated fraction of correctly predicted binding site resi-
dues. This value is obtained by using the linear regression data 
obtained from the prediction and experimental results on the 
PeptiDB test set [ 24 ]. A low value of estimated prediction 
accuracy implies that proper templates were not able to be 
selected, and the current similarity-based method may not 
provide reliable results for the query. When a very low value of 
estimated accuracy is returned, the user is recommended to try 
an ab initio protein–peptide docking method such as PEP-
SiteFinder [ 25 ] that does not rely on similarity to the known 
structures .         
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    Chapter 4   

 Rosetta and the Design of Ligand Binding Sites                     

     Rocco     Moretti    ,     Brian     J.     Bender    ,     Brittany     Allison    , and     Jens     Meiler      

  Abstract 

   Proteins that bind small molecules (ligands) can be used as biosensors, signal modulators, and sequestering 
agents. When naturally occurring proteins for a particular target ligand are not available, artifi cial proteins 
can be computationally designed. We present a protocol based on RosettaLigand to redesign an existing 
protein pocket to bind a target ligand. Starting with a protein structure and the structure of the ligand, 
Rosetta can optimize both the placement of the ligand in the pocket and the identity and conformation of 
the surrounding sidechains, yielding proteins that bind the target compound.  

  Key words     Computational design  ,   Protein/small molecule interaction  ,   Sequence optimization  , 
  Protein design  ,   Ligand docking  

1      Introduction 

 Proteins which bind to small molecules (i.e. ligands) are involved 
in many biological processes such as  enzyme   catalysis,    receptor sig-
naling, and metabolite transport. Designing these interactions can 
produce reagents which can serve as biosensors, in vivo diagnos-
tics, signal modulators, molecular delivery devices, and sequester-
ing agents [ 1 – 5 ]. Additionally, the computational design of 
proteins which bind small molecules serves as a critical test of our 
understanding of the principles that drive protein/ligand 
interactions. 

 While in vitro techniques for the optimization of protein/
ligand interactions have shown success [ 6 ], these are limited in the 
number of sequence variants which can be screened, and often 
require at least a modest  starting   affi nity which to further optimize 
[ 7 ]. Computational techniques allow searching larger regions of 
sequence space and permit design in protein scaffolds with no 
detectable intrinsic affi nity for the target ligand. Computational 
and in vitro techniques are often complementary and starting 
activity achieved via computational design can often be improved 
via in vitro techniques ([ 8 ] and Chapter   9     of this volume). 
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Although challenges remain, computational design  of   small mole-
cule interactions have yielded success on a number of occasions 
[ 5 ,  9 ], and  further attempts will refi ne our predictive ability to 
generate novel ligand binders. 

 The Rosetta macromolecular modeling software suite [ 10 ,  11 ] 
has proven to be a robust platform for protein design, having pro-
duced novel protein folds [ 12 ,  13 ], protein/DNA interactions 
[ 14 ],    protein/peptide interactions [ 15 ], protein/protein interac-
tions [ 16 ], and novel enzymes [ 17 – 19 ]. Technologies for design-
ing protein/ligand interactions have also been developed and 
applied [ 4 ,  8 ,  20 ]. Design of ligand binding proteins using Rosetta 
approaches the problem in one of two ways. One method derives 
from enzyme design, where predefi ned key interactions to the 
ligand are emplaced onto a protein scaffold and the surrounding 
context is subsequently optimized around them [ 8 ]. The other 
derives from  ligand   docking, in which the interactions with a mov-
able ligand are optimized comprehensively [ 4 ,  20 ]. Both approaches 
have proven successful in protein redesign, and features from both 
can be combined using  the   RosettaScripts system [ 21 ], tailoring 
the design protocol to particular design needs. 

 Here we present a protocol derived  from    RosettaLigand   ligand 
docking [ 22 – 25 ], which designs a protein binding site around a 
given small molecule ligand (Fig.  1 ). After preparing the protein 
and ligand structures, the placement of the ligand in the binding 
pocket is optimized, followed by optimization of sidechain identity 
and conformation. This process is repeated iteratively, and the pro-
posed designs are sorted and fi ltered by a number of relevant  struc-
tural   metrics, such as  predicted   affi nity and hydrogen bonding. 
This design process should be considered as part of the integrated 
program of computational and experimental work, where proteins 
designed computationally are tested experimentally and the experi-
mental results are used to inform subsequent rounds of computa-
tional design.

2       Materials 

     1.    A computer running a Unix-like operating system such as Linux 
or MacOS. Use of a multi-processor computational cluster is 
recommended for productions runs, although test runs and 
small production runs can be performed on conventional laptop 
and desktop systems.   

   2.    Rosetta. The Rosetta modeling package can be obtained from 
 the   RosettaCommons website (  https://www.rosettacommons.
org/software/license-and-download    ). Rosetta licenses are 
available free to academic users. Rosetta is provided as source 
code and must be compiled before use. See the Rosetta 
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Documentation (  https://www.rosettacommons.org/docs/lat-
est/    ) for instructions on how to compile Rosetta. The protocol 
in this paper has been tested with Rosetta weekly release version 
2015.12.57698.   

   3.    A program to manipulate small molecules. OpenBabel [ 26 ] is a 
free software package which allows manipulation of many small 
molecule fi le formats. See   http://openbabel.org/     for down-
load and installation information. The protocol in this paper has 
been tested with OpenBabel version 2.3.1. Other small mole-
cule manipulation programs can also be used.   

  Fig. 1    Flowchart of RosettaLigand design protocol. From the combined input 
coordinates of the protein and ligand, the position of the ligand is optimized. 
Next, residues in the protein/ligand interface are optimized for both identity and 
position. After several cycles of small molecule perturbation, sidechain rotamer 
sampling, Monte Carlo minimization with Metropolis (MCM) criterion, and a fi nal 
gradient-based minimization of the protein to resolve any clashes (“high resolu-
tion redocking”), the fi nal model is the output. Further optimization can occur by 
using the fi nal models of one round of design as the input models of the next 
round. Most variables in this protocol are user-defi ned, and will be varied to best 
fi t the protein–ligand complex under study       
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   4.    A ligand conformer generation program. We recommend the 
BCL [ 27 ] which is freely available from    http://meilerlab.org/
index.php/bclcommons     for academic use but does require an 
additional license to the Cambridge Structural Database [ 28 ] 
for conformer generation. The protocol in this paper has been 
tested with BCL version 3.2. Other conformer generation pro-
grams such as Omega [ 29 ], MOE [ 30 ], or RDKit [ 31 ] can also 
be used.   

   5.    The structure of the target small molecule in a standard format 
such as SDF or SMILES ( see   Note 1 ).   

   6.    The structure of the protein to be redesigned, in PDB format 
( see   Notes 2  and  3 ).      

3    Methods 

 Throughout the protocol ${ROSETTA} represents the directory 
in which Rosetta has been installed. File contents and commands 
to be run in the terminal are in  italics . The use of a bash shell is 
assumed—users of other shells may need to modify the syntax of 
command lines. 

  
 Structure from non-Rosetta sources  or   structures from other 
Rosetta protocols can have minor structural variations resulting in 
energetic penalties which adversely affect the design process ( see  
 Notes 4  and  5 ). 

  ${ROSETTA}/main/source/bin/relax.linuxgccrelease -ignore_
unrecognized_res -ignore_zero_occupancy_false -use_input_sc -fl ip_HNQ 
-no_optH false -relax:constrain_relax_to_start_coords -relax:coord_con-
strain_sidechains -relax:ramp_constraints false -s PDB.pdb  

 For convenience, rename the output structure. 
  mv PDB_0001.pdb PDB_relaxed.pdb   

  
     1.    Convert the small molecule to SDF format, including adding 

hydrogens as needed ( see   Note 6 ).     
  obabel LIG.smi --gen3D -O LIG_3D.sdf  
  obabel LIG_3D.sdf -p 7.4 -O LIG.sdf 

    2.    Generate a library of ligand conformers ( see   Notes 7  and  8 ).    
    bcl.exe molecule: ConformerGenerator -top_models 100 -ensem-
ble_fi lenames LIG.sdf -conformers_single_fi le LIG_conf.sdf 

    3.    Convert the conformer library into a Rosetta-formatted “params 
fi le” ( see   Notes 9 and 10 ).    
   ${ROSETTA}/main/source/src/python/apps/public/molfile_

to_params.py -n LIG -p LIG --conformers-in-one-fi le LIG_conf.sdf  
 This will produce three fi les: “LIG.params”, a Rosetta-readable 

description of the ligand; “LIG.pdb”, a selected ligand conformer; 
and “LIG_conformers.pdb”, the set of all conformers ( see   Note 11 ).  

3.1  Pre-relax 
the Protein Structure 
into the Rosetta 
Scoring Function [ 32 ]

3.2  Prepare 
the Ligand
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       1.    Identify the location of desired interaction pockets. Visual 
inspection using programs like PyMol or Chimera [ 33 ] is nor-
mally the easiest method ( see   Note 14 ). Use the structure edit-
ing mode of PyMol to move the LIG.pdb fi le from step 3.2.3 
into the starting conformation. Save the repositioned molecule 
with its new coordinates as a new fi le (LIG_positioned.pdb) ( see  
 Note 15 ).   

   2.    If necessary, use a text editor to make the ligand be residue 1 on 
chain X ( see   Note 16 ).   

   3.    Using a structure viewing program, inspect and validate the 
placement of the ligand (LIG_positioned.pdb) in the binding 
pocket of the protein (PDB_relaxed.pdb) ( see   Note 17 ).      

  
     1.    Prepare a residue specifi cation fi le. A Rosetta resfi le allows speci-

fi cation of which residues should be designed and which should 
not. A good default is a resfi le which permits design at all resi-
dues at the auto-detected interface ( see   Note 18 ).     
  ALLAA  
  AUTO  
  start 
       1 X NATAA    

   2.    Prepare a docking and design script (“design.xml”). The sug-
gested protocol is based off  of   RosettaLigand docking using  the 
  RosettaScripts framework [ 22 – 25 ]. It will optimize the location 
of ligand in the binding pocket (low_res_dock), redesign the 
surrounding sidechains (design_interface), and refi ne the inter-
actions in the designed context (high_res_dock). To avoid spu-
rious mutations, a slight energetic bonus is given to the input 
residue at each position (favor_native).    

   <ROSETTASCRIPTS>  
      <SCOREFXNS>  

  <ligand_soft_rep weights=ligand_soft_rep />  
  <hard_rep weights=ligandprime />  

      </SCOREFXNS>  
      <TASKOPERATIONS>  

   <DetectProteinLigandInterface name=design_
interface cut1=6.0 cut2=8.0 cut3=10.0 cut4=12.0 
design=1 resfi le="PDB.resfi le"/> # see   Note 19  

      </TASKOPERATIONS>  
      <LIGAND_AREAS>  

   <docking_sidechain chain=X cutoff=6.0 add_
nbr_radius=true all_atom_mode=true minimize_
ligand=10/>  
   <fi nal_sidechain chain=X cutoff=6.0 add_nbr_
radius=true all_atom_mode=true/>  
   <fi nal_backbone chain=X cutoff=7.0 add_
nbr_radius=false all_atom_mode=true Calpha_
restraints=0.3/>  

      </LIGAND_AREAS>  
      <INTERFACE_BUILDERS>  

3.3  Place the Ligand 
into the Protein ( See  
 Notes 12  and  13 )

3.4  Run 
Rosetta Design
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   <side_chain_for_docking ligand_areas=docking_
sidechain/>  
   <side_chain_for_fi nal ligand_areas=fi nal_
sidechain/>  
   <backbone ligand_areas=fi nal_backbone extension_
window=3/>  

      </INTERFACE_BUILDERS>  
      <MOVEMAP_BUILDERS>  

   <docking sc_interface=side_chain_for_docking 
minimize_water=true/>  
   <fi nal sc_interface=side_chain_for_fi nal bb_
interface=backbone minimize_water=true/>  

      </MOVEMAP_BUILDERS>  
       <SCORINGGRIDS ligand_chain=X width=15> # see   Note 20  

  <vdw grid_type=ClassicGrid weight=1.0/>  
      </SCORINGGRIDS>  
      <MOVERS>  

   <FavorNativeResidue name=favor_native bonus=
1.00 /> # see   Notes 21   and   22  
   <Transform name=transform chain=X box_size=
5.0 move_distance=0.1 angle=5 cycles=500 
repeats=1 temperature=5 rmsd=4.0 /> # see  
 Note 23  
   <HighResDocker name=high_res_docker cycles=6 
repack_every_Nth=3 scorefxn=ligand_soft_rep 
movemap_builder=docking/>  
   <PackRotamersMover name=designinterface score-
fxn=hard_rep task_operations=design_inter-
face/>  
   <FinalMinimizer name=fi nal scorefxn=hard_rep 
movemap_builder=fi nal/>  
   <InterfaceScoreCalculator name=add_scores 
chains=X scorefxn=hard_rep />  
  <ParsedProtocol name=low_res_dock>  
      <Add mover_name=transform/>  
  </ParsedProtocol>  
  <ParsedProtocol name=high_res_dock>  
      <Add mover_name=high_res_docker/>  
      <Add mover_name=fi nal/>  
  </ParsedProtocol>  
  </MOVERS>  
  <PROTOCOLS>  
      <Add mover_name=favor_native/>  
      <Add mover_name=low_res_dock/>  
      < Add mover_name=design_interface/> # see  

 Note 24  
      <Add mover_name=high_res_dock/>  
      <Add mover_name=add_scores/>  

      </PROTOCOLS>  
  </ROSETTASCRIPTS> 

    3.    Prepare an options fi le (“design.options”). Rosetta options can 
be specifi ed either on the command line or in a fi le. It is conve-
nient to put options which do not change run-to-run (such as 
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those controlling packing and scoring) into an options fi le rather 
than the command line.    
   -ex1  
  -ex2  
  -linmem_ig 10  
  -restore_pre_talaris_2013_behavior # see   Note 25 

    4.    Run the design application ( see   Notes 26  and  27 ). This will 
produce a number of output PDB fi les (named according to the 
input fi le names,  see   Note 28 ) and a summary score fi le 
(“design_results.sc”).    

   ${ROSETTA}/main/source/bin/rosetta_scripts.linuxgccre-
lease @design.options -parser:protocol design.xml -extra_
res_fa LIG.params -s "PDB_relaxed.pdb LIG_positioned.pdb" 
-nstruct <number of output models> -out:fi le:scorefi le 
design_results.sc   

  
     1.    Most Rosetta protocols are stochastic in nature. The output 

structures produced will contain a mixture of good and bad struc-
tures. The large number of structures produced need to be fi l-
tered to a smaller number of structures taken on to the next step.     

 A rule of thumb is that fi ltering should remove unlikely 
solutions, rather than selecting the single “best” result. 
Successful designs are typically good across a range of  relevant 
  metrics, rather than being the best structure on a single metric 
( see   Note 29 ). 

 The metrics to use can vary based on the desired proper-
ties of the fi nal design. Good standard metrics include the pre-
dicted interaction energy of the ligand, the stability score of 
the complex as a whole, the presence of any clashes [ 34 ], shape 
complementarity of the protein/ligand interface [ 35 ], the 
interface area, the energy density of the interface (binding 
energy per unit of interface area), and the number of unsatis-
fi ed hydrogen bonds formed on binding.

    2.    Prepare a fi le (“metric_thresholds.txt”) specifying thresholds to 
use in fi ltering the outputs of the design runs. IMPORTANT: 
The exact values of the thresholds need to be tuned for your 
particular system ( see   Note 30 ).    

   req total_score value < -1010 # measure of protein 
stability  

  req if_X_fa_rep value < 1.0# measure of ligand 
clashes  

  req ligand_is_touching_X value > 0.5# 1.0 if ligand 
is in pocket  

  output sortmin interface_delta_X# binding energy 

    3.    Filter on initial metrics from the docking run. This will produce 
a fi le (“fi ltered_pdbs.txt”) containing a list of output PDBs 
which pass the metric cutoffs.    

3.5  Filter Designs
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   perl ${ROSETTA}/main/source/src/apps/public/enzdes/
DesignSelect.pl -d <(grep SCORE design_results.sc) -c met-
ric_thresholds.txt -tag_column last > fi ltered_designs.sc  

  awk '{print $NF ".pdb"}' fi ltered_designs.sc> fi l-
tered_pdbs.txt  

     4.    Calculate  additional   metrics ( see   Note 31 ).    Rosetta’s 
InterfaceAnalyzer [ 36 ] calculates a number of additional met-
rics. These can take time to evaluate, though, so are best run on 
only a pre- fi ltered set of structures. After the metrics are gener-
ated, the structures can be fi ltered as in  steps 3.5.1  and 3.5.2. 
This will produce a score fi le (“design_interfaces.sc”) contain-
ing the calculated metric values for the selected PDBs.     

  ${ROSETTA}/main/source/bin/InterfaceAnalyzer.
linuxgccrelease -interface A_X -compute_packstat -pack_
separated -score:weights ligandprime -no_nstruct_label 
-out:fi le:score_only design_interfaces.sc -l fi ltered_
pdbs.txt -extra_res_fa LIG.params  

     5.    Filter on  additional   metrics. The commands are similar to those 
used in step 3.5.2, but against the design_interfaces.sc score 
fi le, and with a new threshold fi le.     

  perl ${ROSETTA}/main/source/src/apps/public/enzdes/
DesignSelect.pl -d <(grep SCORE design_results.sc) -c 
metric_thresholds.txt -tag_column last > fi ltered_
designs.sc  

  awk '{print $NF ".pdb"}' fi ltered_designs.sc> fi l-
tered_pdbs.txt  

 Example contents of metric_thresholds2.txt: 

  req packstat value > 0.55 # packing metric; 0-1 
higher better  

  req sc_value value > 0.45# shape complementarity; 
0-1 higher better  

  req delta_unsatHbonds value < 1.5# unsatisfi ed hydro-
gen bonds on binding  

  req dG_separated/dSASAx100 value < -0.5 # binding 
energy per contact area  

  output sortmin dG_separated# binding energy   

  
 While automated procedures are continually improving and can 
substitute to a limited extent [ 37 ], there is still no substitute for 
expert human knowledge in evaluating designs. Visual inspection 
of interfaces by a domain expert can capture system-specifi c 
 requirements that are diffi cult to encode into an automated fi lter 
( see   Note 32 ).  

  
 Improved results can be obtained by repeating the design protocol 
on the output structures from previous rounds of design. The 
number of design rounds depends on your system and how quickly 

3.6  Manually Inspect 
Selected Sequences

3.7  Reapply 
the Design Protocol, 
Starting at Step 3.4
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it converges, but 3–5 rounds of design, each starting from the fi l-
tered structures of the previous one, is typical ( see   Note 33 ).  

  
  ${ROSETTA}/main/source/src/python/apps/public/ 
pdb2fasta.py $(cat fi nal_fi ltered_pdbs.txt) > selected_
sequences.fasta   

  

 Only rarely will the initial design from a computational protocol 
give exactly the desired results. Often it is necessary to perform 
iterative cycles of design and experiment, using information learned 
from experiment to alter the design process (Fig.  2 ).

4        Notes 

     1.    While Rosetta can ignore chain breaks and missing loops far 
from the binding site, the structure of the protein should be 
complete in the region of ligand binding. If the binding pocket 
is missing residues, remodel these with a comparative model-
ing protocol, using the starting structure as a template.   

   2.    Acceptable formats depend on the capabilities of your small 
molecule handling program. OpenBabel can be used to con-
vert most small molecule representations, including SMILES 
and InChI, into the sdf format needed by Rosetta.   

3.8  Extract Protein 
Sequences 
from the Final 
Selected Designs 
into FASTA Format

3.9  Iteration 
of Design

  Fig. 2    Protein/ligand interface design with RosettaLigand. ( a ) Comparison in improvements in Interface Score 
and Total Score for top models from an initial placement, docking without sequence design, and docking with 
design. ( b ) Sequence logo of mutation sites among the top models from a round of interface design [ 43 ]. For 
most positions, the consensus sequence resembles the native sequence. Amino acids with sidechains that 
directly interact with the ligand show a high prevalence to mutation as seen in the positions with decreased 
consensus. ( c ) Example of a typical mutation introduced by RosettaLigand. The protein structure is represented 
in cartoon ( cyan ). The native alanine ( pink ) is mutated to an arginine residue ( green ) to match ionic interactions 
with the negatively charged ligand ( green ). Image generated in PyMol [ 44 ]       
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   3.    High resolution experimental structures determined in com-
plex with a closely related ligand are most desirable, but not 
required. Experimental structures of the unliganded protein 
and even homology models can be used [ 38 ,  39 ].   

   4.    The option “-relax:coord_constrain_sidechains” should be 
omitted if the starting conformation of the sidechains are from 
modeling rather than experimental results.   

   5.    Rosetta applications encode the compilation conditions in 
their fi lename. Applications may have names which end with 
*.linuxgccrelease, *.macosclangrelease, *.linuxiccrelease, etc. 
Use whichever ending is produced for your system. Applications 
ending in “debug” have additional error checking which slows 
down production runs.   

   6.    It is important to add hydrogens for the physiological condi-
tions under which you wish to design. At neutral pH, for 
example, amines should be protonated and carboxylates depro-
tonated. The “-p” option of OpenBabel uses heuristic rules to 
reprotonate molecules for a given pH value. Apolar hydrogens 
should also be present.   

   7.    Visually examine the produced conformers and manually 
remove any which are folded back on themselves or are other-
wise unsuitable for being the target design conformation.   

   8.    It is unnecessary to sample hydrogen positions during  rotamer   
generation, although any ring fl ip or relevant heavy atom iso-
meric changes should be sampled.   

   9.    molfi le_to_params.py can take a number of options—run with 
the “-h” option for details. The most important ones are: “-n”, 
which allows you to specify a three letter code to use with the 
PDB fi le reading and writing, permitting you to mix multiple 
ligands; “-p”, which specifi es output fi le naming; “--recharge”, 
which is used to specify the net charge on the ligand if not cor-
rectly autodetected; and “--nbr_atom”, which allows you to 
specify a neighbor atom ( see   Note 10 )   

   10.    Specifying the neighbor atom is important for ligands with off-
set “cores”. The neighbor atom is the atom which is superim-
posed when conformers are exchanged. By default the neighbor 
atom is the “most central” atom. If you have a ligand with a 
core that should be stable when changing conformers, you 
should specify an atom in that core as the neighbor atom.   

   11.    LIG.params expects LIG_conformers.pdb to be in the same 
directory, so keep them together when moving fi les to a new 
directory. If you change the name of the fi les, you will need to 
adjust the value of the PDB_ROTAMERS line in the LIG.
params fi le.   

   12.    Rosetta expects the atom names to match those generated in 
the molfi le_to_params.py step. Even if you have a starting 
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structure with the ligand correctly placed, you should align the 
molfi le_to_params.py generated structure into the pocket so 
that atom naming is correct.   

   13.    Other methods of placing the ligand in the pocket are also pos-
sible. Notably, Tinberg et al. [ 8 ] used RosettaMatch [ 40 ] both 
to place the ligand in an appropriate scaffold and to place key 
interactions in the scaffold.   

   14.    Other pocket detection algorithms can also be used (see 
Chapter   1     of this volume and [ 41 ] for a review).   

   15.    If you have a particularly large pocket, or multiple potential 
pockets, save separate ligand structures at different positions 
and perform multiple design runs. For a large number of loca-
tions, the StartFrom mover in RosettaScripts can be used to 
randomly place the ligand at multiple specifi ed locations in a 
single run.   

   16.    Being chain X residue 1 should be the default for molfi le_to_
params.py produced structures. Chain identity is important as 
the protocol can be used to design for ligand binding in the 
presence of cofactors or multiple ligands. For fi xed-location 
cofactors, simply change  the   PDB chain of the cofactor to 
something other than X, add the cofactor to the  input   protein 
structure, and add the cofactors’ params fi le to the -extra_res_
fa command line option. For designing to multiple movable 
ligands, including explicit waters, see Lemmon et al. [ 42 ].   

   17.    To refi ne the initial starting position of the ligand in the pro-
tein, you can do a few “design” runs as in step 3.4, but with 
design turned off. Change the value of the design option in the 
DetectProteinLigandInterface tag to zero. A good starting 
structure will likely have good total scores and good interface 
energy from these runs, but will unlikely result in ideal interac-
tions. Pay more attention to the position and orientation of 
the ligand than to the energetics of this initial placement dock-
ing run.   

   18.    The exact resfi le to use will depend on system-specifi c knowl-
edge of the protein structure and desired interactions. Relevant 
commands are ALLAA (allow design to all amino acids), 
PIKAA (allow design to only specifi ed amino acids) NATAA 
(disallow design but permit sidechain movement), and NATRO 
(disallow sidechain movement). The AUTO specifi cation 
allows the DetectProteinLigandInterface task operation to 
remove design and sidechain movement from residues which 
are “too far” from the ligand.   

   19.    Change the name of the resfi le in the XML script to match the 
full path and fi lename of the resfi le you are using. The cut val-
ues decide how to treat residues with the AUTO specifi cation. 
All AUTO residues with a C-beta atom within cut1 Angstroms 
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of the ligand will be designed, as will all residues within cut2 
which are pointing toward the ligand. The logic in selecting 
sidechains is similar for cut3 and cut4, respectively, but with 
 sidechain   fl exibility rather than design. Anything outside of the 
cut shells will be ignored during the design phase, but may be 
moved during other phases.   

   20.    The grid width must be large enough to accommodate the 
ligand. For longer ligands, increase the value to at least the 
maximum extended length of the ligand plus twice the value of 
box_size in the Transform mover.   

   21.    Allison et al. [ 20 ] found that a value of 1.0 for the 
FavorNativeSequence bonus worked best over their bench-
mark set. Depending on your particular requirements, though, 
you may wish to adjust this value. Do a few test runs with dif-
ferent values of the bonus and examine the number of muta-
tions which result. If there are more mutations than desired, 
increase the bonus. If fewer than expected, decrease the bonus.   

   22.    More complicated native favoring schemes can be devised by 
using FavorSequenceProfi le instead of FavorNativeSequence. 
For example, you can add weights according to BLOSUM62 
relatedness scores, or even use a BLAST-formatted position- 
specifi c scoring matrix (PSSM) to weight the bonus based on 
the distribution of sequences seen in homologous proteins.   

   23.    The value of box_size sets the maximum rigid body displace-
ment of the ligand from the starting position. The value of 
rmsd sets the maximum allowed root mean squared deviation 
from the starting position. Set these to smaller values if you 
wish to keep the designed ligand closer to the starting confor-
mation, and to larger values if you want to permit more move-
ment. These are limits for the active sampling stage of the 
protocol only. Additional movement may occur during other 
stages of the protocol.   

   24.    The provided protocol only does one round of design and 
minimization. Additional rounds may be desired for further 
refi nement. Simply replicate the low_res_dock, design_inter-
face, and high_res_dock lines in the PROTOCOLS section to 
add additional rounds of design and optimization. Alternatively, 
the EnzRepackMinimize mover may be used for fi ner control 
of cycles of design and minimization (although it does not 
incorporate any rigid body sampling).   

   25.    Refi nement of the Rosetta scorefunction for design of pro-
tein/ligand interfaces is an area of current active research. 
The provided protocol uses the standard ligand docking 
scorefunction which was optimized prior to the scorefunction 
changes in 2013, and thus requires an option to revert certain 
changes. Decent design performance has also been seen with 
the “enzdes” scorefunction (which also requires the -restore_
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pre_talaris_2013 option) and the standard “talaris2013” 
scorefunction.   

   26.    Use of a computational cluster is recommended for large pro-
duction runs. Talk to your local cluster administrator for 
instructions on how to launch jobs on your particular cluster 
system. The design runs are “trivially parallel” and can either 
be manually split or run with an MPI-compiled version. If 
splitting manually, change the value of the -nstruct option to 
reduce the number of structures produced by each job, and 
use the options -out:fi le:prefi x or -out:fi le:suffi x to uniquely 
label each run. The MPI version of rosetta_scripts can auto-
matically handle distributing structures to multiple CPUs, but 
requires Rosetta to be compiled and launched in cluster-spe-
cifi c ways. See the Rosetta documentation for details.   

   27.    The Rosetta option “-s” takes a list of PDBs to use as input for 
the run. The residues from multiple PDBs can be combined 
into a single structure by enclosing the fi lenames in quotes on 
the command line. Multiple fi lenames not enclosed in quotes 
will be treated as independent starting structures.   

   28.    The number of output models needed (the value passed to 
-nstruct) will depend on the size of the protein pocket and the 
extent of remodeling needed. Normally, 1000–5000 models is 
a good sized run for a single starting structure and a single 
protocol variant. At a certain point, you will reach “conver-
gence” and the additional models will not show appreciable 
metric improvement or sequence differences. If you have addi-
tional computational resources, it is often better to run multi-
ple smaller runs (100–1000 models) with slightly varying 
protocols (different starting location, number of rounds, 
extent of optimization, native bonus, etc.), rather than have a 
larger number of structures from the identical protocol.   

   29.     Relevant   metrics can be determined by using “positive con-
trols”. That is, run the design protocol on known protein–
ligand interactions which resemble your desired interactions. 
By examining how the known ligand–protein complexes 
behave under the Rosetta protocol, you can identify features 
which are useful for distinguishing native-like interactions 
from non-native interactions. Likewise, “negative controls”, 
where the design protocol is run without design ( see   Note 17 ) 
can be useful for establishing baseline metric values and 
cutoffs.   

   30.    The thresholds to use are system-specifi c. A good rule of 
thumb is to discard at least a tenth to a quarter by each relevant 
metric. More  important   metrics can receive stricter thresholds. 
You may wish to plot the distribution of scores to see if there 
is a natural threshold to set the cut at. You will likely need to 
do several test runs to adjust the thresholds to levels which give 
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the reasonable numbers of output sequences. “Negative con-
trols” (the protocol run with design disabled,  see   Note 17 ) can 
also be used to determine thresholds.   

   31.    Other system-specifi c metric values are available through the 
RosettaScripts interface as “Filters”. Adding “confi dence = 0” 
in the fi lter defi nition tag will turn off the fi ltering behavior 
and will instead just report the calculated metric for the fi nal 
structure in the fi nal score fi le. Many custom metrics, such as 
specifi c atom–atom distances, can be constructed in this fash-
ion. See the Rosetta documentation for details.   

   32.    Certain automated protocol can ease this post-analysis. For 
example, Rosetta can sometimes produce mutations which 
have only a minor infl uence on binding energy. While the 
native bonus ( see   Notes 21  and  22 ) mitigates this somewhat, 
explicitly considering mutation-by-mutation reversions can 
further reduce the number of such “spurious” mutations seen. 
Nivon et al. [ 37 ] presents such a protocol.   

   33.    In subsequent rounds, you will likely want to decrease the 
aggressiveness of the low resolution sampling stage (the box_
size and rmsd values of the Transform mover in step 3.4.2) as 
the ligand settles into a preferred binding orientation. As the 
output structure contains both the protein and ligand, the 
quotes on the values passed to the “-s” option ( see  step 3.4.4 
and  Note 27 ) are no longer needed. Instead, you may wish to 
use the “-l” option, which takes the name of a text fi le contain-
ing one  input   PDB per line. Each input PDB will each produce 
“-nstruct” models. Reduce this value such that the total num-
ber of unfi ltered output structures in each round is approxi-
mately the same.         
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    Chapter 5   

 PocketOptimizer and the Design of Ligand Binding Sites                     

     Andre     C.     Stiel    ,     Mehdi     Nellen    , and     Birte     Höcker      

  Abstract 

   PocketOptimizer is a computational method to design protein binding pockets that has been recently 
developed. Starting from a protein structure an existing small molecule binding pocket is optimized for the 
recognition of a new ligand. The modular program predicts mutations that will improve the affi nity of a 
target small molecule to the protein of interest using a receptor–ligand scoring function to estimate the 
binding free energy. PocketOptimizer has been tested in a comprehensive benchmark and predicted muta-
tions have also been used in experimental tests. In this chapter, we will provide general recommendations 
for usage as well as an in-depth description of all individual PocketOptimizer modules.  

  Key words     Computational protein design  ,   Protein–small molecule interaction  ,   Ligand binding 
design  ,   Enzyme engineering  ,   PocketOptimizer  

1      Introduction 

 Computational design  of   ligand binding pockets is related to  the 
  well-known fi eld of molecular docking. It aims at identifying muta-
tions in the binding pocket that establish or improve  the   affi nity 
and specifi city of a given ligand. From a search space point of view, 
it can be regarded as docking of a ligand against an ensemble con-
taining all allowed permutations of the binding pocket. 

 In the last decade, the fi eld of  computational   protein design 
has progressed considerably. However, the number of versatile and 
robust algorithms (beyond training-set optimized specialized 
cases) is still small. One reason might be that despite the large 
number of new and innovative tools for computational design, 
consistent benchmark sets and strategies for comparing algorithm 
performance are lacking. For example, in prior studies we com-
pared the  energy functions of   CADD-Suite [ 1 ]  and   Autodock-
Vina [ 2 ] and could already identify individual strengths and 
weaknesses [ 3 ]. Such data can be a fi rst step toward building better 
energy functions. Another important topic is the implementation 
of  backbone   fl exibility, especially with respect to ambitious design 
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tasks involving pronounced changes in the binding pocket. In 
these cases, different sources of backbone ensembles should be 
benchmarked including experimentally (e.g. native crystal struc-
tures, NMR structures) as well as computationally derived ones 
(e.g. snapshots from molecular dynamics simulation, geometric 
programs such as Backrub [ 4 ] or BRDEE [ 5 ]). 

 Consequently, we developed PocketOptimizer, a tool for com-
putational binding pocket design [ 3 ]. The defi ning feature of this 
program is its modularity. All components: sampling of the ligand 
position and the binding pocket conformers, scoring of pairwise 
and self-energies as well as calculation of solutions are crafted as 
 individual   modules relying on human-readable input- and output-
fi le formats. Within a single framework this allows the user to sub-
stitute sampling strategies, energy functions, or complete 
algorithms, e.g. to compare techniques or to benchmark own 
developments toward binding pocket design. Beyond that, a mod-
ular program easily allows the implementation of consensus scor-
ing which is likely to provide a more robust result than the use of 
only one algorithm. PocketOptimizer has already been tested 
against a benchmark set of 12 proteins and proofed to perform 
similar to the design program Rosetta [ 6 ]. We hope that this addi-
tion to the family of programs provides a further step toward 
addressing the comparability issues raised above. 

 The present chapter consists of two parts: (1) An introduction 
and guide to PocketOptimizer covering general strategic questions 
(a complementary hands-on user guide is available in the manual 
and the tutorial provided with the program). (2) A detailed mecha-
nistic description and tech-notes on all  PocketOptimizer   modules. 
Apart from providing necessary information to exploit the modu-
larity of the program, this part will also aid the user in trouble-
shooting problems during general use.  

2     Methods 

   PocketOptimizer is comprised of seven  main   modules (Fig.  1 ) 
( see   Note 1 ):  poseGenerator  and  createPocketSidechainCon-
formers  provide the sampling capacity for the ligand and the 
binding pocket residues. Scoring of the self-energies of the ligand 
and the binding pocket residues is accomplished by  calculateLi-
gandScaffoldScores*  and  sidechainScaffoldEnergyCalcula-
tor . The pairwise energies in the binding pocket are computed 
via  calculateLigandSidechainScore*  and  calculateSidechain-
PairEnergies  for the interaction of the ligand with the binding 
pocket residues and for the residues among themselves, respec-

2.1  PocketOptimizer 
General Strategies 
and Considerations

 * These programs are available in two versions utilizing CADD- Suite or Autodock-Vina as scoring algorithms: calcu-
lateLigandScaffoldBALLScores, calculateLigandScaffoldVinaScores, calculateLigandSidechainBALLScore, calculate-
LigandSidechainVinaScore 
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  Fig. 1    Description of the PocketOptimizer workfl ow. User input is shown as  ellipses , program modules as 
 boxes , and module output as  rounded  and  fi lled boxes . The elements are ordered by dependence on the input 
ligand or the scaffold as well as by belonging to the sampling, scoring, or solving group of program modules       
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tively. Finally, based on the calculated energies the module  calcu-
lateDesignSolutions  employs a linear programming algorithm 
to identify the best energy solution(s). Below we describe consid-
erations regarding the different components.   

     1.    Ligand     
 Based on the input ligand, poseGenerator builds a ligand pose 
ensemble in the binding pocket employing user-defi ned trans-
lational and rotational movements with a subsequent fi ltering 
for clashes. Some considerations are important: (1) poseGen-
erator does not sample internal degrees of freedom. Thus, if 
the ligand has rotatable bonds an input conformer ensemble 
has to be provided by the user. It can be generated by, e.g. 
FROG [ 7 ] or confab [ 8 ]. (2) The coordinates of the input 
ligand (“−”conformers) have to match those of  the   receptor 
structure since the origin of the transformations applied by 
poseGenerator is the initial ligand position. Please be aware 
that manually created ligands or ligands derived from a chemi-
cal component library will have coordinates mostly centered at 
the origin of the space (0,0,0). (3) Naturally, the completeness 
of the pocket sampling is dependent on the initial placement of 
the ligand and extent of movement (provided as parameters 
maximum and step size). Thus, choosing the limits of the 
movements slightly beyond the pocket boundaries ensures 
complete coverage of the binding pocket and can rectify an 
initial misplacement of the ligand (see point 2). (4) Especially 
for larger pockets with unknown binding- mode it can be 
worthwhile to fi rst scan the pocket relatively broadly (i.e. to 
run PocketOptimizer based on a coarse ligand pose ensemble) 
and, once a reasonable binding position is identifi ed, to use 
fi ner sampling to identify the ideal binding pose and a most 
convincing energy. (5) In general, the ligand should contain 
hydrogens and proper charges: e.g. a ligand can be obtained as 
“ideal instance” from the chemical component dictionary [ 9 ], 
while the required charges can be calculated for example with 
 antechamber  (  http://ambermd.org/antechamber/antecham-
ber.html    ). For further details on the input formats  see  
Subheading  2 . A script for automatic ligand preparation is part 
of the PocketOptimizer program downloadable at our homep-
age [ 10 ].

    2.    Receptor and binding pocket defi nition    
  The receptor structure  is   given as a fi le in PDB format ( .pdb ). 
It is recommended that the fi le is cleaned and standardized 
since this simplifi es data analysis and troubleshooting: i.e. chain 
breaks and special amino acids should be avoided, waters or 
ions should be deleted or treated explicitly. 
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 The binding pocket residues are defi ned in a plain text fi le 
( .txt ). Additionally, this fi le is used to specify mutagenesis posi-
tions and the range of allowed amino acids at this position. The 
number of pocket residues or mutations is not limited, however, 
the calculation time exponentially scales with the number of bind-
ing pocket residues.

    3.    Waters, ions, and cofactors    
  Heteroatoms other than the ligand (waters, ions, or other 
cofactors) play a signifi cant role in binding events and can be 
an essential part of the calculation. There are multiple 
approaches to include these molecules in PocketOptimizer: (1) 
They can be treated as extensions to the ligand. In this case 
each member of the conformer ensemble has to be solvated 
(e.g. using the  leap  program from the Amber package) before 
being subjected to poseGenerator. (2) Alternatively, the addi-
tional heteroatoms can be treated in the same way as the main 
ligand. That is: sampling of accessible positions, self- as well as 
pairwise-energies to the binding pocket, the ligand and poten-
tially other accessory molecules. This option is computation-
ally very expensive since all combinations of poses and 
conformers between the different ligands need a pairwise 
energy calculation to be performed. (3) An intermediate solu-
tion is to only perform these calculations on manually identi-
fi ed positions for the additional heteroatoms and let 
PocketOptimizer evaluate if they “improve” the binding or 
not. To this extend PocketOptimizer defi nes these molecules 
as two “conformers”: molecule is present at that position and 
molecule is not present. 

 Subheading  2.2   item 7  explains how additional molecules can 
be invoked for the calculation of solutions. In principle there is no 
limit to the number of additional molecules other than the increas-
ing computational complexity.

    4.    PocketOptimizer run    
   All   modules of PocketOptimizer can be run individually by 
 calling them, together with their specifi c keywords ( see   Note 2 ), 
as arguments of the python script  PocketOptimizer.py  ( see  
 Note 3 ). This provides  full   fl exibility in the usage of the mod-
ules. However, if the modules are not used in a consecutive 
manner, the input for  each   module must be otherwise pro-
duced by the user. Dependencies are visualized in Fig.  1  and 
explained explicitly (including fi le formats) in Subheading  2.2 . 
As an alternative to the step-by-step module calling, there is a 
script, which runs through all modules automatically ( see   Note 4 ). 
This script is part of the PocketOptimizer distribution and is 
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explained briefl y at the end of the chapter. Based on a param-
eter fi le, input ligands and receptor structure as well as binding 
pocket defi nition, the script runs all PocketOptimizer modules 
with intermittent output checks in one go.

    5.    Interpreting results    
  As an output PocketOptimizer calculates binding-, packing- 
and total-energy of the solution(s) as well as the respective 
ligand pose and binding pocket conformers. The nature of the 
linear programming algorithm of CalculateDesignSolutions 
results in the single best solution; however, any arbitrary num-
ber of lower-value solutions can also be computed. This 
approach differs from the  heuristic   Monte-Carlo strategy of 
Rosetta, which provides a large number of design solutions 
that have to be ranked and analyzed subsequently to derive the 
“best” solutions. 

 For a given question it is advisable to run PocketOptimizer 
with multiple different parameters (ligand charge/protonation, 
sidechain- rotamer library, backbone positions, weight set, and so 
on) and compare the results numerically and structurally to retrieve 
a more comprehensive and insightful solution.  

    
 In this section  every   module is described in detail together with the 
necessary input data and the output that is generated. Running the 
script with the  --help  fl ag provides a brief description of each 
module and its arguments.

    1.    poseGenerator (C++)    

   description:  The module creates a ligand pose ensemble 
employing translational (−− translation-step, −-max-
translation ) and rotational movements (−− rotation-step, 
−-max-rotation, −-axis- detail ) of the supplied ligand 
conformer library. The resulting ligand poses can be fi ltered 
for proximity to the binding site (−− max- pocket- distance, 
−-min-pocket-fraction ) and potential clashes with the scaf-
folds’ backbone (−− vdw-cutoff ). The module is build upon 
functionalities of the BALL library (  http://www.ball-project.
org/caddsuite    ). 

  input : (1) a  ligand    rotamer   library fi le (SDF format,  .sdf ) with 
the associated data fi eld “ <AMBER TYPES> ” contains Amber 
type naming of all atoms, (2) the scaffold structure ( .pdb ), (3) 
plain text fi le indicating the binding pocket residues ( posi-
tions.txt ). The atom nomenclature needs to be provided in 
the fi eld “ <AMBER TYPES> ”. Amber conform atom types can be 
created using the  antechamber  program from the Amber-tools 
package [ 11 ] with the atom-types option set to amber (“ -at 
amber ”). 

2.2  Module 
Description
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  output:   ligand_poses.sdf  contains all poses delimited by 
“ $$$$ ”, including the Amber type naming as described above.

    2.    createPocketSidechainConformers (python)    

   Description:  This module creates rotamers for every binding 
pocket residue position specifi ed and,  if   mutagenesis is per-
formed, for every possible amino acid type at the given posi-
tion. The rotamers are minimized and fi ltered for clashes with 
scaffold residues based on the van der Waals (vdW) energy. 
Internally, all calculations are done by  TINKER  [ 12 ]. A  TINKER  
key fi le (“ .key ”) that contains all minimization parameters will 
be generated in the directory specifi ed with the  --temp-dir  
option. It is possible to edit this fi le allowing maximal control. 
Based on the calculated  energy   rotamer, solutions are accepted 
or rejected (−− energy-threshold ). Possible rotamers are read 
from  a   rotamer library directory (−− conformer-lib-dir ) that 
contains the rotamers for each amino acid in single  .pdb  and 
single  .sdf  fi les. The employed force-fi eld can be changed via 
 --ff-param-fi le . 

  input : (1) the scaffold structure ( .pdb ), (2) plain text fi le indi-
cating the binding pocket residues ( positions.txt ). 

  output:  A folder ( scaffold_rotamers ) with sub-folders of all 
binding pocket positions (format: [chain]_[residue_number]). 
If mutations are performed, the sub-directory contains all 
allowed residues, otherwise only the wild type residue. For 
each residue there is one  .pdb  fi le with  the   rotamers separated 
by “ TER ” cards. Entries are numbered consecutively and not as 
in a multimodel pdb. Besides the  .pdb  fi le, there is a similar 
structured  .sdf  fi le. If no suitable rotamer was found this is 
indicated in the console output by “ No suitable conformers 
found for [position] ”.

    3.    calculateLigandScaffoldBALLScores (python), calculateLi-
gandScaffoldVinaScores (python)    

   description:  The module calculates pairwise energies between 
the ligand poses and the fi xed residues of the scaffold (i.e. each 
residue of the scaffold that is not specifi ed in  positions.txt ). 
This can be interpreted as the self-energy of the ligand pose 
in the binding pocket. The python script itself calls 
 ReceptorDesignScorer.exe  for every ligand pose–scaffold 
combination. This step can be parallelized using the option  -s . 
Since the executable builds on BALL functionalities, several 
docking parameters (e.g. vdW forces and electrostatic cut-off) 
can be accessed by editing the fi le  scoring_options.ini  (in 
 share/BALL_scorer/scoring_options.ini ). Internally, the 
calculations are split into batches of 50 ligand poses per run. 
The program requires the poses as a single  .sdf  fi le together 
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with the scaffold structure as a  .sdf . The output of each run 
contains the structure as described below and is eventually 
combined with the other fi les to one fi nal output table ( see  
 Note 5 ). 

 For the AutoDock-Vina implementation,  the   Autodock 
executable ( vina.exe ) is called internally in a similar fashion as 
described above. Autodock requires the presence of a pdbqt 
(description) fi le, which is generated internally by the function 
 prepareReceptorPDBQT  in  Autodock.py  ( py/Common ). 

  input : (1) a ligand pose ensemble fi le ( ligand_poses.sdf ) 
with the associated data fi eld “ <AMBER TYPES> ” (c.f. 2.2.1), (2) 
the scaffold structure ( .pdb ), (3) an ascii-text fi le indicating 
the binding pocket residues ( positions.txt ) 

  output:  A tab formatted text fi le ( ligand_energies/ligand/
ligand.dat ) containing a matrix with the ligand poses as lines 
and the residue energy terms as columns. For every residue fi ve 
columns exist, corresponding to the fi ve energy terms: adv, 
vdW, solvation, HB,  and   rotamer. “adv” represents the elec-
trostatics term in the BALL framework. For Autodock-Vina 
the output follows the same format but includes: gauss1, 
gauss2, repulsion, hydrophobic, and hydrogen ( see   Autodock 
for details). Since in the current implementation of 
PocketOptimizer (version 1.2.0) the individual energies are 
simply added up, the different composition of the score terms 
does not matter.

    4.    sidechainScaffoldEnergyCalculator (C++)    

   description:  The program module calculates the energies of the 
individual rotamers of all binding pocket residues with respect 
to the scaffold. Various parameters for treatment of electrostat-
ics and vdW forces can be adjusted (−− es-scaling-factor, 
−-es-distance- cutoff, −-dist-dep-dielectric, −-vdw-
distance-cutoff, −-vdw-softening- limit, −-vdw-
radius-scaling-factor, −-vdw-method ). The module uses 
components of the BALL framework. 

  input : (1) Binding pocket residue rotamers in the format 
described for  the   rotamer creation above. (2) The scaffold 
structure ( .pdb ) 

  output:  Directory structure as described for the rotamer cre-
ation above. For every residue there is a tab delimited 
text fi le ( .out ) that contains a matrix with rotamers for the resi-
due as rows and columns for vdW and electrostatic energies.

    5.    calculateSidechainPairEnergies (C++)    

   description:  This part calculates pairwise energies between the 
respective rotamers of all binding pocket residues. The scaling 
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factors for electrostatics and vdW forces can be adjusted (−− es-
factor, −-vdw-radius-factor ). Internally, for every combi-
nation  sidechainPairEnergyCalculator- static.exe  is 
called. The module uses components of the BALL framework. 

  input : Binding pocket residue rotamers in the format described 
for the  rotamer   creation above. 

  output:  Files for every binding pocket residue combination 
(naming: [res1]-[res2] with each res: [chain]_[residue_num-
ber]_[3-letter amino acid-type]) stored in a directory called 
 scaffold_rotamers_pair_energies . The fi les contain a 
matrix  with   rotamers of residue one as rows and two columns 
for each rotamer of residue two that contain the vdW and elec-
trostatic energy, respectively.

    6.    calculateLigandSidechainBALLScore (python), calculateLi-
gandSidechainVinaScore (python)    

   description:  This module calculates pairwise energies between 
the respective rotamers of every binding pocket residue and all 
ligand poses. For each combination of rotamer set and ligand 
poses an instance of  calcLigandSidechainScore.py  is called 
that executes  ReceptorDesignScorer.exe  in the same fashion 
as described above for calculateLigandScaffoldBALLScores. 
The batch size is 20 ligand poses per run. For the AutoDock-
Vina implementation  computeVinaScores.py  is called that 
besides the pdbqt generation (see above for  calculateLigand-
ScaffoldVinaScores ) calls  vina.exe . The script  computeVi-
naScores.py  also accepts weighting terms that cannot be 
accessed in the main python module. 

  input : (1) The binding pocket  residue   rotamers in the format 
described for the rotamer creation above. (2) The ligand poses 
in the format described for ligand pose ensemble creation. 

  output:  Files for every binding pocket residue and mutation 
(format: [ligand]_[ligand]-[chain]_[residue_number]_[3-let-
ter amino acid-type]) stored in a directory called by default 
 Ligand_Scaffold_Pair_E . The fi le is a tab delimited text fi le 
containing a matrix with the ligand poses as rows and the resi-
due-rotamers energy terms as columns. The number of rows 
should be equal to the number of ligand poses, while for the 
columns there are fi ve energy terms per rotamer (adv, vdW, 
solvation, HB, rotamer). For the AutoDock-Vina score terms 
see description in  calculateLigandScaffoldVinaScores .

    7.    prepareOptimizerEnergyFile (python)    

   description:  The module creates one single energy table fi le 
from the individual output of the  various   modules described 
above. Furthermore, auxiliary fi les are created that defi ne the 
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order of the energy fi le corresponding to the residues and 
ligand. The readout of the previously generated energy fi les 
distinguishes between self and pairwise energies ( py/
Optimizer/energyReader.py ). Energy tables with only two 
energy terms are treated in the same way as tables with fi ve 
terms by summing up the energies. The columns for the respec-
tive energy array (two or fi ve) are selected based on the recur-
ring header of the type “ [3-letter-residue-type]_[number 
of e.g. rotamer]_ ”. All energies are negated, and the ligand 
energies can be scaled (−− ligand-factor ). Waters can be 
included using the water fl ag (−− water ) with their index as 
argument (e.g. “ water180 ”, multiple waters can be invoked by 
repeated calls of the water fl ag). The same works for metals 
(−− metal,  e.g.  mg_ion:mg ) and cofactors (−− cofactor ). 

  input : (1) The paths to all required energy fi les. (2) A text fi le 
indicating the binding pocket residues ( positions.txt ) 

  output : (1) The primary output is a space-separated text fi le 
containing the complete energy table ( lambdas.txt ). The fi le 
can be separated in four sections (although not visually): (a) 
First the pairwise  energies   of the respective rotamers of all bind-
ing pocket residues with each other. Each line in this section is 
dedicated to a residue combination and the line provides all 
energies of all possible rotamer combinations. (b) The second 
section stores the pairwise energies of the ligand with each 
binding pocket residue. Each line represents the energies for all 
combinations of ligand poses with rotamers at the respective 
residue position. (c) The third section contains all self-energies 
of the binding pocket residues. Each line provides the energies 
for  all   rotamers of the given residue. (d) The fourth section 
does the same for all ligand poses (i.e. only one line). (2) Two 
additional identical fi les ( regions.txt, intersects.txt ) 
describe the order of the energies in  lambdas.txt  based on the 
numbering (order) of binding pocket residues given in  posi-
tions.txt  and the ligand as last entry. Consequently, the fi les 
consist of two parts (a and b described in (1) above) with two 
columns providing the pairwise combinations and two parts (c 
and d) providing the numbering for the residues and ligand. 
(3) Another fi le ( region_intersects.txt ) contains the same 
information in another numbering scheme, starting with the 
last sorting number of the combinations. Additionally, a frontal 
third (or second for c and d) column provides a running num-
ber starting with one. (4) A text fi le ( var_sizes.txt ) contains 
just the number of  rotamers   of the respective residue in a line, 
with the number of ligand poses in the last line. (5) A summary 
fi le ( index.dat ) contains all this information in a more read-
able format. This fi le contains the ligand scaling factor 
(“ [SCALING] ”) at the very bottom. It can be used to scale the 
energies regarding the ligand energies vs. packing energies.
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    8.    calculateDesignSolutions (python)    

   description:  The module is used to call the MPLP solver[ 13 ] 
( algo_triplet.exe ) with arguments for the algorithm 
(−− niter, −-niter- later, −-nclust_to_add, −-obj-
del-thr, −-int-gap-thr ). The algorithm utilizes cluster-
based linear programming with belief propagation to effi ciently 
identify the best energy combination  of   rotamers of binding 
pocket residues and a ligand pose. If several amino acids at a 
binding pocket position are allowed (mutations), the solution 
helps to identify the energetically most favored mutations. The 
number of output solutions (2nd best …) can be adjusted 
(−− number-of-solutions ). 

  input:  All fi les prepared by  prepareOptimizerEnergyFile  

  output : (1) A text fi le ( all_solutions.txt ) giving all solu-
tions with one solution per line in decreasing order. Each solu-
tion is represented by space-separated numbers, with each 
number being the  rotamer   of the respective binding pocket 
residue and the last  number being the ligand pose. The num-
bering follows the one given in  index.dat . (2) Individual fi les 
for each solution with the same convention as for the all solu-
tions fi le ( res00.txt  …).

    9.    processSolutions (python)    

   description:  This module can be used to present the solution found 
by the  calculateDesignSolutions  as  .pdb  fi le with a detailed 
energy contribution description. Prior to processing the solutions, 
the solver fi le containing all solutions can be used to identify solu-
tions sharing same mutants, rotamers, or ligand poses. This pro-
vides a better overview over the possible results, their energies and 
thus the confi dence regarding the top-score solution. 

  input : (1) The solutions fi le. (2) All necessary fi les and directo-
ries allowing to build the representative  .pdb  and to compile 
the solutions’ energy report from the individual energies. 

  output:  A directory named with the solution number contain-
ing  .pdb  and  .pml  fi les of the solution as well as the energy 
report in  .txt  and  .html  format.   

3    Notes 

     1.    Binary packages of PocketOptimizer can be obtained from 
(  https://webdav.tue.mpg.de/u/birtehoecker    ). For convenience 
we provide PocketOptimizer also as a completely set-up image- 
container which can be loaded using the Docker software [ 14 ].   

   2.    PocketOptimizer is able to work with fl ag fi les; with one fl ag/
argument per line. The only difference to the command line is 
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that equal signs are required between the fl ags and the argu-
ments. Moreover, trailing spaces are not allowed (e.g. “ --
water water180 ” becomes “ --water=water180 ”).   

   3.    Version 1.2.0 of PocketOptimizer (as of 2016) provides a 
wrapper script called  PocketOptimizer.py . All functionalities 
can be called via this script (see manual and tutorial for details). 
 The   modules can be still used as stand-alones but the user then 
has to take care of setting proper paths to libraries and addi-
tional content (like CADD-Suite).   

   4.    Due to the modular nature of PocketOptimizer, we suggest to 
process multiple structures in an automated fashion, since oth-
erwise  all   modules have to be started individually and their 
appropriate output has to be checked. An adequate script 
needs to check the proper termination of all modules by vali-
dating the individual output formats described above. For 
example, the number of computed pairwise ligand versus bind-
ing pocket residue energies has to match with the number of 
previously computed ligand poses and binding pocket rotam-
ers. For Ubuntu systems, a modifi cation of the PocketOptimizer 
start script performing an automated multi-structure process-
ing is part of the PocketOptimizer distribution. The script has 
to be called with a command-fi le specifying the individual 
command line arguments for each module. The script is also 
able to do an automatic alignment of the prepared ligand to 
the binding pocket of the scaffold structure. For this, a special 
input fi le has to be provided ( static.txt ) that should contain 
three atoms that are linearly independent of each other (e.g. 
not lie in one straight line) and that do not move between the 
different conformers (e.g. an aromatic ring at the root of the 
structure). This will result in the atoms listed in the  static.
txt  fi le to be aligned to each other and to the correct position 
in the binding pocket.   

   5.    A temporary directory (−− temp-dir ) with enough free space is 
of importance especially when a large number of ligand poses 
or large scaffolds are used. Temporary directories are used in 
 the   following modules: calculateLigandScaffoldScores, create-
PocketSidechainConformers, calculateSidechainPairEnergies, 
calculateLigandSidechainScore, and calculateDesignSolutions.         
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Chapter 6

Proteus and the Design of Ligand Binding Sites

Savvas Polydorides, Eleni Michael, David Mignon, Karen Druart, 
Georgios Archontis, and Thomas Simonson

Abstract

This chapter describes the organization and use of Proteus, a multitool computational suite for the 
 optimization of protein and ligand conformations and sequences, and the calculation of pKα shifts and 
relative binding affinities. The software offers the use of several molecular mechanics force fields and sol-
vent models, including two generalized Born variants, and a large range of scoring functions, which can 
combine protein stability, ligand affinity, and ligand specificity terms, for positive and negative design. We 
present in detail the steps for structure preparation, system setup, construction of the interaction energy 
matrix, protein sequence and structure optimizations, pKα calculations, and ligand titration calculations. 
We discuss illustrative examples, including the chemical/structural optimization of a complex between the 
MHC class II protein HLA-DQ8 and the vinculin epitope, and the chemical optimization of the comp-
statin analog Ac-Val4Trp/His9Ala, which regulates the function of protein C3 of the complement 
system.

Key words Protein design, Ligand design, Monte Carlo, Implicit solvent, Generalized Born model

1 Introduction

Computational protein design (CPD) is a set of methods to 
 engineer proteins (and ligands) and optimize molecular properties 
such as stability, binding affinity, and binding specificity. Many suc-
cessful CPD examples have been reported in recent years [1–15], 
and their impact will certainly increase with the continuous 
improvement in CPD tools and computational hardware.

We have developed the Proteus (v. 2.1) software package for 
computational protein and ligand design [16–18]. It consists of 
(1) a modified version of the XPLOR program [19], which per-
forms the initial setup of the system under study, computes an 
energy matrix used in the design, and re-assesses the conforma-
tions and sequences suggested by the design; (2) a library of scripts 
in the XPLOR command language that control the calculations; 
(3) the proteus program (v. 30.4), which conducts the actual 
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search in the protein and ligand’s structure and sequence space; (4) 
a set of Perl scripts to help analyze the solutions provided by pro-
teus. Shell scripts that automate the whole procedure are also avail-
able. For the sake of clarity, in this chapter we describe a detailed 
design protocol, so that new users can follow it step by step.

The concepts of stability or specificity design, as implemented in 
Proteus, are illustrated in the thermodynamic cycles of Fig. 1. The 
cycle on the left compares the stabilities of two sequences A and B. 
The folding processes are depicted by the vertical legs; the hori-
zontal legs display the (unphysical) transformations from sequence 
A into B, in the folded (N) and unfolded (U) states. The difference 
between the free energy changes for the horizontal (or vertical) 
legs yields the difference in stability between the two sequences:

 
DDG G P G P G P G Pf B

N
A
N

B
U

A
U= ( ) - ( )éë ùû - ( ) - ( )éë ùû  

(1)

Stability calculations seek to minimize the above free energy differ-
ence ΔΔGf.

Specificity calculations are illustrated by the thermodynamic 
cycle on the right of Fig. 1. The vertical legs represent the binding 
of two ligands L1 and L2 to a protein P; the horizontal legs repre-
sent the (unphysical) chemical transformation between the two 
ligands, either in the protein complex (top leg) or in solution (bot-
tom leg). If L1 is a reference ligand and L2 a modified analog, the 
calculations seek to minimize the relative binding free energy

 DDG G P L G P L G L G Lb = ( ) - ( )éë ùû - ( ) - ( )éë ùû: :2 1 2 1  (2)

The above expression assumes that the protein relaxes to the same 
state (P) upon dissociation of the two complexes (unlike some 
MM-PBSA or MM-GBSA methods [20, 21]).

The free energies appearing in Eqs. 1–2 are computed via a physi-
cal energy function with the general form:

 G E E E E E E E E E= + + + + + + + +bond angle dihe impr vdW coul GB SA corr. . .  (3)

1.1 Thermodynamic 
Cycles

1.2 Energy Model

Fig. 1 Thermodynamic cycles employed in CPD of stability (a) and ligand 
 specificity (b)

Savvas Polydorides et al.
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The first six terms describe the internal and nonbonded contributions 
to the potential energy of the protein or ligand under study, and 
are borrowed from a molecular mechanics energy function. The 
parameterizations currently available in Proteus are the Charmm19 
force field [22] and the Amber ff99SB force field [23]. The next 
two terms capture solvent effects via a generalized Born (GB) 
approximation and an accessible surface area (SA) term. Simpler 
energy functions that model solvent electrostatic screening via a 
homogeneous (“cdie”) or distance-dependent (“rdie”) dielectric 
constant are also available. The last term represents an optional 
“correction” energy, whose interpretation depends on the design 
criterion (see below).

The above free energies are functions of the atomic coordinates. 
This poses a difficulty in the case of unfolded states, for which 
structural models are not readily available. In stability calculations, 
we make the assumption that the sidechains do not interact with 
each other in the unfolded state, but only with nearby backbone 
and solvent [24–26]. We implement this idea by considering any 
sidechain X as a part of a tripeptide Ala-X-Ala. We compute the 
average free energy for a large number of backbone conformations 
of the tripeptide, using Eq. 3, and assign this value to chemical 
type X. An empirical correction can be added to this value (see last 
term of Eq. 3), chosen so that the resulting amino acid composi-
tions are reasonable during the design of whole protein sequences. 
The calculation of this term can be done ahead of time and is 
explained in Ref. 18. The total free energy of a given protein 
sequence in its unfolded state is the sum of the individual contribu-
tions of its constituent residue types.

In the case of binding calculations, the contribution of the free 
protein cancels out in relative binding free energies, as explained 
above. The free energies of the unbound ligands can be averaged 
over single or multiple structures, obtained from experiments or 
simulations; alternatively, it may be assumed that the ligands (and 
possibly the protein) maintain the same conformations in solution 
and in the complexes. A correction (see last term of Eq. 3) can be 
added to the energy of the unbound ligand L, to express the depen-
dence of binding free energies on the ligand concentrations:

 E k T Lcorr
L

B= + [ ]ln  (4)

with kB the Boltzmann’s constant, T the temperature, and [L] the 
ligand concentration (set by the user). The ratio of concentrations 
of two complexes obeys the equation

 

PL

PL
G k T L L2

1
2 1

[ ]
[ ]

= - - ( )( )éë ùûexp ln /b DD b B

 
(5)

1.3 Unfolded State

1.4 Ligand Titration

Design of ligand binding sites with Proteus



80

One can vary the ligand concentration ratio [L2]/[L1] progressively 
during ligand design, and monitor the ratio of predicted concen-
trations [PL1], [PL2]; the binding free energy difference ΔΔGb is 
then obtained as kBT ln([L2]/[L1]), for the concentration ratio 
( L L2 1[ ] [ ]/ ) that yields equal concentrations PL PL1 2[ ] = [ ] .

The thermodynamic cycle on the right of Fig. 1 can also describe 
proton binding (or release) by titratable protein residues (e.g., 
Asp → AspH). This can be of use to determine sidechain proton-
ation states and prepare a system for design or other simulations. 
Proton binding in the protein environment is described by the 
upper horizontal leg, and in solution by the lower leg. The solu-
tion state is a model compound—typically a single amino acid X 
with blocking terminal groups (ACE-X-NME). The free energy 
change upon protonation in the protein, relative to the model 
compound in solution, is:

 DDG G P XH G P X G XH G Xp = -( ) - -( )éë ùû - ( ) - ( )éë ùû  (6)

and corresponds to the pΚα difference between the sidechain in the 
protein and the model compound. In titration calculations, as in 
ligand optimization, we add a correction term to the free energy of 
the model compound in its protonated state to account for the 
proton concentration +éë ùû :

 E k T Kcorr
X

B a
modelpH p= -( )2 303.  (7)

where pKα
model is the experimental pKα value for model compound 

[27, 28]. The fraction f of protonated states at different pH values 
can usually be described by the following titration curve:

 
f

XH

X XH K
=

[ ]
[ ] + [ ]

=
+ - ( )( )

1

1 10n pH p §–

 
(8)

To apply the above equation, titration calculations are conducted 
for different pH values. The pKα of residue X is the pH for which 
the protonated and unprotonated states are equiprobable. The 
Hill coefficient n represents the maximum slope of the curve, 
which occurs at the titration mid-point.

As described above, Proteus is a multitool CPD suite, which is 
applicable to typical sequence/structure optimization calculations, 
but also to more refined pKα and relative binding affinity calcula-
tions. Its physical scoring function, with the addition of appropri-
ate correction terms, can be easily adjusted to describe different 
situations. Eqs. 1 and 2 can be decomposed into protein–ligand 
intramolecular and intermolecular energy contributions, which  
can be enhanced or diminished during energy minimization via 
 appropriate weighting factors (positive, negative, or zero); and 

1.5 Proton Binding

1.6 Multi-Objective 
Optimization

Savvas Polydorides et al.
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combined to produce more sophisticated, multi-objective energy, 
or cost functions, as follows:

 
G w G P w G P L w G L w G P w G L= × ( ) + × ( ) + × ( ) + × ( ) + × ( )1 2 3 4 5: dc dc  (9)

The subscript “dc” denotes duplicate copies of the protein and 
ligand groups, which share the same amino acid sequence, but 
sample different conformations during exploration. Energy thresh-
old values can also be included in Eq. 9 to refine the sequence 
optimization.

The design begins by separating the protein (and ligand, if present) 
into groups (residues), which can contain backbone and sidechain 
moieties. Part of the system, typically the backbone and selected 
sidechains, is classified as “frozen”; i.e., it retains its conformation 
and chemical composition during the calculation. Other parts can 
change both their chemical identity and conformation (“active”), 
or only their conformation (“inactive”). Sidechain conformations 
are taken from a rotamer library [29]. Multiple backbone confor-
mations can also be specified (see Eq. 9). We then pre-compute and 
store in a matrix the interaction energies for all intra- and intermo-
lecular residue pairs, taking into account all chemical types and 
conformations compatible with the classification of each residue 
(active or inactive). This calculation is done by XPLOR and a 
library of command scripts, using the energy function of Eq. 3. 
The GB and SA terms of the energy function are not rigorously 
pairwise-additive; i.e., even though they can be expressed as con-
tributions from particular residue pairs, each contribution depends 
on the geometry of the entire molecule. To solve this problem, we 
employ a “Native Environment Approximation” (NEA) for the 
GB term, and a “sum over atom pairs” approximation for the SA 
term; more details are supplied below and in Ref. 30.

The entries of the resulting interaction matrix correspond to 
distinct rotamer orientations of the active and inactive parts, and  
to a given conformation of the “frozen” part. Often, it is desirable 
to take into account multiple conformations of the frozen part 
(e.g., several backbone conformations from an MD trajectory). 
Separate interaction matrices can be constructed for each of these 
conformations, and employed in the design.

The interaction energy matrices are read by the C program proteus, 
which performs the exploration (or “optimization”) in structure 
and sequence space. Three exploration methods are available in 
proteus; a heuristic protocol, first introduced by Wernisch et al. 
[26], a mean-field approach [31, 32], and a Monte Carlo (MC) 
method [33, 34]. The Monte Carlo method can use a single 
“walker”, exploring a single trajectory. Alternatively, it can use 
multiple walkers, which have distinct temperatures, explore distinct 

1.7 Energy Matrix

1.8 Sequence/
Structure Exploration

Design of ligand binding sites with Proteus
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trajectories, and occasionally exchange their temperatures. The 
multi-walker variant corresponds to a “replica exchange” Monte 
Carlo simulation, which we refer to as REMC.

All the exploration methods output multiple “solutions”, sam-
pled along the MC trajectory or the heuristic exploration. Each 
solution or time-step is described by a list of chemical types and 
rotamers for all the active and inactive positions. Subsequently, the 
corresponding conformations can be reconstructed and subjected 
to energy minimization and/or MD simulations with the same 
force field used in the design. Average binding free energies can be 
obtained from the resulting trajectories, and/or post-processed 
using a GBSA or PBSA approximation, as a further test of the 
design.

The above calculations are summarized in the flowcharts of Fig. 2. 
The left flowchart portrays a structure/sequence optimization of a 
complex, which starts from an initial conformation taken from an 
MD trajectory. A related example, described in the Methods sec-
tion, involves the redesign of the cyclic 13-residue peptide comp-
statin, which regulates the function of protein C3 of the complement 
system. Binding of this molecule and related analogs has been the 
subject of numerous experimental and computational studies in 
recent years [35–39]. The right flowchart describes the prepara-
tion of an X-ray structure for MD simulations. A related example 
in Methods describes the chemical and structural optimization of a 
complex between the MHC class II protein HLA-DQ8 and the 
vinculin epitope.

2 Materials: Software and Data Files

To carry out a complete protein design calculation with Proteus, the 
user needs the Proteus 2.1 CPD package. The appropriate files can 
be downloaded from http://biology.polytechnique.fr/biocomputing/

1.9 Flowcharts

Fig. 2 Calculation flowchart diagrams for the test cases: (a) ligand redesign, and (b) preparation of a structure 
for MD simulations

Savvas Polydorides et al.
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proteus.html. In what follows, we refer to specific files from this 
 distribution. Furthermore, the user needs an initial structural model 
for the molecule (or complex) under study.

3 Methods

 1. Split the PDB file into separate files for each protein segment 
(e.g., multiple chains), the ligand, and the crystallographic 
waters. Rename atoms and residues to match the Amber or 
Charmm force field. Renumber residues of each segment start-
ing from 1000 for chain A, 2000 for chain B, etc., to ensure 
unique residue numbers; name the various segments “PROA”, 
“PROB”, “PROC” or “LIGA” and “XWAT” (see Note 1).

 2. Use the XPLOR script build.inp to generate a protein structure 
file (system.psf) which describes the topology of the protein–
ligand system and a coordinate file (system.pdb) in XPLOR pdb 
format (see Note 2).

 1. The XPLOR stream file parameters.str contains important 
information about the energy calculation setup. Edit the file  
to select between the Amber “ff99SB” [23] and Charmm 
“toph19” [22] force fields. These two force fields are consis-
tent, respectively, with the GB/HCT [40] and GB/ACE [41] 
implicit solvent models. Add a surface area term to the energy 
function to account for the nonpolar contribution to the solva-
tion energy. Include X-ray sidechain conformations (“native 
rotamers”) in the rotamer library, and choose the number  
of minimization steps before the computation of pairwise 
 interaction energies. Set the protein dielectric constant and 
define parameters employed by the solvation model and the 
corresponding nonbonded energy terms.

 2. Modify the XPLOR stream file sele.str to define the sequence and 
conformation space. Select the modifiable residues (active), the 
flexible sidechains (inactive), the ligand (active or inactive), and 
the fixed part (backbone plus any glycines, prolines, cysteines in 
disulfide bonds, and crystallographic waters/ions).

 3. The file mutation_space.dat lists the amino acid types available 
for each active position. The mutation space includes up to 26 
amino acid types, including all natural amino acids (except 
 glycine and proline), three histidine tautomers (protonated on 
Nδ, Nε, or both), and the minor protonation states of titratable 
residues Lys, Asp, Glu, Tyr, Cys.

 4. The system setup is done via two XPLOR scripts. The first one, 
setup.inp, prepares the system for residue pairwise energy 
 calculations. The structure file setup.psf defines each active 
 residue, including its crystallographic backbone and a set of 

3.1 Structure 
Preparation

3.2 System Setup

Design of ligand binding sites with Proteus
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sidechains corresponding to all considered mutations (defined 
in mutation_space.dat). Entries of these amino acid sidechains 
at each modifiable position are included in the coordinate file 
setup.pdb, with arbitrary coordinates x y z= = =( )9999 0. . The 
B-factor column of the coordinate file labels the corresponding 
residue as active b =( )2 00. , inactive b =( )1 00. , or frozen 
b =( )0 00. . The Q-factor column labels buried q =( )0 50.  and 

exposed q =( )1 00.  residues, with q = 0 00.  for hydrogens. At 
this point the GB solvation radii of the backbone atoms are 
computed and stored in the file bsolv.pdb.

 5. The Perl script make_position_list.pl reads the file setup.pdb, 
and lists in position_ list.dat the active, inactive, and ligand 
positions, including the number of all possible pairwise inter-
actions to be computed at each position.

 6. The Shell script make_mutation_space.sh creates individual files 
for each active, inactive, and ligand position, listing the com-
patible amino acid types at each position. These files are stored 
locally and read later by the XPLOR scripts during the residue 
pairwise interaction calculations.

 7. The second XPLOR script for system setup is setupI.inp. For 
each position I, we loop over its allowed amino acid types 
(depending on whether it is active, inactive, frozen, or part of 
the ligand). For each amino acid type we loop over rotamer 
states taken from a rotamer library [29]. We also include the 
native orientation as a separate rotamer. At this stage, we com-
pute and store GB solvation radii for all residues, assuming the 
Native Environment Approximation (NEA). In a standard GB 
formulation, the GB energy function is not pairwise-additive, 
since the solvation radius of each atom depends on the position 
and chemical type of all other atoms in the molecule. To ren-
der the GB function pairwise-additive, we assume during the 
solvation radii calculation that each residue is surrounded by 
the native sequence and conformation. Thus, for each rotamer, 
we compute the GB solvation radii in the presence of residue 
I, the whole backbone (fixed part) and all remaining portions 
of the molecule, further than 3.0 Å away from sidechain I, 
considered in their native sequence and structure. The 3.0 Å 
cutoff distance excludes native sidechain atoms that might 
overlap with sidechain I in its new rotamer; this cutoff can be 
adjusted to a different value in parameters.str. Importantly, to 
alleviate possible clashes of a sidechain in a particular rotamer 
with the backbone, we do Nmin =15  steps of Powell energy 
minimization (see Note 3), keeping everything else (every-
thing but sidechain I) fixed. If a resulting solvation radius is 
too large (e.g., due to overlap of the residue with the rest  
of the molecule), it is reset to a maximum value (999.0 Å). 
After the minimization, sidechain coordinates and solvation 

Savvas Polydorides et al.
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radii are stored in a local PDB file (matrix/local/Rota/1025.
pdb; 1025 is the residue number I) to be used in step 3 from 
Subheading 3.3.

 1. First, we compute the diagonal terms of the interaction energy 
matrix using the file matrixI.inp. This rather fast calculation is 
usually run sequentially over all nonfrozen positions; it is also 
possible to run the separate positions in parallel on multiple 
cores. For each position I, we reread the solvation radii and 
sidechain coordinates (matrix/local/Rota/1025.pdb). We loop 
over the allowed amino acid types (depending on whether 
position I is active, inactive, frozen, or part of the ligand) and 
the corresponding rotamer states. For each rotamer, we com-
pute the energy due to interactions that sidechain I makes with 
itself and with the backbone. The energy function includes 
bond, angle, dihedral, improper, van der Waals, Coulomb, GB, 
and SASA energies. The results are printed in local files 
(matrix/dat/matrix_I_1025.dat), and can be displayed either 
in standard or enriched format. The basic information for each 
position is printed with the standard format: residue number 
(1025), amino acid type (ARG), one letter code (R), rotamer 
index number (5) followed by four energy values: the unfolded 
state (or unbound ligand) energy (estimated by Eq. 3), the 
bonded terms plus vdW, the electrostatic term, including GB, 
and the surface area term. A further decomposition of indi-
vidual energy terms is displayed when the “enriched format” is 
requested in parameters.str.

 2. Use the Shell script make_rotamer_space.sh to examine the 
rotamer van der Waals energies and exclude those exceeding a 
locally defined threshold value. Excluding “bad” rotamers for 
each amino acid type at each position reduces the conforma-
tional space.

 3. The energy matrix calculation continues with the off-diagonal 
terms, using matrixIJ.inp, which computes the interaction 
between sidechains I and J. Only the lower triangle of the 
matrix I J<  is needed. The fastest approach for this part of the 
calculation evaluates single residue pairs I J-  simultaneously, 
on multiple cores. It is also possible to calculate all the residue 
pair interactions sequentially. For each residue pair, we loop 
over the sidechain type/rotamer space of residue I; we retrieve 
the coordinates and atomic solvation radii of the current side-
chain from the rotamer PDB file (matrix/local/Rota/1025.
pdb), created in step 7 from Subheading 3.2. For each rotamer 
we loop over all residues J I<  and apply a first distance filter. 
Residues that are too far from I (e.g., C C† †-  distance > 30 ¯ ) 
are omitted. For each residue J within the first distance filter, 
we loop over the sidechain type/rotamer space of residue J and 

3.3 Interaction 
Energy Matrix
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read the coordinates and solvation radii from the correspond-
ing rotamer PDB files. For both residues I and J we employ 
only the “good” rotamers, determined in the previous step. 
With the current  sidechains in place, we apply a second dis-
tance filter, where interactions between sidechains are ignored 
if the minimum distance between the two sidechains exceeds 
12 Å, say. The interaction energies of sidechain pairs that pass 
the second distance filter are computed. Recall that the final 
coordinates of two sidechains are produced via the indepen-
dent minimization of each sidechain in the presence of the 
fixed backbone. Consequently, it is possible that the two side-
chains overlap for some rotamer combinations. If the mini-
mum sidechain–sidechain distance is smaller than a cutoff 
(3 Å), we perform Nmin 15 50-( )  steps of Powell minimization 
(see Note 3) to improve the sidechain geometry and alleviate 
bad contacts. During this minimization, everything except the 
two sidechains is kept fixed, and the two sidechains interact 
with each other and the backbone. The results are stored 
in local files (matrix/dat/matrix_IJ_1025_1022.dat). The 
standard display format consists of a line indicating the residue 
numbers and names of a given pair (1025 ARG 1022 VAL), 
followed by a list of entries for each computed rotamer pair, for 
the given pair of amino acid types. Each entry reports the two 
rotamer numbers, the vdW interaction term, the sum of elec-
trostatic and GB terms, and the surface area term. Similarly to 
step 1, an “enriched format” option is possible, which prints a 
more detailed output.

 4. Finally, run the shell script concat_matrix.sh to join all the 
energy elements in a global matrix file matrix.dat, to be read 
by the proteus exploration program.

The sequence exploration is done by the proteus program, con-
trolled by setting various options in an input script, proteus.conf.

 1. One may want to use a protein dielectric constant that is differ-
ent from the one used in the energy matrix calculations (defined 
in parameters.str). To use a different value, first use the Perl 
script modify_matrix.pl to modify the original matrix accord-
ingly (see Note 4).

 2. During the energy matrix construction (see Subheading 3.3, 
steps 1 and 3), a large set of active and inactive positions can 
be defined. During sequence exploration, we may want to limit 
ourselves to a smaller set. For this, in proteus.conf, the sequence/
conformational space of selected protein and/or ligand resi-
dues can be restricted to particular types and/ 
or rotamers. For example, in the redesign of the compstatin 
peptide, in the energy matrix calculation, we set all 15 ligand 

3.4 Protein Design

3.4.1 Sequence 
Optimization

Savvas Polydorides et al.



87

positions to be active and all protein sidechains to be inactive; 
subsequently, in proteus, we optimized the sequence of just a 
two-residue extension; the other peptide positions were not 
allowed to mutate. The default option corresponds to a full 
scale exploration of all possible amino acid types and rotamers 
for each active and inactive position (see Note 5).

 3. Choose among the mean field, heuristic, and Monte Carlo 
sequence/structure exploration methods, and assign the rele-
vant parameters. For example, if the MC method is employed, 
we might use a high initial temperature (given in kBT units) to 
overcome local energy barriers, and run several long simula-
tions [millions of steps; (see Notes 5–7)]. By default, the simu-
lation starts from a random sequence/structure combination 
and uses the Metropolis criterion to evaluate the successive 
moves in sequence and rotamer space. The exploration is per-
formed using single and/or double moves, improving the 
sampling of coupled sidechains. The frequency of each type of 
move during the simulation is also controlled by the occur-
rence probability of each mutation type; a small sequence/
structure move ratio (1:10 or 2:10) allows the system to relax 
its structure slightly in the presence of the new amino acid type 
(see Note 6).

 4. All exploration parameters mentioned in steps 2 and 3 are set 
up via a simple, user-editable configuration file (proteus.conf), 
which is read as the standard input by the proteus executable.

 5. After the exploration step, proteus is run again in post- processing 
mode, to convert the resulting solutions into a more readable 
(fasta-like) format. The output file proteus.rich reports each solu-
tion by the sequence of: (a) amino acid types, (b)  residue num-
bers, and (c) rotamer numbers. The Perl script analyze_ proteus_ 
sequences.pl sorts the solutions (combinations of sequences and 
rotamers) by their frequency of occurrence and calculates the 
minimum, maximum, and average folding free energies.

After large-scale sequence exploration, it can be desirable to do 
more extensive rotamer exploration for selected sequences.

 1. Repeat the above steps for a chosen subset of designed 
sequences. Keep each protein and ligand sequence invariant, 
and explore its conformational space through rotamer optimi-
zation. Compute the statistical average of the folding free 
energy over all sampled conformations, to improve the energy 
estimate for the chosen sequences.

 2. Use the Perl script rot_distrib_proteus.pl to compute the rota-
mer distribution of all residues from the pseudo-trajectory 
obtained during optimization, to characterize the flexibility of 
each sidechain.

3.4.2 Structure 
Optimization
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 3. Cluster the protein and ligand conformations based on  
selected sidechains, and reconstruct the minimum energy 
 conformation of each cluster to get a set of “good” 
conformations.

In some applications, we wish to determine sidechain protonation 
states through pKα calculations. For each titratable sidechain, the 
energy will include a pH-dependent term, Ecorr

X, where X is the 
sidechain type.

 1. First, compute the correction energy term Ecorr
X at pH = 7   

(see Eq. 7), by evaluating the energy GXmodel of the model 
 compound in solution with Eq. 3, and replace the values rep-
resenting the unfolded state energy from the diagonal matrix 
elements with -GX

model .
 2. Modify the proteus configuration file to restrain the mutation 

space of each active-titratable residue to its two or three ioniza-
tion states (ASP/ASH, GLU/GLH, CYS/CYM, HID/HIE/
HIP, TYR/TYD, LYS/LYN); restrict the other positions to 
their native type (or make them inactive during the energy 
matrix calculation).

 3. Run a proteus MC simulation, to identify optimum combina-
tions of sequences (protonation states) and structures at the 
specified pH. Start with one million equilibration steps at high 
temperature k TB kcal mol=( )1 / , extract the final state and con-
tinue with ten million production steps at room temperature; 
use a relatively small sequence-to-structure move ratio (1:10), 
to allow the system to relax after protonation moves.

 4. At the end of the MC simulation, compute the probabilities  
of each protonated state at each active, titratable position  
(see Note 8).

 5. Run a full pH scan by increasing progressively the pH from 0 
to 15 and repeating steps 1–4.

 6. Fit the fractional occupancy of the protonated state to the 
modified Hill equation (see Eq. 8) for each titratable sidechain 
using the Perl script evalpka.pl; extract the pKα value with the 
corresponding Hill coefficient at the mid-point of the sigmoi-
dal curve.
Table 1 (adapted from Ref. 42) shows pKα calculations for nine 

proteins and 130 titratable groups with sufficient sidechain type 
diversity (35 Asp, 34 Glu, 13 Tyr, 28 Lys, and 20 His). Overall, 
the agreement with experiment is good, with an rms deviation of 
just 1.1  pH units, for reasonable protein dielectric constants of 
four and eight. For sidechains with large pKα shifts, ³ 2, the rms 
error with our method is 1.8, compared to 2.6 with the Null model 
(and 1.1 with the specialized PROPKA program).

3.5 pKα Calculations
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An application example involves the chemical and structural 
optimization of a complex between the MHC class II protein 
HLA-DQ8 and the vinculin epitope [43]. Since the structure of 
the specific complex was not known, we started from the X-ray 
structure of the HLA-DQ8 complex with an insulin peptide. MHC 
class II proteins bind various peptides in the endosome, where the 
pH ranges from 4.5 to 6.0; therefore, in the initial setup we deter-
mined the ionization state of titrating groups by pKα calculations 
with Proteus. The binding site (residues within 8 Å of the peptide) 
contains 23 titrating sidechains (3 Lys, 3 His, 2 Asp, 6 Glu and 9 
Tyr residues, out of 98 residues). Arginines were excluded, since 
they titrate well outside the pH range of interest (4 0 7 0. .£ £pH ). 
We focused on a group of residues near the first anchor position 
(P1) of the binding groove, where αGlu31, βGlu86, αHis24, and 
αArg52 form a strong interaction network. Between αGlu31, 
αHis24, and P1 there is also an important crystallographic water. 
The two gluatamic acids are 4.1 Å apart C C· ·-( ) and their titrat-
ing behavior is coupled. The net charge of this group of residues 
could not be verified by X-ray crystallography [44], and was a mat-
ter of discussion in subsequent studies of HLA-DQ8 and MHC 
class II proteins [45, 46]. We performed pKα calculations with two 
dielectric constants, ep = 4  and 8, both in the absence and the 
presence of the vinculin peptide; and compared our results with 
the empirical Propka model. For extracellular pH values around 7, 
Proteus calculations with ep = 4  and Propka predict a neutral his-
tidine and a protonated αGlu31. The pKα of the other glutamic 
acid, βGlu86, is overestimated by Proteus, but becomes better at 
ep = 8 . Similar pKα values are obtained for the complex and the 
free protein. Figure 3 shows a superposition of the reconstructed 
optimum conformation (vinculin) and the template X-ray struc-
ture (insulin). Setting the appropriate ionization state for αGlu31 
promotes a successful sidechain placement of all key residues that 
take part in binding (see Fig. 3). Structure preparation as performed 
by preliminary pKα calculations and sidechain placement is an 
important byproduct of Proteus.

Table 1 
Comparing large and small pKα shifts

Experimental range Number of sidechains aNull model

aMC

aPROPKA3eep 4== eep 8==

DpKa < 1  85 0.5 0.9 1.0 0.6

1 2£ <DpKa  34 1.7 1.3 1.2 1.0

2 £ DpKa  11 2.6 1.8 1.8 1.1

All 130 1.1 1.1 1.1 0.8
aRms deviations between computed and experimental pKα shifts
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In many applications, we want to discover sequences that favor one 
ligand over another, and design for specificity. One approach is to 
make two or more ligands compete for a single binding site. By 
gradually increasing the concentration of one ligand, we gradually 
displace the other(s), and can extract the relative binding free 
energy from the titration curve. This can be done with the protein 
sequence fixed or variable. Here, for simplicity, we describe an 
application where the protein sequence is fixed, and we focus on 
the relative binding strength of two ligands.

 1. Set all or part of the ligand to be active, with two or more 
types; say, Xnat (natural ligand) and Xmut (alternative, or 
“mutant” ligand). The protein and any remaining ligand posi-
tions are inactive. To speed up the calculation, constrain the 
rotamer space of distant residues (further than 8 Å, say, from 
the active position) to their native conformation (see Note 5).

 2. Assign a correction term to the mutant ligand (see Eq. 4), to 
reflect a low initial, relative concentration. This term has two 
parts. The first part is k T L LX XB mut nat

ln /( ). The second part is 
the energy difference between the two unbound ligands, 
 computed with Eq. 3. The first contribution can be set to 
-5 kcal mol/ ; this corresponds to the case where the native 
ligand is represented in the mixture at a much higher concen-
tration than the mutant type, favoring the native ligand 
binding.

 3. Run a short equilibration stage (500,000 steps) at high tem-
perature, followed by a long production stage (ten million 
steps) at room temperature starting from the final state of 
equilibration.

3.6 Specificity 
Calculations by Ligand 
Titration

Fig. 3 Superposition of the starting X-ray structure of the insulin complex (ball-and-stick view) and the opti-
mized conformation of the vinculin complex (thick lines)
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 4. Count the number of steps with the mutant ligand present and 
deduce the population fraction with a bound mutant ligand.

 5. Repeat steps 1–4 while gradually increasing the relative con-
centration term of the mutant ligand from -5  to +5 kcal mol/
. As we increase the concentration, LXmut

 gradually replaces LXnat
 

in the binding site.
 6. Fit the data to the appropriate titration curve (adapted from 

Eq. 5) and obtain the binding free energy difference from the 
mid-point, where the populations of the bound mutant and 
native ligands are equal.

A ligand titration example: This example involves the redesign of 
the cyclic 13-residue peptide compstatin, which regulates the 
function of protein C3 of the complement system. We and our 
collaborators have studied extensively the binding of comp-
statin and its analogs to C3 by computational and experimental 
methods [36, 37, 47, 48]. In recent work [38, 39], we explored 
the addition of a two-residue extension [XY] to the N-terminal 
end of the compstatin double mutant Ac-Val4Trp/His9Ala 
([XY]W4A9). MD simulations had suggested that this exten-
sion may increase the number of contact residues with the pro-
tein. Using a snapshot from MD simulations of the C3 complex 
with [RS]W4A9, we searched for extension sequences that 
optimized ligand binding. To determine the amino acid type 
preference of the two-residue extension of compstatin, we 
computed the binding free energy difference (see Eq. 2) of 
each amino acid type X with respect to Ala at each position of 
the extension. Binding affinities (relative to Ala) for various 
amino acid substitutions at positions −2 and −1 are summa-
rized in Table 2. Columns 2 and 6 contain the results from 
design calculations at extension positions −2 and −1, respec-
tively, in which all amino acid types are allowed to compete 
simultaneously; the resulting affinities are computed from the 
individual amino acid frequencies in the resulting solutions. 
Columns 3 and 7 contain the results of calculations in which 
only one amino acid at a time competes with Ala; the corre-
sponding relative affinities are computed from Eq. 5. The 
results of the two methods agree closely. Experimentally, posi-
tions −2 and −1 can tolerate various amino acid types, without 
large differences in the corresponding binding free energies 
[38]. The design favors a positively charged Arg residue at 
position −2. MD simulations of the [RS]W4A9 complex with 
C3 suggest that an Arg residue at position −2 forms a strong 
electrostatic interaction with proximal residue Glu372 (see 
Fig. 4a); this interaction is captured by the Proteus design. 
Position −1 is predicted to not have a strong propensity for 
one particular sidechain type; it somewhat disfavors 14 out of 
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18 types, especially bulky hydrophobic sidechains. This can be 
explained by the fact that sidechains at position −1 are oriented 
toward the solvent.

 7. It can be useful to reassess the designed sequences by addi-
tional calculations. In the compstatin redesign study, we per-
formed rotamer optimization on the designed sequences and 
clustered the resulting conformations (based on the rotamer 
states of all sidechains within 8 Å of the extension). For each 
sequence, we reconstructed representative conformations from 
the ten most populated clusters, and subjected them to 100 
steps of energy minimization with the Powell conjugate gradi-
ent method. During minimization, we kept the backbone 
fixed, to facilitate comparison with the raw design results. We 
then computed the binding free energy of each conformation 
at the end of minimization with the GBSA approximation, as 
the difference between the free energy of the complex and the 
isolated ligand and protein. The results, averaged over the ten 
conformations, are included in columns 4 and 8 of Table 2; the 
values are expressed relative to alanine. Some bulky amino acid 
types (Trp, Lys, Met, His, Tyr, Leu, Val, Ile) become slightly 
preferred at position −2 after minimization, due to enhanced 
van der Waals interactions with Val375 (see Fig. 4b). At posi-
tion −1, Arg still represents the optimum sidechain after recon-
struction and minimization. These predictions may still change 
after MD simulations of the same complexes.

4 Notes

 1. The ligand can be a polypeptide segment (chain C), like the 
insulinB 14-mer bound to HLA-DQ8, which we treat in  
the same way as the protein, or a nonpeptidic molecule like the 
heme in hemoglobin. In that case, we need to define the topol-
ogy of the new molecule and specify the necessary parameters 
and possibly rotamers. The new segment must be named 
“LIGA”.

 2. The file build.inp must be modified to match the segment 
names defined by the user. The file reads the amino acid seq-
uence of each chain according to its segment name and adds 
disulfide bonds and terminal group patches, to generate the 
corresponding molecular structure. The coordinates of any 
missing hydrogens are assigned, and the structures are saved in 
the system.psf and system.pdb files.

 3. The energy minimization steps done in steps 1 and 3 from 
Subheading 3.3  balance to some extent the suboptimal orien-
tations available to the sidechains due to the discrete rotamer 
space. The number of minimization steps can be adjusted for 
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Table 2 
Sequence optimization, affinity, and specificity calculations in the compstatin:C3 complex, targeting 
the N-terminal extension of compstatin

Extension residues

Position −2 Position −1

ΔΔGa ΔΔGb ΔΔGc ΔΔGa ΔΔGb ΔΔGc

aa type (kcal/mol) aa type (kcal/mol)

R −0.9 −2.0 −1.4 R −0.4 0.0 −1.4

Y −0.1 0.0 −1.7 S 0.0 0.0 −0.4

A – – – A – – –

M 0.0 0.0 −1.9 N 0.0 0.0 −0.4

C 0.0 0.0 −0.6 C 0.1 0.0 −0.1

K 0.1 0.0 −1.1 T 0.3 0.5 0.2

N 0.1 0.0 −0.8 Q 0.4 0.8 −0.1

V 0.1 0.0 −0.8 M 0.5 0.9 −0.5

Q 0.1 0.0 −1.2 V 0.5 1.9 −0.3

S 0.2 0.0 0.0 K 0.5 1.3 0.0

I 0.2 0.3 −1.4 Y 0.6 1.0 −0.6

F 0.2 0.4 −0.3 W 0.7 1.5 −0.3

W 0.4 0.5 −3.4 H(Nε) 0.8 1.5 0.0

T 0.4 0.5 0.0 H(Nδ) 0.8 1.5 −0.2

H(Nδ) 0.4 0.5 −1.8 E 0.8 1.3 −0.1

H(Nɛ) 0.4 0.5 −0.7 D 0.8 1.3 −0.2

L 0.5 1.0 −1.3 F 2.0 0.9 −0.8

E 0.6 1.1 −0.8 I 1.1 2.0 −0.5

D 0.9 1.5 0.0 L 1.1 2.0 −0.3

All binding affinities computed relative to Alanine (A)
aEstimated from the frequency of the solutions with the corresponding amino acid in target position −2 or −1
bEstimated from the titration curves
cEstimated after reconstruction and minimization of the resulting solutions for a 100 steps with a fixed backbone. The 
results are averaged over the ten most populated rotamer conformations, taking into account all sidechains within 8 Å 
from the extension

specific cases. For several systems, extending the minimization 
to more than 50 steps was shown to increase computational 
cost without a significant improvement in the results.

 4. The protein dielectric constant is an empirical parameter. Its 
value depends on the type of calculation and the solvation 
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model used. For CPD applications with a GBSA implicit 
 solvent model, we found that low dielectric values of 4–8 give 
 reasonable results. pKα calculations on a large data set of titrat-
ing sites showed good accuracy for ep = 8  [42]. For whole pro-
tein designs, a higher value such as e p =16  may give better 
results [49, 50].

 5. To obtain adequate sampling, we restrict the sequence/ 
conformation space depending on the application. For the 
compstatin redesign, we focused on the area surrounding the 
peptide extension. The two extension residues are allowed to 
sample all amino acid types and rotamers without any restric-
tions, while every other sidechain within 8 Å from any atom of 
the extension changes only its conformation. The remaining 
residues are held fixed, together with the backbone, in the 
X-ray conformation. With these “local” space restrictions, the 
exploration converged within ten million steps. The quality of 
the sampling can be assessed by repeating the calculation with 
different random number seed values, or by performing both 
backward and forward pH or ligand concentration scans  
(see Eqs. 4 and 7). The convergence of the method can also be 
tested with additional simulations of increasing length.

 6. With MC exploration, the relative frequency of mutation and 
rotamer moves (both single and double) can be adjusted by 
the user in the proteus.conf configuration file to match the 

Fig. 4 3D structure of the cyclic 13-residue peptide compstatin analog W4A9 (cyan) and a two-residue exten-
sion to the N-terminal end (white) in complex with the protein C3 (green). (a) Starting structure used by 
Proteus, (b) minimized structure of a predicted mutant
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needs of a given calculation [51]. Conformational changes  
are usually less drastic than amino acid type changes (i.e., 
Ala → Arg); therefore, it is generally preferred to allow more 
rotamer than type moves, to allow the system to relax after a 
mutation.

 7. With MC exploration, it is possible to run multiple simulations 
in parallel, with different temperatures, such that the simula-
tions periodically exchange their temperatures. This method is 
known as Replica Exchange, or REMC. It is activated in the 
proteus.conf file by indicating the number of simulations (or 
“walkers”), their temperatures, and the interval between tem-
perature swaps. Each walker then generates its own output 
files. On a multi-core machine, the simulations will run in 
 parallel if the OpenMP library is present.

 8. To calculate correctly the fractional occupancies from the 
Monte Carlo simulation, both accepted and rejected moves 
should be accounted for, since a move rejection signifies a pref-
erence for the previously occupied state.

Acknowledgements

GA, SP, and EM acknowledge financial support through a grant 
offered by the University of Cyprus.

References

 1. Kortemme T, Baker D (2004) Computational 
design of protein–protein interactions. Curr 
Opin Chem Biol 8(1):91–97

 2. Floudas C, Fung H, McAllister SR, Monnigmann 
M, Rajgaria R (2006) Advances in protein struc-
ture prediction and de novo protein design: a 
review. Chem Eng Sci 61:966–988

 3. Boas EF, Harbury PB (2007) Potential energy 
functions for protein design. Curr Opin Struct 
Biol 17(2):199–204

 4. Lippow SM, Tidor B (2007) Progress in com-
putational protein design. Curr Opin Biotech-
nol 18:305–311

 5. Das R, Baker D (2008) Macromolecular 
 modeling with Rosetta. Biochemistry 77(1): 
363–382

 6. Karanicolas J, Kuhlman B (2009) Compu-
tational design of affinity and specificity at pro-
tein-protein interfaces. Curr Opin Struct Biol 
13:26–34

 7. Damborsky J, Brezovsky J (2009) Compu-
tational tools for designing and engineering 
biocatalysts. Curr Opin Struct Biol 19: 
458–463

 8. Mandell DJ, Kortemme T (2009) Backbone 
flexibility in computational protein design. 
Curr Opin Biotechnol 20:420–428

 9. Suarez M, Jaramillo A (2009) Challenges in 
the computational design of proteins. J R Soc 
Interface 6:477–491

 10. Saven JG (2010) Computational protein 
design: advances in the design and redesign of 
biomolecular nanostructures. Curr Opin 
Colloid Interface Sci 15:13–17

 11. Pantazes RJ, Greenwood MJ, Maranas CD 
(2011) Recent advances in computational 
 protein design. Curr Opin Struct Biol 21: 
467–472

 12. Der BS, Kuhlman B (2013) Strategies to con-
trol the binding mode of de novo designed 
protein interactions. Curr Opin Struct Biol 
23(4):639–646

 13. Moal IH, Moretti R, Baker D, Fernandez- Recio 
J (2013) Scoring functions for protein- protein 
interactions. Curr Opin Struct Biol 23(6)

 14. Zanghellini A (2014) de novo computational 
enzyme design. Curr Opin Biotechnol 29: 
132–138

Design of ligand binding sites with Proteus



96

 15. Khoury GA, Smadbeck J, Kieslich CA, Floudas 
CA (2014) Protein folding and de novo pro-
tein design for biotechnological applications. 
Trends Biotechnol 32(2):9099–9109

 16. Schmidt am Busch M, Lopes A, Mignon D, 
Simonson T (2008) Computational protein 
design: software implementation, parameter 
optimization, and performance of a simple 
model. J Comput Chem 29:1092–1102

 17. Polydorides S, Amara N, Simonson T, 
Archontis G (2011) Computational protein 
design with a generalized Born solvent model: 
application to asparaginyl-tRNA synthetase. 
Proteins 79:3448–3468

 18. Simonson T, Gaillard T, Mignon D, Schmidt 
am Busch M, Lopes A, Amara N, Polydorides 
S, Sedano A, Druart K, Archontis G (2013) 
Computational protein design: the Proteus 
software and selected applications. J Comput 
Chem 34:2472–2484

 19. Brünger AT (1992) X-plor version 3.1, A 
System for X-ray crystallography and NMR. 
Yale University Press, New Haven

 20. Srinivasan J, Cheatham T, Cieplak P, Kollman 
P, Case DA (1998) Continuum solvent  
studies of the stability of DNA, RNA, and 
phosphoramidate- DNA helices. J Am Chem 
Soc 120:9401–9409

 21. Simonson T (2013) Protein-ligand recogni-
tion: simple models for electrostatic effects. 
Curr Pharm Des 19:4241–4256

 22. Brooks B, Bruccoleri R, Olafson B, States D, 
Swaminathan S, Karplus M (1983) Charmm: a 
program for macromolecular energy, minimi-
zation, and molecular dynamics calculations. 
J Comput Chem 4:187–217

 23. Cornell W, Cieplak P, Bayly C, Gould I, Merz 
K, Ferguson D, Spellmeyer D, Fox T, Caldwell 
J, Kollman P (1995) A second generation force 
field for the simulation of proteins, nucleic 
acids, and organic molecules. J Am Chem Soc 
117:5179–5197

 24. Pokala N, Handel TM (2005) Energy func-
tions for protein design: adjustment with pro-
tein–protein complex affinities, models for the 
unfolded state, and negative design of solubil-
ity and specificity. J Mol Biol 347:203–227

 25. Dahiyat BI, Mayo SL (1997) De novo protein 
design: fully automated sequence selection. 
Science 278:82–87

 26. Wernisch L, Hery S, Wodak S (2000) Auto-
matic protein design with all atom force fields 
by exact and heuristic optimization. J Mol Biol 
301:713–736

 27. Pace CN, Grimsley GR, Scholtz JM (2009) 
Protein ionizable groups: pKa values and their 
contribution to protein stability and solubility. 
J Biol Chem 284:13285–13289

 28. Aleksandrov A, Thompson D, Simonson T 
(2010) Alchemical free energy simulations for 
biological complexes: powerful but tempera-
mental. J Mol Recognit 23:117–127

 29. Tuffery P, Etchebest C, Hazout S, Lavery R 
(1991) A new approach to the rapid determi-
nation of protein side chain conformations. 
J Biomol Struct Dyn 8(6)

 30. Gaillard T, Simonson T (2014) Pairwise 
decomposition of an mmgbsa energy function 
for computational protein design. J Comput 
Chem 35:1371–1387

 31. Koehl P, Delarue M (1994) Application of a 
self-consistent mean field theory to predict 
protein sidechain conformations and estimate 
their conformational entropy. J Mol Biol 
239:249–275

 32. Zou BJ, Saven JG (2005) Statistical theory for 
protein ensembles with designed energy land-
scapes. J Chem Phys 123:154908

 33. Metropolis N, Rosenbluth AW, Rosenbluth 
MN, Teller AH, Teller E (1953) Equation of 
state calculations by fast computing machines. 
J Chem Phys 21:1087–1092

 34. Frenkel D, Smit B (1996) Understanding 
mole cular simulation. Academic, New York

 35. Qu H, Ricklin D, Lambris JD (2009) Recent 
developments in low molecular weight com-
plement inhibitors. Mol Immunol 47(2): 
185–195

 36. Tamamis P, Pierou P, Mytidou C, Floudas CA, 
Morikis D, Archontis G (2011) Design of a 
modified mouse protein with ligand binding 
properties of its human analog by molecular 
dynamics simulations: the case of c3 inhibition 
by compstatin. Proteins 79(11):3166–3179

 37. Tamamis P, Lopez de Victoria A, Gorham RD, 
Bellows ML, Pierou P, Floudas CA, Morikis D, 
Archontis G (2012) Molecular dynamics in 
drug design: new generations of compstatin 
analogs. Chem Biol Drug Des 79(5):703–718

 38. Gorham RD, Forest DL, Tamamis P, Lopez de 
Victoria A, Kraszni M, Kieslich CA, Banna CD, 
Bellows ML, Larive CK, Floudas CA, Archontis 
G, Johnson LV, Morikis D (2013) Novel 
compstatin family peptides inhibit complement 
activation by drusen-like deposits in human 
retinal pigmented epithelial cell cultures. Exp 
Eye Res 116:9096–9108

 39. Gorham RD, Forest DL, Khoury GA, 
Smadbeck J, Beecher CN, Healy ED, Tamamis 
P, Archontis G, Larive CK, Floudas CA, Radeke 
MJ, Johnson LV, Morikis D (2015) New 
compstatin peptides containing n-terminal 
extensions and non-natural amino acids exhibit 
potent complement inhibition and improved 
solubility characteristics. J Med Chem 58(2): 
814–826

Savvas Polydorides et al.



97

 40. Hawkins GD, Cramer C, Truhlar D (1997) 
Parameterized model for aqueous free energies 
of solvation using geometry-dependent atomic 
surface tensions with implicit electrostatics. 
J Phys Chem B 101:7147–7157

 41. Schaefer M, Karplus M (1996) A comprehen-
sive analytical treatment of continuum electro-
statics. J Phys Chem 100:1578–1599

 42. Polydorides S, Simonson T (2013) Monte 
Carlo simulations of proteins at constant pH 
with generalized born solvent. J Phys Chem B 
34:2742–2756

 43. van Heemst J, Jansen DTSL, Polydorides S, 
Moustakas AK, Bax M, Feitsma AL, Bontrop- 
Elferink DG, Baarse M, van der Woude D, 
Wolbink G-J, Rispens T, Koning F, de Vries 
RRP, Papadopoulos GK, Archontis G, 
Huizinga TW, Toes RE (2015) Crossreactivity 
to vinculin and microbes provides a molecular 
basis for HLA-based protection against rheu-
matoid arthritis. Nat Commun 6:1–11

 44. Lee K, Wucherpfennig K, Wiley D (2001) 
Structure of a human insulin peptide-HLA-
 DQ8 complex and susceptibility to type 1 dia-
betes. Nat Immunol 2(6):501–507

 45. Yaneva R, Springer S, Zacharias M (2009) 
Flexibility of the MHC class II peptide binding 
cleft in the bound, partially filled, and empty 
states: a molecular dynamics simulation study. 
Biopolymers 91(1):14–27

 46. Henderson KN, Tye-Din JA, Reid HH, Chen 
Z, Borg NA, Beissbarth T, Tatham A, 
Mannering SI, Purcell AW, Dudek NL, van 
Heel DA, McCluskey J, Rossjohn J, Anderson 
RP (2007) A structural and immunological 
basis for the role of human leukocyte antigen 
DQ8 in celiac disease. Immunity 27(1)

 47. Bellows M, Fung H, Taylor M, Floudas C, 
Lopez de Victoria A, Morikis D (2010)  
New compstatin variants through two de novo 
protein design frameworks. Biophys J 98(10): 
2337–2346

 48. Tamamis P, Morikis D, Floudas CA, Archontis 
G (2010) Species specificity of the complement 
inhibitor compstatin investigated by all-atom 
molecular dynamics simulations. Proteins 
78(12):2655–2667

 49. Schmidt am Busch M, Mignon D, Simonson  
T (2009) Computational protein design as  
a tool for fold recognition. Proteins 77: 
139–158

 50. Schmidt am Busch M, Sedano A, Simonson T 
(2010) Computational protein design: valida-
tion and possible relevance as a tool for homol-
ogy searching and fold recognition. PLoS One 
5(5):10410

 51. Mignon D, Simonson T (2015) Sequence 
exploration in computational protein design 
with stochastic, heuristic and exact methods (in 
press)

Design of ligand binding sites with Proteus



99

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_7, © Springer Science+Business Media New York 2016

Chapter 7

A Structure-Based Design Protocol for Optimizing 
Combinatorial Protein Libraries

Mark W. Lunt and Christopher D. Snow

Abstract

Protein variant libraries created via site-directed mutagenesis are a powerful approach to engineer improved 
proteins for numerous applications such as altering enzyme substrate specificity. Conventional libraries 
commonly use a brute force approach: saturation mutagenesis via degenerate codons that encode all 20 
natural amino acids. In contrast, this chapter describes a protocol for designing “smarter” degenerate 
codon libraries via direct combinatorial optimization in “library space.”

Several case studies illustrate how it is possible to design degenerate codon libraries that are highly 
enriched for favorable, low-energy sequences as assessed using a standard all-atom scoring function. There 
is much to gain for experimental protein engineering laboratories willing to think beyond site saturation 
mutagenesis. In the common case that the exact experimental screening budget is not fixed, it is particu-
larly helpful to perform a Pareto analysis to inspect favorable libraries at a range of possible library sizes.

Key words Protein library design, Degenerate codon optimization, Rational mutagenesis, Saturation 
mutagenesis, Regression, Cluster expansion

1 Introduction

Algorithms for searching large conformational spaces tend to be 
iterative, evaluating one conformation at a time. Molecular dynam-
ics simulations and conventional Monte Carlo protein structure 
prediction fall into this category, as do simulations that support the 
refinement of models to fit nuclear magnetic resonance spectros-
copy or x-ray diffraction data. Even when each evaluation calcula-
tion is rapid, iterative methods are often unequal to the required 
conformational sampling tasks. Several grand-challenge problems 
in computational structural biology are intractable in part because 
of the inability of current methods to efficiently search through the 
space of protein conformations. For example, consider the prob-
lem of predicting the detailed structure of a protein, starting from 
the structure of a homologous protein that happens to be 2 Å root 
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mean square deviation (rmsd) from the target structure. Even 
though the initial structure and the target are “close,” it is difficult 
to find the target structure in part due to the vast number of simi-
lar protein conformations.

For some problems, including fixed-backbone protein design, 
it is feasible to limit the search to the combinatorial placement of 
discrete favored sidechain positions called rotamers [1]. In this 
case, finding the optimal combination is still a challenging (i.e. 
NP-hard) computational problem [2]. However, numerous pow-
erful combinatorial optimization algorithms have been developed 
to optimize sidechain placement and protein design [3–8]. 
Predicting the energy for any given sequence requires a combina-
torial rotamer optimization calculation.

Regression-based approximate models provide a powerful 
approach to circumvent this limitation. The basic strategy is to pre-
pare an approximate model that can be used to rapidly guide more 
expensive search calculations to productive combinations. Much of 
the recent research that adopts this strategy has been elucidated 
and described as cluster expansion [9–14]. However, the use of 
regression approaches to model experimental protein library data 
belongs in the same category.

For example, Hahn et al. used regression to model experimen-
tal data for SH3 domains [13]. The ProteinGPS methodology of 
DNA2.0 also quantifies protein properties in terms of sequence 
variables [15]. Finally, the Arnold lab was repeatedly able to ratio-
nalize the thermostability of protein “chimeras” using only crude 
regression models that account for 1-body contributions from 
each sequence block [16–21]. A chimera is a protein composed of 
fragments of parent proteins joined at sequence junctions called 
crossover sites. Crossover sites are chosen with a variety of tech-
niques that are designed to minimize the disruption of coherent 
and stable fragments within the protein [22–25]. The Arnold 
results suggest that protein fragments can make surprisingly modu-
lar contributions to the overall protein structure and stability. 
Johnson et al. recently provided an interesting exception to this 
trend, by characterizing a library of enzyme chimeras in which sta-
bility affects were decidedly cooperative rather than modular [25].

Whereas traditional computational protein design (CPD) calcula-
tions yield a single sequence (and structure) with minimal energy, 
the ultimate design target for this chapter is a library. Protein 
library design is a highly practical calculation with diverse protein 
engineering applications in industrial biotechnology, materials 
development, and the development of therapeutic biomolecules. 
To efficiently identify functional and/or optimized protein 
sequences, protein engineers commonly work at the level of librar-
ies. Often, if structural information is absent and a suitable assay is 
available, these libraries consist of randomly mutated variants. 

1.2 Protein 
Library Design
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However, when a structure is available, there is a wide range of 
design options.

At one end of the continuum, a structure may be used simply 
to identify which residues are most likely to play an important role. 
Saturation mutagenesis refers to the practice of mutating such tar-
get residues to all possible amino acids. For example, a protein 
engineer working in the area of industrial biotechnology may seek 
to alter the specificity of a substrate-binding pocket. Alternately, a 
protein engineer working to optimize a therapeutic binding pro-
tein might wish to screen a library that diversifies the amino acids 
at the protein–protein interface.

At the other end of the continuum, conventional CPD meth-
ods combine explicit modeling of the structure with combinatorial 
optimization to predict a new low-energy sequence and structure 
thereof. There is interest in methods that combine the practical 
benefits of synthesizing a library of protein variants with benefits of 
structure-guided design. For example, Voigt et al. described a self- 
consistent mean field approach to identify low-energy amino acids 
for subtilisin E and T4 lysozyme [26]. There are numerous routes 
to merge these approaches. For example, the Arnold lab has often 
used structure-guided design to optimize libraries of synthetic 
enzymes derived via site-specific recombination [18].

Much of the effort has been to develop algorithms for the spe-
cific practical task of optimizing degenerate codons (see below). A 
variety of algorithms that have been developed use as an input a list 
of target sequences or a 20 × n matrix that indicates the target fre-
quency of each amino acid for each of the n design positions [27]. 
Enumeration, dynamic programming, and integer linear program-
ming methods have all been described for the selection of degener-
ate codons to cover the desired sequence space [28–32].

Here, three such algorithms are described briefly. The 
LibDesign algorithm [28] begins with a set of aligned amino acid 
sequences and then identifies favorable degenerate codons inde-
pendently for each position. A favorable degenerate codon encodes 
the specified amino acids with minimal degeneracy, avoiding stop 
codons if possible. Permutations of candidate codons are assessed 
via the resulting library size and the number of recovered sequences 
from the input alignment. Allen developed an algorithm called 
“Combinatorial Libraries Emphasizing and Reflecting Scored 
Sequences” (CLEARSS) that extends the conventional CPD 
approach [29]. CLEARSS begins with a list of fixed-backbone 
sequence designs. Possible degenerate libraries are sampled, given 
a list of allowed amino acids and a range of allowed library sizes, 
and are assessed using the ranked list of specific sequences. The 
overall score of a candidate library is the sum of scores for each 
design site, and the score for each design site is the sum of the 
Boltzmann weights of the sequences in the ranked list that contain 
a library-encoded amino acid. Finally, SwiftLib from the Kuhlman 
group uses dynamic programming to optimize the placement of 
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multiple degenerate codons, obtaining very efficient libraries [32]. 
Notably, SwiftLib is presented as a highly accessible web server.

One limitation of such algorithms is the neglect of 2-body inter-
actions. At the cost of significantly more difficult calculations 
(NP-hard optimization), this was addressed by Bailey-Kellogg and 
coworkers in the Optimization of Combinatorial Mutagenesis 
(OCoM) algorithm [30]. Another limitation is the use of a pre- 
calculated list of designs rather than a direct optimization in library 
space. It is not clear that pre-calculated lists of designs offer a bal-
anced or thorough exploration of favorable sequence space; they may 
instead reflect a shallow exploration of sequence space, may feature 
diversity only at permissive sites, and could reflect systematic inaccu-
racies in the design potential. Treynor et al. performed combinatorial 
optimization in library space, but the 2-body potential between 
degenerate codons had significant drawbacks (amino acid:amino acid 
scores were obtained without rotamer optimization) [33]. The final 
relevant example is the Structure-based Optimization of 
Combinatorial Mutagenesis (SOCoM) algorithm reported in 2015 
[14]. This last report is highly suggested reading as the SOCoM 
algorithm closely matches our independently developed approach.

There are several relevant figures of merit for candidate librar-
ies. First, since these tools are intended to assist with actual experi-
mental library design, the number of theoretical variants present in 
the encoded library is a key parameter. Theoretical library size is 
the starting point for selecting the number of clones that should be 
experimentally screened to obtain a target library coverage [34]. 
Another key parameter for a candidate library is the mean energy 
score (<E>) according to a design scoring function. Throughout 
this chapter the energy function is an all-atom Rosetta energy func-
tion [35]. Scores for protein structures are reported in Rosetta 
energy units (REU). One possible limitation of <E> is that the 
folding and functionality of protein sequences is not a graded 
response. Therefore, it may be more relevant to estimate the num-
ber of library members with E < Ecutoff, a threshold meant to flag 
library members at an elevated risk of not folding.

A conventional approach to encode focused site diversity is to use 
a degenerate codon, in which the synthesized DNA primer consists 
of a mixture of nucleotides at particular positions. A single charac-
ter analogous to the pure bases (A, T, C, G) represents each mix-
ture of bases, with W → AT, S → CG, M → AC, K → GT, R → AG, 
Y → CT, B → CGT, D → AGT, H → ACT, V → ACG, and 
N → ACGT. A codon that includes at least one degenerate nucleo-
tide is a degenerate codon. Common degenerate codons for site 
saturation mutagenesis are NNK and NNS, both of which encode 
all 20 amino acids (with varying codon and amino acid frequency). 
It is also important to note that 1/32nd of the codons that are 
physically realized from the NNK and NNS degenerate codons 
(assuming equimolar nucleotide mixtures) encode stop codons.

1.3 Degenerate 
Codon Libraries
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A key limitation of saturation mutagenesis is poor scaling to 
multiple residue targets, due to combinatorial explosion of the size 
of the resulting library. Fortunately, there are opportunities to 
improve; NNK is only one of many possible degenerate codons, the 
vast majority of which are underutilized. Since there are 15 possible 
nucleotide mixtures (see above) at each of the three positions making 
up a codon, there are 3375 legal degenerate codons. Ignoring codon 
usage considerations (organism codon preferences that are the usual 
target of codon optimization), there are 1482 degenerate codons 
that encode different ratios of amino acid (and stop codon) out-
comes. To further simplify, degenerate codons that specify the same 
sets of amino acids (with varying amino acid probability) can be 
eliminated. Of these 840 degenerate codons, 115 can also be dis-
carded since they encode sets of outcomes that are redundant with 
another degenerate codon except for the inclusion of stop codon 
outcomes. Thus, there are 725 degenerate codons that encode 
unique sense mixtures of amino acids. The specific computational 
challenge addressed by this chapter is to select which of these 725 
options to pick for each site within a design problem (see Note 1).

Several groups have developed methods for site-specific libraries 
that rely on mixing primers rather than ordering standard degener-
ate oligonucleotides [32, 36–41]. By taking these alternate 
approaches, the precise set of desired amino acids can be encoded at 
each site. Can the computational design framework described here 
be useful in such scenarios? In theory, the method should apply 
equally well when selecting between arbitrary amino acid sets. The 
critical challenge is that the unconstrained library search space is 
much larger. Rather than the 725 mixtures of amino acids above, 
any combination of the 20 amino acids might be used. The number 
of possible amino acid sets is large enough (220 = 1,048,576) that 
the current methods would likely be impractical due to memory 
limitations or combinatorial optimization performance limitations.

Regression is a powerful tool to uncover the relationship between 
a dependent variable and one or more independent variables. In 
the current case, the dependent variable is the output value from a 
calculation (particularly a computationally expensive calculation) 
applied to a protein structure. Meanwhile, the independent vari-
ables correspond to the binary presence (1) or absence (0) of vari-
ous mutually exclusive options. For example, in a protein design 
 calculation, the task is to select exactly one amino acid at each 
design site. For a protein repacking problem, the task is to select 
exactly one sidechain rotamer position. Necessarily, the regression 
model only approximates the results from the more expensive cal-
culation. The benefit is the dramatic increase in speed, since the 
predicted score for any discrete combination covered by the regres-
sion model can be computed nearly instantaneously [10]. Thus, if 
the regression model has sufficient accuracy, it can be used to effec-
tively search enormous solution spaces.

1.4 Regression 
and Energy Functions
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Energy functions are used to evaluate structures and test them 
for plausibility. The Rosetta energy function is a well-known exam-
ple, as are the energy functions employed by molecular dynamics 
simulations. Both of these are scoring functions, although there are 
important differences. Rosetta includes “knowledge-based” terms 
derived from protein structure statistics that are usually eschewed 
by the “force fields” that contain only physics-based, molecular 
mechanics terms. In either case, energy functions typically take the 
form of a sum of terms that approximate various interactions 
between atoms in a protein. The complexity of energy functions 
used for protein design is often immense. Many mathematical terms 
(e.g. electrostatic interactions, bond angles, solvation energy, etc.) 
may be combined in an effort to improve the accuracy of an energy 
function. Regression models can be used to approximate results 
obtained with these more expensive calculations.

The use of regression to accelerate otherwise intractable protein 
calculations has been popularized in recent years by Grigoryan, 
Keating, and coworkers as cluster expansion [9, 10]. Cluster expan-
sion is a regression-dependent method that was initially made to 
study alloys [42]. Cluster expansion techniques have now been 
used to generate useful approximations for a variety of protein-
related problems. At heart, cluster expansion relies on regression 
to fit an expensive calculation (e.g. the stability of a protein evalu-
ated via repacking calculations). The terms may be 1-body (e.g. 
is-residue-10-an-arginine), 2-body (e.g. are-both-arginine-10-
and-glutamate-18- present), 3-body, or higher-order. Regression is 
used to determine the value of the terms. A key benefit is that the 
dependent variable, the expensive calculation, can be arbitrarily 
sophisticated.

Commonly, the expensive calculation includes combinatorial 
optimization. In the case of protein design, cluster expansion 
serves to “integrate out” the sidechain placement problem, provid-
ing a model that predicts the post-repack energy for any sequence. 
Given a model with only sequence variables, new design possibili-
ties become feasible. For example, Grigoryan et al. used integer 
linear programming in conjunction with the cluster expansion 
model to directly incorporate negative design into the design of a 
family of coiled coils with orthogonal specificity [11]. In the cur-
rent case (protein degenerate codon library design), a sequence-
level model that predicts the energy of any sequence is converted 
into a library-level model that predicts the mean energy of any 
degenerate codon library (Fig. 1). A recent report from Verma 
et al. demonstrates an equivalent approach, direct optimization of 
degenerate codons via cluster expansion [14] (see Note 2).

One drawback of cluster expansion in particular, and regres-
sion in general, is the necessity of training the model with a large 
set of initial calculations; typical training sets for protein design 

1.5 Cluster 
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Fig. 1 At each design site, the first layer (a) consists of a combined sequence/structure search space with 
discrete alternative positions for the sidechains (rotamers). Each rotamer gets a 1-body energy due to interac-
tions with immobile groups and 2-body energy terms due to interactions with neighboring mobile groups. 
These might be particularly favorable (green edges) or unfavorable (orange edges). (b) Integrating out the 
structure degrees of freedom, we arrive at a regression model that only contains sequence variables. Favorable 
and unfavorable 1-body terms are represented with green or red tint, while 2-body terms are again repre-
sented as edges. Finally, by applying Eqs. 5 and 6, we can construct another energy graph (c) in which the 
numerous vertices correspond to degenerate codons. Depending on the constituent amino acids, the degener-
ate codons may be favorable (green tint) or unfavorable (orange tint). Edges may likewise carry favorable 
(green) or unfavorable (orange) effects
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problems contain tens of thousands of calculations. The aggregate 
computational expense is significant but necessary. To save compu-
tational time, a training set of minimum feasible size is preferable, 
but large training sets are needed to avoid over-fitting large free 
parameter collections. Eventually, increasing the size of the train-
ing set will not lead to improved accuracy; at this point it has been 
saturated, and adding additional terms to the regression model is 
more likely to lead to an improvement.

Perhaps surprisingly, Apgar et al. found that a more expensive 
calculation (with a flexible backbone) was easier to approximate 
than a less expensive calculation (rigid backbone) [12]. It was sug-
gested that allowing the backbone to move minimized steric 
clashes between individual residues. Removing steric clashes is 
helpful because such interactions are unlikely to be physically real-
istic, and because the large amplitude of such interactions can be 
difficult to fit.

Ng and Snow found that lower-order terms were sufficient for 
the prediction of multi-body energy function scores [43]. 
Specifically, the AMOEBA polarizable energy function [44], which 
is not pairwise decomposable, was approximated for combinatorial 
sidechain optimization. Lower-order (1-body, 2-body, and 3-body) 
terms were shown to be sufficient to accurately approximate the 
multi-body polarization effects. In addition, sets of lower-order 
terms could be used to predict which higher-order terms are rele-
vant. If the 2-body terms for amino acids at three positions had 
significant magnitude, it was worth attempting to add a third-
order term for those three amino acids. Snow and Ng's work 
revealed that one could filter out (i.e. ignore) almost 80 % of 
3-body terms and thereby reduce the complexity of the regression 
with this simple check.

The generality of the regression/cluster expansion approach is 
a key feature. Many hard problems in CPD benefit from an accu-
rate model that predicts energy directly from the sequence. The 
current chapter describes open-source, permissively licensed soft-
ware for expanding the combinatorial optimization approach to 
problems that may not be pairwise decomposable. To take advan-
tage of this flexibility, Python scripts are presented for computing 
 regression- based approximate models with the robust combinato-
rial optimization capacity of the open source SHARPEN software 
platform [45].

2 Methods

In broad strokes, the steps to take to apply the regression tools are 
the same regardless of the exact goal. First, an initial set of discrete 
combinations is “instantiated,” a process that varies depending on 
the problem but always includes an assessment or scoring of the 

2.1 Overview
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combination in question. For the current case studies, the discrete 
combination is the protein sequence, and the instantiation consists 
of a combinatorial optimization of sidechain rotamer positions. The 
set of instantiated combinations is divided into two subsets: one to 
train the regression model and another to test the resulting approxi-
mation. The resulting trained regression model provides a rapid 
approximation to the more expensive instantiation operation.

The SHARPEN package [45] provides convenient data struc-
tures to store and apply regression approximations. Specifically, 
EnergyGraphs efficiently store 1-body and 2-body terms in a con-
ventional graph structure consisting of nodes and edges (a thin 
wrapper around the underlying Boost Graph type). More unusually, 
SHARPEN also provides EnergyHyperGraph data structures that 
can also accommodate higher-order terms such as 3-body, 4-body, 
or N-body effects. Either EnergyGraphs or EnergyHyperGraphs 
can be used with a variety of independent combinatorial optimiza-
tion routines for identifying favorable combinations. Therefore, it is 
easy to efficiently identify discrete combinations, “targets,” that are 
predicted to minimize the instantiated score according to the cur-
rent approximation.

The value of the entire scheme is predicated on the utility of the 
approximation to allow the combinatorial search process to more 
rapidly explore enormous swaths of a combinatorial search space, 
and to do so with enough accuracy to discover favorable combina-
tions. Given the astronomical search size of typical combinatorial 
problems, and the rapidity of search methods using the regression 
approximation, accelerating the sampling is likely assured. The 
more challenging aspect is ensuring that the regression-based 
approximation is sufficiently accurate. Fortunately, this chapter 
illustrates that 2-body regression models appear to be largely suffi-
cient to approximate the favorable portions of the combinatorial 
search space, and that such approximations can be used to facilitate 
the optimization of degenerate codons directly in library space.

The routines described below are implemented in a set of 
python scripts that use methods provided by a python module, 
dgen_design. These tools use the open source SHARPEN soft-
ware, and are therefore provided via the www.sharp-n.org website 
wiki. Other useful scripts for practical protein design calculation, 
described by Johnson et al. [25], are also hosted on this site.

 1. The only requirement for an instantiation method is that it 
accepts a combination and produces a score. Any algorithm 
that can be applied to a candidate protein and produces a num-
ber could be an instantiation method. Instantiation for this 
work involves combinatorial optimization of the sidechains 
(“repacking”) for a particular sequence variant to minimize the 
model score according to an all-atom Rosetta energy function 
[35]. The outcome is the score E in Rosetta energy units 

2.2 Instantiation: 
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(REU). Structures with lower Rosetta energy scores are more 
plausible protein conformations.

From the standards of CPD, the case studies presented herein 
are small problems (Table 1). The FasterPacker combinatorial 
optimization object mimics the “singles” routine from the Desmet 
and Lasters FASTER algorithm [4]. The FasterPacker works some-
what like a traditional Monte Carlo trajectory, except that the 
moves that are accepted or rejected are “batch” moves. Candidate 
batch moves are generated by temporarily fixing a perturbing rota-
mer change and then sequentially relaxing interacting sidechains to 
their low energy rotamer.

 2. FasterPacker typically yields optimal or near optimal solutions 
for problems of this size. To demonstrate, 600 sequences for 
case B.1 (see below) were solved to optimality using the mixed 
integer linear programming program CPLEX [46] via a 
CplexPacker wrapper provided by SHARPEN. Because these 
problems are reasonably small, the CplexPacker is able to iden-
tify the global minimum energy combination (GMEC) rela-
tively quickly (an average time of 3.7 s). In 552 of 600 cases 
FasterPacker found a solution within 1E-6 REU of the GMEC, 
but did so in an average of only 0.14 s. Notably, CplexPacker 
was used to optimize the sidechain rotamer positions of the 
initial protein model prior to any other calculations.

Table 1 
The reported best low-energy testset rmsd values (rmsdLET) correspond to the lowest value 
encountered for varying training set sizes. Where applicable, the best-case exponential weight (τ) 
and regularization parameter (k) are also noted

Site
Active 
design sites

Other 
mobile sites

Seq 
space 
size

Lib 
space 
size

Seq/str 
search 
size Figures

Best 
LET 
rmsd τ k

A.1 Core 5, 30, 43 52, 54 8000 3.8E8 1.5E11 4,6,7,8 1.8 – 1e–7

A.2 4.9E7 4,6,13 1.7 – 0.01

A.3 5,6 1.5 125 1e–6

B.1 Core 5, 30, 43, 
52, 54

3, 7, 16, 45 3.2E6 2.0E14 3.9E20 9 5.0 – 0.1

B.2 4.1 50 1e–7

B.3 2.5E13 10,13 14.4 – 1

B.4 10 8.4 75 1

C.1 Surf 2, 4, 6, 8, 
13, 15, 17, 
19, 42, 44, 
46, 48, 49, 
51, 53, 55

None 6.6E20 5.8E45 1.8E35 11,13, 
14

9.9 – 10

C.2 6.5E45 12 4.8 – 1
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 3. A pool of random combinations is instantiated via FasterPacker 
at the outset of the campaign. This pool serves as the source of 
training and test combinations. A training batch is used to kick 
off the regression, while the test batch (all other members of 
the initial pool) is held in reserve to quantify regression model 
quality.

For the case study problems here, combinatorial optimization 
is quite rapid since there are a limited number of mobile residues 
(Table 1). For example, the 5-site library (case B), with the default 
(non-minimal) rotamer generation scheme has a structure-
sequence search space size of 3.9 × 1020. Only 20 min are required 
to instantiate 50,000 random sequences using a 2.8 GHz Intel 
Core i7 CPU.

 1. The ability of regression to produce accurate approximations is 
predicated on the ability of terms to stand in for more compli-
cated processes. It is desirable to be selective when adding 
terms, since adding an excessive number of terms will result in 
overfitting. To recapitulate most physical problems, it is neces-
sary to include at least 1-body and 2-body terms. A free con-
stant (i.e. a 0-order term) can also be helpful, allowing the 
remaining parameters to adopt smaller values without degrad-
ing the overall fit. Alternately, to shrink the absolute value of 
the free constant, a reference energy (Eref) can be subtracted 
from each element within the instantiated score vector (Y).

 2. In the particular case of approximating the energy of protein 
sequences, our general recommendation is to consider the 
wild- type (WT) or initial protein sequence as the reference 
state (with E = Eref). Then, each individual mutation at an 
active design site gets a 1-body parameter. WT amino acids at 
the design positions do not get parameters, as their contribu-
tion is subsumed within the reference state. Similarly, only 
interactions between two mutations serve as 2-body parame-
ters, since a WT:mutant pair is already accounted for in the 
1-body parameter for that mutant. Ideally, regression will drive 
the free constant parameter toward the score of the reference 
state. All of the problems described below include a free con-
stant, all 1-body terms, and all possible 2-body terms (Fig. 1). 
For larger problems, it could become useful to skip 2-body 
terms that are not likely to correspond to physical effects. For 
example, one could require physical proximity or more direct 
evidence of energetic coupling between the particular sites 
before adding terms.

 3. Similarly, it could also be useful to identify higher-order terms 
(i.e. 3-body terms) to improve the accuracy of the model in 
recapitulating low-energy combinations. A tricky aspect to this 
is that sizable 3-body effects for protein design can be “frustra-
tion” effects in which three pairs of amino acids can each coexist 

2.3 Term Selection
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nicely, but the combination of all three induces an unavoidable 
steric clash. Modeling this effect requires a large 3-body term, 
which breaks the typical approximation paradigm that higher-
order effects will have lower magnitude than lower-order effects.

 4. A more sophisticated (and lengthy) approach to term selection 
was described by Hahn et al. who developed an iterative fea-
ture selection scheme with rapid cross-validation [13]. 
Candidate terms are individually considered and included if 
they make a statistically significant improvement. For the 
degenerate codon design problem described here, one can 
avoid using 3-body terms and lengthy term selection proce-
dures due to the sufficient accuracy of the 2-body models and 
the technical feasibility of modeling all possible 2-body terms.

 1. After the training batch is instantiated, and fitting terms are 
selected, regression can proceed. The regression model will 
ascribe values to the fitting terms so that summing the appro-
priate terms can approximate any combination. For the case 
study problems here, there are thousands of one-body and 
two-body terms, and thousands of training set members.

 2. Each of the training set members will have a relatively small 
number of applicable terms, depending on which amino acids 
(potential 1-body terms) and pairs of amino acids (potential 
2-body terms) are present at the variable sites. To tackle the 
resulting large sparse regression problems, our approach relies 
on two solvers that work with sparse matrices and are conve-
nient for use from Python. Specifically, the CVXopt software 
package [47] provides a sparse matrix structure, an interface to 
the Cholesky factorization routines of the CHOLMOD pack-
age [48], and functions for solving sparse sets of linear equa-
tions. Alternately, one can use the LSMR package [49], which 
is integrated into scipy [50]. For the following code snippets, Y 
is the vector of instantiation scores, k is a regularization param-
eter (see below, Eq. 1), and spX is a sparse matrix that encodes 
which terms apply to which training set combinations.
import scipy.sparse.linalg
results = scipy.sparse.linalg.lsmr(spX, Y, damp=k)
or
import cvxopt
from cvxopt import spmatrix, spdiag, cholmod
B = spX.T * cvxopt.matrix(Y)
XT_X = spX.T * spX
ridge = k * cvxopt.spdiag([1] * len(B))
cvxopt.cholmod.linsolve(XT_X + ridge, B)

 3. Given the large number of fitting parameters that arise when 
2-body or 3-body terms are included, overfitting is a serious 
concern. To combat the tendency for overfitting, use regular-
ized regression. In both code snippets above the core calcula-

2.4 Solving Large 
Regularized 
Regression Problems
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tion consists of regularized regression, also known as ridge 
regression (Eq. 1) or Tikhonov regression [51]. This tech-
nique penalizes terms that deviate from zero. The regulariza-
tion parameter, k, serves to restrain the magnitude of the fitting 
parameters, β. The matrix X specifies which fitting terms con-
tribute to each combination, with the vector Y holding instan-
tiated scores and I as the diagonal identity matrix.

 X X kI X YT T†+( ) =  (1)

Ridge regression can be useful to suppress overfitting. It is impor-
tant, however, to setup the problem so that the value of the terms 
should indeed be small numbers.

 1. Weighting is a useful optional strategy to increase the accuracy 
of the regression model for some of the combinations. 
Typically, the performance of the approximation is much more 
important for favorable combinations than unfavorable combi-
nations. It is recommended to sacrifice the overall fit in favor of 
higher accuracy for the favorable combinations. A matrix W 
has weights along the diagonal, wi, that are selected using the 
following scheme intended to resemble Boltzmann weighting. 
The adjustable parameter τ sets the energy scale that defines 
the favorable sequences of interest.

 X WX X WYT T† =  (2)
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 2. If the exponential weighting parameter τ = 100, then training 
set combinations that are 10, 25, 50, 100, and 200 REU less 
favorable than the minimum REU combination in the training 
set will have weights of 0.90, 0.78, 0.61, 0.37, and 0.14. 
Equation 3 assumes that the more important combinations 
have the lower scores. If necessary, the sign of the scores can be 
flipped. The use of a minimum weight (0.02 above) ensures 
that the regression model cannot entirely neglect high-energy 
combinations.

 1. To quantify the performance of a regression model, one can 
compute the root mean square deviation (rmsd) between the 
predicted E scores for the testset with the actual repacked E 
scores. However, also consider the possibility that the regres-
sion model predictions may have a systematic bias (e.g. a slope 
of 1.5 or a non-zero intercept). If such a bias is consistent, it 
could be corrected by fitting a line. Therefore, before comput-
ing rmsd one should correct systematic deviations using the 
scipy.stats.linregress function to compute the slope and 
intercept.

2.5 Weighted 
Regression

2.6 Quantifying 
Regression Model 
Performance
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 2. It is not recommended to equally favor all combinations. The 
explicit goal is to maximize accuracy for the more favorable, 
low- energy combinations. Rough prediction of high-energy 
combinations is sufficient; clashes need not be precisely quanti-
fied if they can be avoided. Accordingly, one might quantify 
accuracy for the favorable members of the test set, with 
Ei < min(E) + 100 REU. Hereafter, this figure of merit will be 
termed rmsdLET, the rmsd for the low-energy testset. One may 
also use rmsd to quantify the extent to which library <E> pre-
dictions match directly sampled <E> values.

 1. Once a regression model has been trained, it can be used to 
efficiently identify combinations that are predicted to be favor-
able upon instantiation. Such combinations are termed “tar-
gets.” If only 1-body terms are present in the model, optimal 
targets are trivially easy to identify; one need only select the best 
score for each mutually exclusive choice. More generally, a low-
scoring target combination is found using combinatorial opti-
mization routines, typically the FasterPacker described above, 
or the SimulatedAnnealingPacker. A SimulatedAnnealingPacker 
implements a Monte Carlo trajectory over combinations with a 
gradually reducing temperature value.

 2. These combinatorial optimization methods are generally 
intended to find individual favorable combinations, possibly 
the GMEC. When target diversity is critical, the output combi-
nation from the SimulatedAnnealingPacker or FasterPacker 
can serve as the initial combination for subsequent 
MonteCarloPacker sampling. To ensure a diverse pool of tar-
get combinations, one can generate multiple Monte Carlo tra-
jectories at escalating temperature. Temperature is increased in 
repeated Monte Carlo runs until a minimum number of dis-
tinct combinations are found. This method of target selection 
is still effective if higher-order terms are present in the regres-
sion model. Also, the use of an escalating temperature should 
render this protocol somewhat robust when applied to differ-
ent problems with varying intrinsic energy scales.

 3. A related strategy can come into play at the outset of a learning 
process. In the case of building a training set to use regression 
to approximate the AMOEBA energy function (Ng, 2011), 
the model was trained using rotamer combinations that were 
highly diverse, but not the purely random combinations that 
usually result in van der Waal clashes. To do so, an initial 
approximate energy model that included only strong van der 
Waal clashes was built. Then, to generate a maximally diverse 
pool of combinations, excluding unrealistic high-energy com-
binations, Ng ran a series of Monte Carlo trajectories with the 
temperature set to zero. These trajectories began from random 

2.7 Using 
the Approximation 
to Select Targets
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combinations and executed a downhill walk, thereby preserv-
ing maximal diversity while attempting to avoid unphysical 
clashes. This allowed the regression process to “learn” about 
more interesting effects than the steric clashes.

 1. For small degenerate codon libraries (e.g. case A with three 
design sites), it is feasible to enumerate the predicted E values 
for each of the encoded sequences. Then, the expectation value 
of the Rosetta energy for any library can be readily calculated 
by computing the mean energy, <E>, of the constituent 
sequences. However, for library design problems with more 
sites, precise calculation of <E> can be overly time-consuming. 
Therefore, our code instead estimates <E> by sampling the 
value of n random combinations drawn from the library. One 
can compute the standard error of the mean (σ〈E〉) given the 
standard deviation of the E values in the sample (σ), using the 
finite sample correction for libraries with N members:

 
s

s
E =

-
-n

N n

N 1  
(4)

 2. Relatively modest samples (n = 400) are sufficient to assess the 
correlation between the predicted library <E> from the regres-
sion model and the sampled <E>. To estimate the number of 
library combinations with E below a threshold, compute the 
fraction below the threshold for the sample and multiply by 
the library size. The library size, Nlib, refers to the theoretical 
number of distinct sequences and is calculated as the geometric 
product of the number of amino acids Naasite encoded at each 
design site: N Naalib

design sites

site= Õ .

 1. The technical details above cover the preparation, tuning, and 
validation of regression models that map specific protein 
sequences to predicted post-instantiation Rosetta energy scores. 
However, a larger goal for this chapter is to demonstrate how 
such models can be used to efficiently select degenerate codon 
libraries. Specifically, the goal is to execute a search for favorable 
degenerate codon libraries directly in “library space.” To enable 
library design via the various combinatorial optimization algo-
rithms provided by SHARPEN (e.g. the Packers mentioned 
above), one need only prepare an EnergyGraph or 
EnergyHyperGraph in which the nodes no longer correspond 
to mutually exclusive amino acid choices, but instead corre-
spond to mutually exclusive degenerate codon choices (Fig. 1).

 2. The regression models described above make this possible. In 
the notation below, Ei

1-body  is the 1-body regression term for 
amino acid outcome i, and Eij

2-body  is the 2-body regression term 
for the simultaneous selection of amino acids i and j. First, com-

2.8 Calculating 
the Properties 
of Degenerate Codon 
Libraries

2.9 Combinatorial 
Design in Degenerate 
Codon Library Space

Design of Optimal Combinatorial Protein Libraries



114

pute 1-body terms for each degenerate codon by computing the 
expectation 1-body term for the constituent sense amino acids 
according to the regression model (see Note 3). The relative 
frequency of the constituent amino acids, pi, can serve as weights 
to compute the expectation value. Alternately, pi values can be 
set to model equally probable amino acid outcomes. The latter 
approach is adopted here under the assumption that all variants 
within the library might be isolated and characterized (ignoring 
the different frequencies of encountering these variants).

 
E p E

aa i
i idgen A

body

A

body1 1- -= ×å
 

(5)

 3. Similarly, compute the expectation value for the 2-body inter-
action between two degenerate codons (A and B):

 
E p p E

aa i aa j
i j ijdgens A and B

body

A B

body2 2- -= × ×å å
 

(6)

 4. For a closer look at the calculation of an EnergyGraph that 
embodies the library design landscape, see the M_score_dgen_
codon_sets.py script.

 1. Library size is a key consideration when it is time to select a 
library for experimental testing. However, the feasible experi-
mental library size is rarely in practice a strict cutoff. Instead, it 
is valuable to illustrate what candidate libraries look like as a 
function of library size before making final decisions.

All other factors being equal, use libraries with a lower <E>, 
since those libraries are the most likely to be highly folded, stable, 
and functional. However, the global minimum energy library 
(GMEL) will have exactly one sequence and that sequence will 
correspond to the GMEC. This is true since each individual amino 
acid is an option within the 725 amino acid sets that can be 
encoded. If libraries are sampled thoroughly, the libraries with 
minimal <E> are going to contain relatively few sequences. The 
more useful task is to identify libraries with minimal <E> for every 
library size. This will allow the protein engineers involved to select 
the library size that offers the best <E> yet fits within the assay 
screening budget. Therefore, when performing combinatorial 
optimization directly in library space, an explicit bias favoring 
larger libraries may help to sample diverse library options.

 2. To sample larger libraries, implement a bias favoring degener-
ate codons that encode more amino acids. First, compute 
log(Naasite) for each degenerate codon. Then, when assessing 
candidate degenerate codon combinations, the total library 

size is e design sites

siteå ( )
é

ë
ê
ê

ù

û
ú
ú

log Naa

. Each candidate degenerate codon choice 
contributes additively to the predicted library E via its 1-body 
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and higher- order regression terms, and contributes additively 
to the library size (Nlib) via the log(Naasite). Iteratively perform 
combinatorial optimization according to the energy model, 
but in each round ri increment a cumulative 1-body bias favor-
ing degenerate codons that encode more amino acids: 
r Naai

site× × ( )e log , where ϵ is a small weight factor. For a closer 
look at this iterative library sampling scheme, see the P_iter-
lib_sample.py script.

 3. Manually adjust ϵ so that libraries of the largest interesting size 
are sampled by the end of 100 rounds of combinatorial optimi-
zation. The largest interesting library size is problem-depen-
dent. For three design sites, full NNK saturation may be worth 
considering. Given more numerous design sites, the maximum 
interesting library size will likely be limited by the screening 
capacity. Even in vitro methods such as mRNA display or ribo-
some display have limits (e.g. 1014 variants) [52].

 1. Seek to identify libraries that are Pareto optimal [53] for minimal 
<E> and large library size. In other words, if candidate library 1 
has a higher <E> and a smaller size than candidate library 2, then 
candidate library 1 can be discarded from consideration. To 
accelerate this process, our code uses a divide and conquer 
approach. See the Q_calc_pareto_stats.py script for more details.

Due to threshold protein stability effects, a library with 90 % 
favorable sequences and 10 % very unfavorable sequences may be 
preferable to a library consisting entirely of mediocre sequences. 
Unfortunately, the <E> could be lower for the latter library. Therefore, 
a preferable Pareto analysis scheme identifies libraries that have the 
greatest (predicted) number of sequences with scores below a thresh-
old, while otherwise having the smallest total library size. Generally, 
this threshold should be set to a value such that  combinations exceed-
ing the threshold would be at risk of not being functional.

 2. After either Pareto analysis is complete, the remaining set of 
libraries (the Pareto front) includes only the libraries that are 
most worthy of consideration. Inspection of the resulting plots 
should help when weighing the tradeoffs between selecting 
small libraries with favorable energy statistics and larger librar-
ies with less favorable statistics.

3 Example Tests and Results

This section describes results for several illustrative degenerate 
codon design problems (Fig. 2) using protein G (pdb entry 1pgb). 
Table 1 defines which amino acids are design positions and which 
other amino acids that are allowed to move.

2.11 Selecting 
Advantageous 
Degenerate Codon 
Libraries via Pareto 
Analysis

3.1 Model Design 
Problems
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 1. Case A is intended to provide the smallest possible interesting 
problem (Fig. 2a). In this case, by limiting the number of 
design positions to 3, it is possible to optimize and score each 
of the 8000 possible sequences via sidechain optimization. 
Note, however, that even very rapid calculations become time-
consuming when applied to 381 million candidate degenerate 
codon libraries (7253).

 2. Case B is intended to provide an example of a realistic use sce-
nario for these tools (Fig. 2b). For many experimental assays, it 
would be impractical to experimentally screen a site saturation 
library at 5 design positions. However, by using tailored degen-
erate codons it may be possible to obtain a library that is small 
enough to screen, and will consist of a higher fraction of favor-
able sequences. Thus, by degenerate codon design, one could 
make the most of the available screening capacity (e.g. ten 
96-well plates). For example, consider a size constrained hydro-
phobic site. Rather than using all 20 amino acids, the degener-
ate codon “VTM” would provide just Ile, Leu, and Val, and 
would help reduce combinatorial explosion of the library size.

 3. Case C is intended to demonstrate performance when apply-
ing the approach to a larger design problem (see Note 4). Case 
C constitutes the redesign of an entire surface face of a beta 
sheet (Fig. 2c). Saturation mutagenesis of such a 16-site library 
is out of reach for experimental screening, but tailored codons 
might be used to identify favorable libraries small enough to be 
screened for binding properties via a high-throughput approach 
(e.g. fluorescence- activated cell sorting).

Fig. 2 Case study design problems. Design position (gray) and mobile sidechains (white) are shown in sticks. 
(a) Case A has three design sites in the hydrophobic core. (b) Case B has five design sites in the hydrophobic 
core. (c) Case C has 16 design sites on the exposed surface of the beta sheet
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 4. All three of these cases are suitable for conventional CPD. The 
case A GMEC (wild-type Leu5, Phe30, and Trp43) was found 
using SimulatedAnnealingPacker, FasterPacker, or CplexPacker 
in 0.6, 13, or 87 s respectively. For case B.1, design results in a 
double mutation W43T, V54I. The GMEC was found using 
SimulatedAnnealingPacker, FasterPacker, or CplexPacker in 
1.8, 104, or 795 s respectively. Finally, FasterPacker and 
CplexPacker found the GMEC for case C.1, which had 15 sur-
face mutations (T2R, K4E, I6E, N8R, K13E, E15R, T17Y, 
E19W, E42L, T44R, A48N, T49R, T51R, T53I, and T55I). 
In this last case, the FasterPacker and CplexPacker required 5 
and 803 s, respectively.

 5. To illustrate the performance determinants for the presented 
methods, variant calculations were performed (Table 1) to 
assess the effects of rotamer density and the use of weighting. 
Specifically, for cases A.2, A.3, B.3, B.4, and C.1 rotamers were 
reduced to base Dunbrack rotamer options [54]. For these 
cases, the sequence/structure search space size was reduced 
(Table 1) and combinatorial sidechain optimization was more 
rapid. Cases A.3, B.2, and B.4 use weighted regression. Table 
1 indicates which subsequent figures apply to each case and 
highlights the best-case prediction accuracy (rmsdLET).

As described above, the first step for each of these model design 
problems is to perform thousands of combinatorial sidechain opti-
mization calculations (instantiation) for random sequences. For 
case A, all 8000 variant sequences were instantiated. For cases B 
and C, 50,000 and 80,000 combinations were instantiated, respec-
tively. For all three cases, a large fraction of the sequence space 
achieves a low score when optimized via FasterPacker. As expected, 
the cases with more generous rotamer provisioning (Fig. 3abc) 
reach lower energy values.

The score for the wild-type sequence with fully optimized side-
chain rotamers is −112.5 REU. For case A.1 the mean (median) E 
is −70.9 (−99.6) REU. For case B.1 the mean (median) E is −75.8 
(−104.6) REU. For case C.2 the mean (median) E is -58.7 (−93.0) 
REU. The median values are lower than the mean values due to 
the outsized influence of high-energy sequences on the mean. 
Given these values, sequences with a predicted E above −105 REU 
were flagged as having an elevated risk of being unfolded.

 1. Despite the close physical interaction of the design site residues 
for case A, it was possible to very accurately fit the post-repack-
ing energy of the 8000 possible sequences via regression (Fig. 
4a–c). There are 1141 fitting parameters in this case, consisting 
of 1 free constant, 57 one-body terms (the 19 possible muta-
tions for each of the three sites), and 1083 two-body terms 
(double mutations). If all 8000 sequences are fit, the rmsd is 
only 1.9 REU. A better test, however, is to train the regression 

3.2 Case A: High 
Accuracy 
Approximation 
of a 3-Site Library

Design of Optimal Combinatorial Protein Libraries



118

model using portions of the 8000-sequence pool and to assess 
the quality of the resulting approximate energy model using the 
remaining sequences as a test set. To illustrate the effect of 
training set size and regularization parameter, Fig. 4a shows 
how approximation accuracy depends on these parameters.

 2. For case A.1, regularization was not critical. Scanning the 
training set size and the regularization parameter (Fig. 4a), the 
best rmsdLET was an impressively low 1.8 REU. The best per-
formance came when using a 7500-member training set with 
the smallest test regularization parameter (k = 1E−7). Running 
regression without regularization produced the same results.

Surprisingly, reducing the number of rotamers (case A.2) does 
not reduce the performance of the regression model. Instead, rms-
dLET actually decreased from 1.8 to 1.7 REU. One difference 
between case A.1 and case A.2 comes for small training sets 
(approximately 1000 combinations) and low regularization pen-
alty (k < 1E−3). The slight shoulder in the case A.1 parameter scan 

Fig. 3 Instantiated scores for random combinations. Black (orange) bars are combinations with E lower (higher) 
than the median. (a) All 8000 sequences for case A.1. (b) All 8000 sequences for case A.2 (minimal rotamers). 
(c) 50,000 random sequences for case B.1. (d) 50,000 random sequences for case B.3 (minimal rotamers). (e) 
80,000 random sequences for case C.2. (f) 80,000 random sequences for case C.1 (minimal rotamers)
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Fig. 4 Case A.1 and A.2 approximation performance. Training set combinations are partial transparent orange 
points while test set combinations are black points. (a) rmsdLET versus training set size and the regularization 
parameter for case A.1. The best performance from this scan is shown in (b), where a random training set 
(7500 combinations) was used to fit 1141 parameters with regularization (k = 1e − 07) resulting in training set 
recapitulation (rmsd = 1.8). Performance for low-energy combinations was excellent (rmsdLET = 1.8 REU) for 
the 468 test set combinations within 100 REU of the minimum test set combination (−113.1 REU). The entire 
test set (500 combinations) was predicted with rmsd = 3.0 REU (inset). (c) rmsdLET versus training set size and 
the regularization parameter for case A.2 (minimal rotamers). (d) A random training set (7500 combinations) 
was used to fit 1141 parameters with regularization (k = 0.01) resulting in training set recapitulation (rmsd = 4.2 
REU). Performance for low-energy combinations was excellent (rmsdLET = 1.7 REU) for the 390 test set combi-
nations within 100 REU of the minimum test set combination (−103.9 REU). The entire test set (500 combina-
tions) was predicted with rmsd = 2.9 REU (inset)
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surface (Fig. 4a) becomes a distinct peak for case A.2 (Fig. 4c). 
This peak represents a counterintuitive result; decreased prediction 
performance for a larger training set. This result will be discussed 
below in the Overfitting Trends section.

 3. Case A.3 attempts to improve the case A.2 performance with 
weighting. Keeping the training set and regularization param-
eter fixed (7500 training set members and k = 1E−6), the expo-
nential weighting parameter τ was varied to determine which 
value gave the lowest rmsdLET (Fig. 5a). τ = 125 was most effec-
tive (Fig. 5a). Compared to the non-weighted case A.2 (Fig. 
4d), Fig. 5b demonstrates slightly improved rmsdLET (1.7 → 1.5 
REU), with a significant concomitant sacrifice of global fit 
rmsd (2.9 → 8.7 REU).

 1. The regression models described above predict the instantiated 
Rosetta energy for any sequence within the 8000-sequence 
search space. For each of the cases above, 1000 random degen-
erate codon libraries were selected. For each degenerate codon 
library, the <E> was computed using the pre-calculated ener-
gies for constituent sequences.

 2. The library <E> predictions are quite accurate (Fig. 6), with 
<E> prediction rmsd values lower than the rmsd for the predic-
tion of E for individual sequences. The rotamer-rich case A.1 
accuracy was good globally (rmsd = 0.38 REU) and for the 559 
libraries with predicted <E> within 30 REU of the −105.5 
REU minimum (rmsd = 0.37 REU). The case A.2 accuracy was 
comparable (0.5 REU globally, 0.35 REU for the 256 libraries 
with predicted <E> within 30 REU of the −98.7 REU mini-

3.3 Predicting <E> 
for Case A Libraries

Fig. 5 Case A.3. (a) Scanning the expweight parameter (τ in Eq. 3). Error bars 
reflect the standard deviation from 20 trials with random 7500-member training 
sets. (b) With τ = 125, a random training set (7500 combinations) was used to fit 
1141 parameters with regularization (k = 1e − 06) resulting in training set reca-
pitulation (rmsd = 11.0). Performance for favorable test set combinations was 
good (rmsdLET = 1.5 REU) for the 410 combinations within 100 REU of the mini-
mum test set combination (−103.7 REU). The entire test set (500 combinations) 
was predicted with rmsd = 8.7 REU (inset)
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mum). Finally, weighting (case A.3) degraded the <E> predic-
tion, with 2.6 REU rmsd for the global library <E> prediction, 
and 0.73 REU for the 240 libraries within 30 REU of the 
−99.0 REU minimum. Despite the counterproductive effect of 
weighting, these levels of precision for library <E> prediction 
performance are encouraging. It was particularly  gratifying 
that the minimal rotamer case A.2 performed so well, since all 
8000 sequences can be instantiated in less than 4 s in this case.

 1. Random sampling is neither a systematic nor a satisfying solu-
tion for efficiently identifying libraries that are maximally 
appealing for experimental testing. A systematic approach is 
preferable. Since 1-body and 2-body scoring terms for the 
degenerate codons are stored in a SHARPEN EnergyGraph, a 
variety of combinatorial optimization algorithms are readily 
available to assist with sampling.

For case A, the total library search space of 381 million is small 
enough for enumeration, albeit via a relatively expensive calculation 
(approximately 26 min and 8 Gb memory). Therefore, for a 3-site 
library the BruteForcePacker object from SHARPEN is feasible. 
The BruteForcePacker can be configured to retain a ranked queue 
of the best combinations encountered. For case A, a large priority 
queue was needed to retain the 4.6E5 libraries with a predicted <E> 
< −105 REU (Fig. 7). For a closer look at this enumeration-based 
sampling scheme, see the sample_libs_via_enum.py script.

 2. For larger libraries, enumeration is not going to be a practical 
option. Instead, it would be better to identify the potentially 
numerous low-<E> libraries with an inexpensive calculation. 
Another example script launches and pools parallel Monte 
Carlo trajectories to rapidly collect a set of unique libraries. 
Almost 4E5 libraries predicted to be low energy were collected 
in less than 5 min (Fig. 7b). For a closer look at this Monte 
Carlo sampling scheme, see the sample_libs_via_MC.py script.

3.4 Sampling Case 
A Libraries

Fig. 6 Predicted library <E> versus instantiated sample <E>. Vertical error bars reflect σ〈E〉 (Eq. 4). An identity 
line is orange. Global (or best 30 REU) rmsd values for (a) Case A.1, (b) Case A.2, and (c) Case A.3 were 0.38 
(0.37), 0.5 (0.35), and 2.6 (0.73) REU respectively
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 3. With so many candidate libraries there is a clear need for effec-
tive methods for identifying the most favorable options at a 
range of library sizes. Iterative library design with an increasing 
bias favoring larger libraries was used to compile a thorough 
list of favorable case A.1 libraries. For each library, tabulated 
energy values for all 8000 possible case A sequences were used 
to compute the library <E> and the number of library mem-
bers with E < −105 REU.

 1. Pareto analysis helps identify interesting library candidates that 
are worth consideration given two or more competing quality 
metrics. For a given library size, libraries with lower <E> are pref-
erable. For a given <E>, libraries with larger size are preferable. 
Several illustrative example libraries are described in Table 2.

 2. In the absence of a high-throughput assay, a library that is 
highly enriched for stable sequences may be a superior option. 
In this scenario, a strong case A candidate library consists of 
the degenerate codons CTG:DVC:NNK (Table 2). These 
encode a Leu for residue 5, Ala/Cys/Asp/Gly/Asn/Ser/
Thr/Tyr for residue 30, and all 20 amino acids (and a stop 
codon) for residue 43. This library is a nice example of how the 
design approach can end up providing suggestions that are 
quite different from traditional saturation mutagenesis; only 
residue 43 gets full amino acid diversity while residue 30 gets a 
tailored amino acid palette and residue 5 is left as the wild-
type. This library has 1 × 8 × 20 = 160 sense outcomes and a 
total library size of 168. The library <E> is −106 REU, and 
136 of the sequences have E < -105 REU. The 24 less favorable 
(E > −105) variants include Cys 30 paired with (Lys, Arg, Ile, 
Gly, His, Cys, Asn, Asp, or Leu 43), Gly 30 paired with (His, 

3.5 Selection of Case 
A Libraries via Pareto 
Analysis

Fig. 7 High density of low <E>-prediction libraries for Case A.1. (a) Distribution of predicted <E> for the 3-site 
libraries with predicted <E> < −105 REU. (b) Discovery of libraries with predicted <E> -105 REU using parallel 
MonteCarloPacker trajectories
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Asn, Cys, Gly, Asp, or Leu 43), Thr 30 with Leu 43, and all 8 
variants with Pro 43.

 3. Rather than asking what fraction of a library is predicted to be 
low-energy, it may be helpful to turn the question around and 
ask what fraction of the low-energy sequence space the library 
captures. For case A, low-energy sequences could be identified 
exactly via enumeration. The CTG:DVC:NNK library captures 
only 18 % of the 761 case A sequences with instantiated 
E < −105 REU.

 4. To capture a larger share of the low-energy sequence space, be 
willing to test libraries with a larger risky sequence fraction. In 
this latter scenario, the Pareto analysis can still provide guidance. 
For example, the library encoded by VND:DND:NNK (Fig. 8a) 
is likely a better choice than the next library on the Pareto front 
(NNK:DHN:NNK), which only excludes Arg, Cys, Gln, Gly, 
His, Pro, and Trp30 from full saturation mutagenesis.

 5. A second illustrative example of a tailored library is 
TTA:THW:NDK (Fig. 8c). This library has a low <E> of −108, 
and all 68 of its sense outcomes are low-energy variants (Table 2). 
As with the other low-energy library described above, this one 
uses most of the “diversity budget” for residue 43, fixes residue 5 
as Leu, and uses a more tailored degenerate codon for residue 30.

The second Pareto analysis (Fig. 8b) identifies libraries with 
the largest predicted number of sub-threshold sequences (E < −105 
REU for case A.1) for a given library size. Full saturation muta-
genesis is required to capture all 761 of the low-energy sequences 
(Fig. 8b). A close inspection of the smaller libraries (Fig. 8d) shows 
that the fraction of the library that consists of low-energy sequences 
drops dramatically as the library size exceeds 256. The 
VND:TTC:VND library is an appealing option since 56 % of its 
members consist of low-energy sequences and there are no stop 
codons (Table 2).

Table 2 
Library size refers to all distinct outcomes including genes that include stop codons. Stop codons are 
encoded by DND, NNK, THW, and NDK

Degenerate 
codons <E>, REU

#E < −105 
REU # Sense

Library 
size Amino acid outcomes

CTG:DVC:NNK −106 136 160 168 Just L: ACDGNSTY : All 20

VND:DND:NNK −90.2 665 5440 6048 All but CFWY: All but QHP: All 20

NNK:NNK:NNK −70.9 761 8000 9261 All 20: All 20: All 20

TTA:THW:NDK −108 68 68 90 Just L: FLSY: All but APT

VND:TTC:VND −94.7 143 256 256 All but CFWY: F : All but CFWY
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 6. Note that the calculated <E> values for these libraries weight 
all constituent sequences equally, rather than reflecting the sta-
tistical likelihood of observing each sequence (see Note 5).

 1. The five-site library is intended to serve as a realistic model for 
the kind of library where degenerate codon optimization is 
valuable. Thorough sampling of five-site full saturation muta-
genesis libraries is beyond the reach of most experimental 
assays. Thus, codon tailoring is advisable prior to undertaking 
experimental construction and characterization of a library.

Several trends are consistent with the 3-site library (Table 1). 
The best rmsdLET (4.1 REU) was for case B.2 with plentiful rotam-
ers and optimized exponential weighting (τ = 50, Eq. 3). The 
choice of regularization penalty (k) was somewhat important when 
using smaller training data sets (Fig. 9c). The best case B.2 rmsdLET 
was obtained (Fig. 9d) when using a large training set (32,000 

3.6 Case B: 
The 5-site Core 
Redesign Library

Fig. 8 Case A.1 library selection Pareto analysis. All 450838 libraries sampled by the iterative bias scan are 
shown as orange dots. Pareto optimal libraries are black dots. (a) The Pareto front for those libraries that have 
a low <E> and a high library size. (b) The Pareto front for libraries with a high estimated no. of sequences with 
E < −105 REU and a low total library size (including nonsense members). (c) Small library close inspection of 
panel a. (d) Small library close inspection of panel b
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Fig. 9 Case B.1 and B.2 approximation performance. Training set combinations are partial transparent orange 
points while test set combinations are black points. (a) Case B.1 rmsdLET versus training set size and the regu-
larization parameter k. The best prediction was (b), when a random training set (32,000 combinations) was 
used to fit 3706 parameters with regularization (k = 0.1) resulting in training set recapitulation (rmsd = 5.95 
REU). Performance for favorable test set combinations was reasonable (rmsdLET = 5.0 REU) for the 15,984 
combinations within 100 REU of the minimum test set combination (−122.5 REU). The entire test set (18,000 
combinations) was predicted with rmsd = 7.5 REU (inset). (c) rmsdLET versus training set size and the regular-
ization parameter k for Case B.2 (weighted regression with a tuned τ = 50 REU). The best prediction was (d), 
when a random training set (32,000 combinations) was used to fit 3706 parameters with regularization 
(k = 1e − 07) resulting in training set recapitulation (rmsd = 7.36 REU). Performance for favorable test set com-
binations was reasonable (rmsdLET = 4.1 REU) for the 15,984 combinations within 100 REU of the minimum 
test set combination (−122.5 REU). The entire test set (18,000 combinations) was predicted with rmsd = 8.3 
REU (inset)
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random combinations) with minimal regularization parameter 
(k = 1E−7).

 2. Without the exponential weighting (case B.1), performance is 
still good but the regularization parameter (k) is more impor-
tant still (Fig. 9a). The lowest rmsdLET (5.0 REU, Fig. 9b) was 
obtained when using a large training set (32,000 random com-
binations) with a significant regularization parameter (k = 0.1).

 3. Pruning rotamers (cases B.3 and B.4) results in significant 
 performance degradation. Given minimal rotamers, the effect 
of exponential weighting was more dramatic. Without expo-
nential weighting (case B.3), rmsdLET was fairly high (14.4 
REU, Fig. 10a). However, with minimal rotamers and expo-
nential weighting (case B.4), rmsdLET was greatly improved 
(8.4 REU, Fig. 10b). This result highlights the potential utility 
of weighting.

 1. Case C has 16 design positions. Unlike cases A and B, these 
amino acids are on the protein surface which may significantly 
change the roughness of the design energy landscape (see Fig. 
3f versus d). Two specific scenarios are illustrated. In case C.1, 
the 16 surface sites are provided only with base Dunbrack rota-
mers for all 20 possible amino acids resulting in a combinato-
rial search problem of 1.8E35 sequence/structures. In case 
C.2, provision of standard rotamers increases the search size to 
6.5E45.

 2. Broadly speaking, the regression performance trends are simi-
lar to the trends from the smaller libraries. Case C.1 prediction 
performance suffers for overly large regularization parameter 
(Fig. 11a, k ≫ 10), but a modest penalty of ten yields the best 
prediction performance (rmsdLET = 9.9 REU). An eyecatching 
feature of the regression model training performance plot 
(Fig. 11a) is the large peak (poor prediction performance) 

3.7 Case C.1: 
A 16-Site Surface 
Library

Fig. 10 Benefits of weighted regression. (a) Case B.3 versus, (b) Case B.4. Using 
weighted regression (with an optimized parameter τ = 75) cut rmsdLET almost in 
half, from 14.4 REU (case B.3) to 8.4 REU (case B.4)
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when using a low regularization parameter (k < 0.01) and fairly 
large training sets (30,000–50,000 combinations). This appar-
ent overfitting pathology is present to varying degree in the 
previous cases (Figs. 4ac and 9ac). This phenomenon is inves-
tigated below in the Overfitting Trends section.

Fig. 11 Case C sequence and library approximation performance. (a) Test set rmsd versus training set size and 
the regularization parameter k. (b) A random training set (60,000 combinations) was used to fit 43,625 param-
eters with regularization (k = 10) resulting in training set recapitulation (rmsd = 10.46 REU). Performance for 
favorable test set combinations was reasonable (rmsdLET = 9.9 REU) for the 15,265 combinations within 100 
REU of the minimum test set combination (−107.9 REU). The entire test set (20,000 combinations) was pre-
dicted with rmsd = 16.1 REU (inset). (c) 1000 random degenerate codon libraries were selected. From each, 
either the full library or a sample of 400 sequences were optimized via sidechain repacking and scored. The 
estimated <E> values of the sample sequences were fairly well predicted. Error bars reflect σ〈E〉 (Eq. 4). The 
full range (inset) was predicted with rmsd = 5.5 REU, while the 257 libraries with predicted <E> within 30 REU 
of the minimum (−98.1) had rmsd = 3.6 REU. (d) Pareto analysis of libraries sampled via the iterative combi-
natorial optimization with an escalating large-library bias. See below for library descriptions
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 3. Pareto analysis (Fig. 10d) suggests that it is easy to find large 
case C libraries that are largely composed of low-energy mem-
bers (E < −105 REU). For example, the libraries that are 
marked LIB1, LIB2, and LIB3 all are predicted to have an 83 
% or greater low- energy fraction (Table 3). Notably, the pre-
dicted <E> for LIB1 is on par with the original wild-type 
sequence (-112 REU). LIB2 is slightly smaller (8.6E9 total 
variants) and has a higher low-energy fraction (88 %). To get a 
library that is predicted to fall entirely below the threshold, 
much smaller libraries are necessary (i.e. LIB3 with 8.96E6 
sequences). The predicted <E> is well below the original wild-
type sequence (-127 REU) thanks to accrued mutations that 
Rosetta assesses as stabilizing. Six sites are fixed while other 
sites have up to eight amino acids. The encoded amino acid 
sets for LIB3 are:

L:NT:G:R:GILRSV:DGHNRS:FSY:IKLMQR:FV:EGKMRV:F:CDGHNRSY
:H:DEGHKNQRS:S:EGIKLQRV

As the library size decreases further, it becomes easy to find 
libraries that are predicted to fall entirely below the −105 REU 
threshold. Almost all of the 288 sampled libraries with size below 
two million sequences fall into this category. In principle, to dif-
ferentiate between these candidates it could be helpful to intro-
duce another evaluation criterion such as <E>, or to assess the 
fraction of  constituent sequences that meets a more stringent sta-
bility threshold (e.g. E < −120 REU).

 1. The largest combinatorial problem for this chapter is case C.2 
(Table 1). As above, the additional rotamers make a significant 
improvement in performance (Fig. 12). It may be surprising to 
note that the rmsdLET is lower (4.8 REU) than the comparable 
calculation for case B (rmsdLET = 5.0). This can be rationalized 
by noting that the design positions for case C are all surface-
exposed sites, where it is easier for amino acid combinations to 
avoid clashes (given sufficient rotamer flexibility). Thus, there 
are fewer legitimate higher-order frustration effects encoun-
tered in this scoring landscape (Fig. 3), and it is possible to 
obtain a high accuracy fit.

Presumably, this fit could be further improved using weighting 
or perhaps the introduction of 3-body terms. However, the cur-
rent level of accuracy seems quite sufficient to assist with the design 
of degenerate codon libraries (Fig. 12c). The rmsd between regres-
sion model <E> predictions and directly sampled <E> estimates 
was only 4.1 (or 1.7) REU for all (or <E> < −76 REU) libraries. 
When chasing high precision, it is important to recall that the 
underlying scoring function is itself a fairly crude approximation of 
the biophysical effects in play.

3.8 Case C.2: 
With Additional 
Rotamers
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 2. As above, use iterative bias sampling to collect optimized librar-
ies of varying size and proceed with Pareto analysis. Illustrative 
Pareto analysis of 755,912 candidate case C.2 libraries (Fig. 
12d) suggests that it is even easier to find large case C.2 libraries 
that are highly enriched for low-energy members (Table 3). 

Fig. 12 Case C.2 sequence and library approximation performance. (a) Test set rmsd versus training set size 
and the regularization parameter k. (b) A random training set (60,000 combinations) was used to fit 43,625 
parameters with regularization (k = 1) resulting in training set recapitulation (rmsd = 1.7 REU). The test set 
(20,000 combinations) was predicted with rmsd = 6.6 REU. Performance for favorable combinations was rea-
sonable (rmsdLET = 4.8 REU) for the 16,996 test set combinations within 100 REU of the minimum test set 
combination (−117 REU). (c) 1000 random degenerate codon libraries were selected. From each, either the 
full library or a sample of 400 sequences were optimized via sidechain repacking and scored. The estimated 
<E> values of the sample sequences were fairly well predicted (rmsd = 4.1 REU over the full range, inset). 
Error bars reflect σ〈E〉 (Eq. 4). Performance for the 457 libraries with predicted <E> within 30 REU of the mini-
mum (−106.5 REU) was better still (rmsd = 1.7 REU). (d) Pareto analysis of libraries sampled via the iterative 
combinatorial optimization with an escalating large-library bias. See below for LIB descriptions
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This is not surprising since the additional rotamers result in 
more highly optimized structures with lower Rosetta scores. 
LIB6 is the largest library that is predicted to have 100 % low-
energy constituents. The encoded amino acid sets for LIB6 are:

FLV:R:V:R:DEHKNQ:AILMSTV:ADEIKMNTV:KNRS:IKNT:KN:ADEIKM
NTV:NT:R:AGIRSTV:EGKMRV:GILRSV

These libraries compare favorably to a brute force saturation 
mutagenesis approach. For one, library size can be matched to the 
available transformation and screening capacity whereas the size of 
the NNK library exceeds feasible screening size. Also, the NNK 
library has a high <E> (−59 REU) and a large fraction of the con-
stituent sequences are unfavorable (85 % have E > −105 REU).

 1. The purpose of this section is to investigate the counterintui-
tive overfitting behavior noted above. Inferior prediction per-
formance for models derived from larger training sets occurred 
repeatably for varying input training sets and using either the 
lsmr or cvxopt regression tools. This effect was most promi-
nent for three regression model variants (cases A.2, B.3, and 
C.1) with negligible regularization (k = 1E−7) (Fig. 13a). The 
effect was  largest for case C.1. Therefore, to illustrate the fit-
ting pathology two regression models can be compared: the fit 
for case C.1 with training sets of 24,000 (Fig. 13b) versus 
45,000 (Fig. 13c).

3.9 Overfitting 
Trends

Fig. 13 Overtraining. (a) Apparent overfitting with “free” regression (regularization k = 1E−7) was prominent for 
training case A.2 with ~1000 combinations (black), case B.2 with ~4000 combinations (orange), and case C.1 
with ~45,000 combinations (green). Error bars reflect the standard deviation among 5 random training set 
replicates. We use case C.1 to further illustrate the degradation of prediction performance: (b) Prediction per-
formance (black) is reasonable (rmsdLET = 13.9 REU) when trained with 24,000 random combinations. The 
training set (orange) is recapitulated exactly (rmsd = 0.0). (c) Prediction performance (black) is degraded (rms-
dLET = 21.2 REU) when trained with 45,000 random combinations. The training set (orange) is still recapitulated 
nearly exactly (rmsd = 1.4 REU)
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 2. First, a random training set (24,000 combinations) is used to fit 
43,625 parameters with regularization (k = 1e−07). Given the 
over-abundance of fitting parameters, it was not surprising that 
the training set was recapitulated exactly (rmsd = 0.00, orange 
dots). In contrast, the entire test set was predicted with 
rmsd = 20.7 REU (Fig. 13b). The 42,745 test set combinations 
within 100 REU of the minimum test set combination (−107.9 
REU) could be predicted with rmsdLET = 13.9 REU (Fig. 13b).

 3. For comparison, a larger random training set (45,000 combi-
nations) was used to fit 43,625 parameters with regularization 
(k = 1e−07) resulting in near exact training set recapitulation 
(rmsd = 1.4 REU, orange dots). In contrast, the entire test set 
was predicted with rmsd = 42.4 REU (Fig. 13c). The 26,756 
test set combinations within 100 REU of the minimum test set 
combination (-107.8 REU) were only predicted with rmsd-
LET = 21.2 REU.

 1. Scenarios with fewer rotamers (e.g. cases A.2, B.3, and C.1) 
have a greater tendency to experience overfitting.

 2. Overfitting can be suppressed by regularization (e.g. Fig. 11a)
 3. The best regularization parameter seems to grow with the 

problem size (k = 0.01, 1, and 10 for cases A.2, B.3, and C.1).
 4. Prediction performance is most degraded when the fit has a 

certain number of training examples: ~1000 for A.2, ~4000 
for B.3, and ~45,000 for C.1 (Fig. 13a). These numbers are 
similar to the number of fitting parameters: respectively 1141, 
3706, and 43,625.

 5. Despite training the case C.1 model with 45,000 combina-
tions, the training set combinations (orange points) are still 
clearly being overfit (compare to Fig. 11)

 6. Given these observations, it may be that having a small number 
of training instances (relative to the number of fit parameters) 
serves to restrain the magnitude of the fit parameters, much as 
the regularization process penalizes large fit parameter magni-
tude. When the number of training instances is comparable to 
the number of parameters, fit parameters are more likely to 
adopt large magnitude values to fit the training set data. 
Meanwhile, minimal rotamer cases make the energy landscape 
rougher (compare Fig. 3bdf to Fig. 3acd). The rougher train-
ing set energy landscape will also result in more extreme fit 
parameters that degrade the testset prediction performance. 
The effectiveness of regularization, which attempts to keep 
parameters near 0, supports the idea that the fitting pathology 
is tied to the magnitude of the fitting terms.

To investigate, examine the fit parameters for the two case C1 
regression models (Fig. 13bc). The superior model trained with 

3.10 Recap 
the Pertinent 
Observations
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24,000 sequences has a sum of absolute parameter values of 
60,831, while the inferior model trained with 45,000 combina-
tions has a sum of absolute parameter values of 301,104.

 7. The dramatic fivefold shift in the magnitude of the fit parameters 
also appears in histograms of the fitting parameter values (Fig. 
14). There is some qualitative consistency between the two mod-
els. For example, the most unfavorable term for both models is 
the 1-body effect of T51P (unsurprising since T51 is within a 
beta strand), and the most favorable term is the 2-body effect of 
I6G:T53Y which can be rationalized as a bump/hole interaction 
between these adjacent residues on the beta sheet surface. 
However, it is important to note that the actual values of the 
coefficients are not stable; attempts to glean additional insight 
from inspection of the fit coefficients may be problematic.

One take home lesson is that regression model performance can 
be difficult to anticipate (and may be strongly dependent on regu-
larization) unless the training set size significantly exceeds the num-
ber of fitting parameters. Any scientist preparing a regression model 
of this type should carefully scan the training set size and regulariza-
tion parameter to ensure optimal model quality (see Note 6).

The three design problems discussed here can be framed as con-
ventional CPD calculations. Searching the sequence-structure 
space directly, optimal solutions can be found using either CPLEX 
or FasterPacker (see above). However, the 725 possible mixtures of 
amino acids possible at each site dwarfs the 20 possible amino 
acids. Sampling in library space, therefore, is significantly more 
challenging. With the exception of case A, it is impractical to tabu-
late the instantiated energy of all the sequences encoded by each 
library. A brute force search instantiating all sequence combina-
tions (assuming generous rotamers) requires only 38 seconds for 
case A.1 to a projected 8E11 years for case C.2.

3.11 Computational 
Time

Fig. 14 Comparison of Case C.1 fit coefficients. (a) The superior model was 
trained with 24,000 sequences (see also Fig. 13b) and had parameters of lesser 
magnitude, while (b) the inferior model was trained with 45,000 combinations 
(see also Fig. 13c) and had fit parameters of greater magnitude
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Table 4
This Table summarizes the Python scripts used for the calculations. Time represents the elapsed wall 
clock time in seconds necessary to complete the calculations on a single CPU

Time (s) Script name Script purpose

3 A_prep.py Process the input PDB model and save as a 
CHOMP System

219 B_fill_energy_graph.py Setup the design problem, fill, and save the 
EnergyGraph

10 C_pick_initial_set.py Select a set of combinations to serve as an initial 
pool

3077 D_score_initial_set_multi.py Instantiate: run repacking calculations on the 
initial pool

5 E_split_to_training_samples.py Randomly divide the initial pool into training and 
test sets

nd F_try_regression.py Do a quick regression test to ensure things are 
working so far

2190 G_scan_training_params.py Repeatedly run regression varying the training set 
size and regularization parameter

nd H_gen_figure_trainsize_vs_
ridgeparam_vs_testrmsd.py

Illustrate test set performance versus training 
parameters

nd I_gen_fig_example_train_test.py Illustrate the training set and test set fit for the best 
case parameters

1978 M_score_dgen_codon_sets.py Convert the amino acid level regression model to 
a degenerate codon level model

13,563 N_sample_random_libraries.py Randomly select a set of random degenerate 
codon libraries and perform the requisite 
instantiation (repacking)

nd O_lib_predictE_vs_actualE.py Illustrate the correlation between predicted and 
actual (sampled) <E> for each library

1490 P_iterlib_sample.py Collect libraries by 100 rounds of combinatorial 
optimization for low <E> with an escalating bias 
favoring larger libraries.

22,918 Q_calc_pareto_stats.py First lookup or predict the energy for a sequence 
sample from each candidate library. Then 
calculate <E> and the expected number of 
variants with E < a threshold. Finally, use a 
divide and conquer approach to compute the 
two Pareto fronts of interest.

nd R_plot_pareto_ok.py Plot the Pareto front (black) and other libraries 
(orange)
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In comparison, the aggregate calculation time for the steps 
described above is attractive. All reported calculations could be 
performed on a single 2.8 GHz Intel Core i7 machine over several 
days (see Table 4 for case C.2 calculation time table). Most of the 
time- consuming calculations were parallelized across 8 threads 
using the Python multiprocessing module. Distributing bottleneck 
calculations beyond the cores of a single CPU could easily further 
reduce wall time.

One easy way to limit the CPU time while retaining the power 
of the library-space optimization approach would be to prune the 
set of degenerate codons considered at each design site. One prag-
matic approach might be to design a limited number of amino acid 
sets, guided by biophysical intuition (e.g. hydrophobic, large 
hydrophobic, small, large, charged, aromatic, etc.). Selecting sev-
eral hundreds of these useful amino acid sets would make the 
library design code more efficient than the current search over 725 
possibilities. Similarly, with repeated use of the current 725-mem-
ber design palette, it may be possible to identify which degenerate 
codons are rarely useful and eliminate them from consideration.

4 Notes

 1. The presented methods are flexible, and amenable for modifi-
cation. One such modification that might be particularly desir-
able would be to enable optimization of amino acid bias. At 
the outset, the degenerate codon search space was defined to 
be the 725 degenerate codons that produce unique sense mix-
tures of amino acids. It is worthwhile to note, however, that 
the formalism presented here would also work if the design 
palette consists of the 1439 degenerate codons that produce 
unique sense ratios of amino acids. If outcome amino acid 
probabilities are included when creating the degenerate codon 
energy model (Eqs. 5 and 6), the resulting optimization target 
<E> will reflect the expectation REU score for clones pulled at 
random from the experimental library. This additional level of 
design could prove useful. Optimizing amino acid frequencies 
could further increase library fitness by decreasing <E>. For 
example, given a particular site that favors leucine over phenyl-
alanine, combinatorial library optimization might select a 
degenerate codon like YTD that encodes a 5:1 ratio of Leu to 
Phe rather than TTB that encodes a 1:2 ratio of Leu to Phe.

 2. The illustrative examples presented in this chapter provide 
another example of regression-based approximations success-
fully capturing more expensive calculations with sufficient 
accuracy to guide an otherwise infeasible search problem. By 
“integrating out” the structure variables, and providing an 
essentially instantaneous lookup of the predicted energy for 
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any given sequence, it becomes feasible to execute a combina-
torial search directly in “library space.” This approach was 
recently reported in the context of cluster expansion [14]. 
Readers of this chapter who are preparing to design a codon 
library are therefore encouraged to review Verma et al.

 3. In principle, a penalty could also be levied for stop codons by 
giving stop codon outcomes a large 1-body energy term. The 
goal would be to ensure that non-sense outcomes have large 
unfavorable scores commensurate with other likely unfolded 
sequences.

 4. It is worth noting that there are certain technical challenges to 
performing library-space optimization for case C. With 725 
possible degenerate codons and 16 design sites, the library 
search space has 72516 combinations, or 5.8E45. Building a 
graph of the codon:codon scores (Fig. 1) required 30 minutes. 
Storing the graph in binary form on disk requires nearly a 
gigabyte.

 5. In practice, some sequences will be more frequent than others. 
For example, the MKD degenerate codon yields an arginine 5 
times more frequently than a serine. If desired, it would be easy 
to instead calculate the expectation value <E> for sequences 
drawn from the library with the actual amino acid frequency 
weights (Eqs. 5 and 6) rather than assuming equal representa-
tion. The former approach may be preferable if the planned 
approach is to build a large experimental library and character-
ize only a random subset thereof.

 6. Additional caution and careful regularization parameter tuning 
is recommended if pursuing high-accuracy regression models 
including 3-body terms, since the high number of possible 
3-body terms may make it difficult to prepare models with a 
large excess of training data.
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    Chapter 8   

 Combined and Iterative Use of Computational Design 
and Directed Evolution for Protein–Ligand Binding Design                     

     Meng     Wang     and     Huimin     Zhao      

  Abstract 

   The advantages of computational design and directed evolution are complementary, and only through 
combined and iterative use of both approaches, a daunting task such as protein–ligand interaction design, 
can be achieved effi ciently. Here, we describe a systematic strategy to combine structure-guided computa-
tional design, iterative site saturation mutagenesis, and yeast two-hybrid system (Y2H)-based phenotypic 
screening to engineer novel and orthogonal interactions between synthetic ligands and human estrogen 
receptor α (hERα) for the development of novel gene switches.  

  Key words     Computational design  ,   Directed evolution  ,   Protein–ligand interaction  ,   Gene switch  

1      Introduction 

  Protein–ligand interaction is a universal and  key   aspect of all bio-
logical processes ranging from feedback regulation of  enzyme 
   catalysis   in metabolic pathways to ligand-mediated signal transmis-
sion [ 1 ]. In addition, protein–ligand interaction is the basic mode 
of action of many pharmaceutical compounds, which has been 
heavily explored by both academia and pharmaceutical industry. 
Therefore, the ability to  engineer   protein–ligand interactions on 
demand is a long- sought goal. 

 There are two main strategies widely used to reach that goal, 
including (1) alteration of the ligand specifi city of naturally  occur-
ring   protein–ligand interactions and (2) de novo computational 
design of proteins to bind desired ligands. In the fi rst strategy, 
directed evolution is one of the most powerful tools that enable 
the creation and fi ne-tuning of  novel   protein–ligand interactions 
that are orthogonal to the native protein–ligand pairs. However, 
due to the vast search space and limited throughput of a screening 
method, directed evolution by only using a  random   mutagenesis 
library has its limitations. In the past decade, with increased avail-
ability of crystal structures of the native protein–ligand complexes 
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[ 2 ] and rapid development  of   computer programs that can analyze, 
predict, and simulate protein–ligand interactions [ 3 ,  4 ], the advan-
tages of computational design and directed evolution were com-
bined in an iterative fashion to signifi cantly improve the success 
rate of the engineering of  desired   protein–ligand interactions. For 
example, Arnold and coworkers used a structure-guided directed 
evolution strategy to engineer a P450 enzyme to selectively bind 
dopamine and serotonin, which could be used as magnetic reso-
nance imaging sensors [ 5 ,  6 ]. Ligand-dependent bacterial regula-
tory proteins are another category that a combined computational 
design and directed evolution strategy has been successfully used 
to alter the native protein–ligand interactions to suit the research-
er’s demand [ 7 – 9 ]. For instance, the Ara-C regulatory protein of 
the  Escherichia coli ara  operon was engineered to recognize 
 d -arabinose instead of the native ligand  l -arabinose [ 10 ], and XylS 
from the TOL pathway of  Pseudomonas putida  mt2 was evolved to 
increase the induction level toward benzoate ligands [ 11 ]. In addi-
tion, structure-guided directed evolution was also applied to 
improve  the    binding   affi nity of glucose and a glucose/galactose-
binding protein for the development of a glucose biosensor [ 12 , 
 13 ]. To take the full advantage of computational design, several 
brilliant strategies have been developed to create and screen a 
focused smart library in directed evolution. In particular,  iterative 
   saturation   mutagenesis is a widely used strategy to improve the 
effi ciency of directed evolution. Based on this strategy, Reetz and 
coworkers developed the combinatorial active-site saturation test 
(CAST) method  to   improve enzyme catalytic properties including 
substrate specifi city, regioselectivity, and stereoselectivity [ 14 ] and 
the B-factor iterative test (B-FIT) method to improve protein ther-
mal stability [ 15 ]. We also adopted a similar strategy to engineer 
novel and orthogonal interactions between synthetic ligands and 
human  estrogen   receptor α (hERα) for the development of novel 
gene switches [ 16 ]. 

 On the other hand, de novo computational design of proteins 
that bind to desired ligands has become possible in the recent years 
[ 3 ,  4 ]. Tinberg and coworkers developed a robust computation 
method to create a  steroid   digoxigenin (DIG)-binding protein 
[ 17 ]. However, existing computational design tools are far from 
perfection. In most of such endeavors, directed evolution is still a 
powerful and indispensable tool to improve the performance of 
proteins generated by computational design [ 18 ,  19 ]. The desired 
goal can often be reached only through iterative cycles of compu-
tational design and directed evolution. 

 Here we use structure-guided directed evolution of a specifi c 
hERα–ligand pair as an example to illustrate the experimental pro-
cedures [ 16 ]. We provide a systematic strategy to  engineer   recep-
tor proteins with signifi cantly altered selectivity toward a target 
synthetic  ligand   4,4′-dihydroxybenzil (DHB). Structure-based 
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 computational design was fi rst employed for the identifi cation of 
potential ligand-contacting residues (Fig.  1 ). Of the 21 identifi ed 
residues, 14 were subjected to iterative  site    saturation   mutagenesis, 
accompanied by yeast two-hybrid system (Y2H)-based phenotypic 
screening for variants with enhanced target ligand selectivity. 
Finally, a random point mutagenesis library coupled with pheno-
typic screening was performed to further improve the target ligand 
selectivity. The resulting gene switches were further evaluated in 
 Saccharomyces cerevisiae  and human endometrial cancer (HEC-1) 
cells. This same strategy was successfully used to create orthogonal 
receptor–ligand pairs in a single protein scaffold [ 20 ].

2       Materials 

       1.    Molecular Operating Environment (MOE) (Chemical 
Computing Group, Montreal).      

  
     1.    10× PCR reaction buffer.   
   2.    25 mM MgCl 2 .   
   3.    10 mM dNTP mix.   
   4.     Taq  DNA polymerase.   
   5.     PfuTurbo  DNA polymerase.   
   6.    PTC-200 thermocycler.   
   7.    Concentrated (50×) stock solution of TAE buffer: Weigh 242 

g of Tris base (MW = 121.14), and dissolve it in approximately 
750 mL of ddH 2 O. Carefully add 57.1 mL of glacial acetic acid 
and 100 mL of 0.5 M EDTA, and adjust the solution to a fi nal 

2.1  Molecular 
Modeling

2.2  Library Creation 
by Single- Site 
   Saturation 
  Mutagenesis

  Fig. 1    Two-dimensional depiction of DHB and its surrounding residues when 
docked into the hERα ligand-binding pocket. Twenty-one residues were identi-
fi ed to be within 4.6 Å of DHB. The A ring and D ring analogues of DHB are indi-
cated.  Dashed lines  denote hydrogen bonds       
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volume of 1 L. This stock solution can be stored at room tem-
perature. The pH of this buffer is not adjusted and should be 
about 8.5.   

   8.    Working solution (1×) TAE buffer: Dilute the stock solution 
by 50-fold with ddH 2 O. Final solute concentrations are 40 
mM Tris–acetate and 1 mM EDTA.   

   9.    1 % agarose gel in 1× TAE buffer: Add 1 g of agarose into 100 
mL of 1× TAE buffer, and microwave until agarose is com-
pletely melted. Cool the solution to approximately 70–80 
°C. Add 5 μL of ethidium bromide into the solution, and mix 
well. Pour 25–30 mL of solution onto an agarose gel rack with 
a 2-well comb.   

   10.    DNA gel purifi cation kit.   
   11.     Dpn I restriction enzyme.   
   12.    10× CutSmart buffer.      

       1.    10× mutagenic buffer: Add 0.0569 g of MgCl 2 , 1.491 g of 
KCl, 0.0485 g of Tris–HCl and 0.040 g of gelatin into 40 mL 
of ddH 2 O. Adjust pH to 8.3 with 8 M HCl. Store at −20 °C 
( see   Note 1 ).   

   2.    5 mM MnCl 2 : First make 250 mM MnCl 2  by dissolving 0.0495 
g of MnCl 2  in 1 mL of ddH 2 O. Then dilute 30 μL of 250 mM 
MnCl 2  solution into 1470 μl of ddH 2 O to make 5 mM MnCl 2 .   

   3.    100 mM dCTP, 100 mM dTTP, 100 mM dATP, 100 mM 
dGTP.   

   4.    10× EPdNTP: Add 50 μL of dCTP, 50 μl of dTTP, 10 μL of 
dATP, and 10 μL of dGTP into 380 μL of ddH 2 O.      

       1.     S. cerevisiae  YRG2 (MATα  ura3 - 52 his3 - 200 ade2 - 101 lys2 - 801 
trp1 - 901 leu2 - 3 112 gal4 - 542 gal80 - 538  LYS2::UASGAL1- 
TATAGAL1- HIS3 URA3::UASGAL4 17 mers(×3)-TATA
CYC1-lacZ).   

   2.    YPAD medium: Dissolve 6 g of yeast extract, 12 g of peptone, 
12 g of dextrose, and 60 mg of adenine hemisulfate in 600 mL 
of ddH 2 O. Autoclave at 121 °C for 15 min.   

   3.    Synthetic complete dropout medium lacking tryptophan (SC- 
Trp): Dissolve 3 g of ammonium sulfate, 1 g of yeast nitrogen 
source without ammonium sulfate and amino acids, 1.14 g of 
synthetic complete (SC) dropout media minus tryptophan, 
26 mg of adenine hemisulfate, and 12 g of dextrose in 600 mL 
of ddH 2 O, and adjust the pH to 5.6 by NaOH. Autoclave at 
121 °C for 15 min.   

   4.    SC-Trp-agar: SC-Trp medium and 20 g/L of agar.   

2.3  Library Creation 
by  Random 
  Mutagenesis

2.4  Yeast 
Transformation

Meng Wang and Huimin Zhao



143

   5.    1 M lithium acetate: Dissolve 5.1 g of lithium acetate dihydrate 
in 50 mL of ddH 2 O and fi lter-sterilize the solution.   

   6.    Lithium acetate (0.1 M LiAc): Add 5 mL of 1 M LiAc into 45 
mL of ddH 2 O.   

   7.    50 % w/v PEG MW 3350: Add 25 g of PEG 3350 to about 15 
mL of ddH 2 O in a 100 mL beaker. Stir until it dissolves. Make 
up the volume to 50 mL and mix thoroughly. Filter-sterilize 
the solution ( see   Note 2 ).   

   8.    2 mg/mL single-stranded carrier DNA: Dissolve 200 mg of 
salmon sperm DNA in 100 mL of sterile TE (10 mM Tris–
HCl, 1 mM Na 2 EDTA, pH 8.0) using a magnetic stir plate at 
4 °C. Aliquot 1 mL into 1.5 mL Eppendorf tubes and store at 
−20 °C. Denature the carrier DNA in a boiling water bath for 
5 min, and chill immediately in an ice/water bath before use.   

   9.    pGAD424-SRC1 plasmid [ 21 ].      

       1.    pBD-Gal4-Cam plasmid.   
   2.     EcoR I and  Sal I restriction enzymes.   
   3.     S. cerevisiae  YRG2 strain carrying pGAD424-SRC1 plasmid 

(Subheading  3.4 ).   
   4.    Synthetic complete dropout medium lacking leucine and tryp-

tophan (SC-Leu-Trp): Dissolve 3 g of ammonium sulfate, 1 g 
of yeast nitrogen source without ammonium sulfate and amino 
acids, 1.06 g of synthetic complete (SC) dropout media minus 
leucine and tryptophan, 26 mg of adenine hemisulfate, and 12 
g of dextrose in 600 mL of ddH 2 O, and adjust the pH to 5.6 
by NaOH. Autoclave at 121 °C for 15 min.   

   5.    SC-Leu-Trp agar plate: SC-Leu-Trp medium and 20 g/L of 
agar.   

   6.       4,4′-Dihydroxybenzil (DHB): Synthesized as described in 
Ref.  22 .   

   7.    Synthetic complete dropout medium lacking histidine, leucine, 
and tryptophan (SC-His-Leu-Trp): Dissolve 3 g of ammonium 
sulfate, 1 g of yeast nitrogen source without ammonium sul-
fate and amino acids, 0.996 g of synthetic complete (SC) drop-
out media minus histidine, leucine, and tryptophan, 26 mg of 
adenine hemisulfate, and 12 g of dextrose in 600 mL of 
ddH 2 O, and adjust the pH to 5.6 by NaOH. Autoclave at 121 
°C for 15 min.   

   8.    SC-His-Leu-Trp agar plate containing appropriately concen-
trated target ligand (DHB).      

       1.    Round-bottom 96-well plates.   
   2.    Sterile fl at-bottom 96-well microtiter plates.   

2.5  Library Cloning 
and Transformation

2.6  Y2H System- 
Based Screening
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   3.    17β-Estradiol (E 2 ).   
   4.    1000× 17β-estradiol (E 2 ): Dissolve appropriate amount of E 2  

in ethanol to make 1000× stock solution.      

       1.    20× ligand stock solution.   
   2.    SpectraMax 340PC plate reader.      

       1.    pCMV5-ERα plasmid [ 23 ].   
   2.     Hind III,  Kpn I, and  BamH I restriction enzymes.   
   3.    10× T4 ligation buffer and T4 DNA ligase.   
   4.    Chemically competent  E. coli  DH5α.   
   5.    LB medium: Add 20 g of LB broth into 1 L of ddH 2 O. Autoclave 

at 121 °C for 15 min.   
   6.    Ampicillin stock solution: Dissolve 1 g of ampicillin powder in 

10 mL of ddH 2 O and fi lter-sterilize the solution.   
   7.    LB-Amp +  medium: LB medium plus 100 μg/mL ampicillin.   
   8.    LB-Amp +  agar plates: LB-Amp +  medium and 20 g/L agar.   
   9.    QIAprep Miniprep Kit.   
   10.    14 mL round-bottom tube.      

       1.    HBSS:   Hanks’ balanced salt     solution.   
   2.    Pre-/post-transfection medium: Add 5 % (v/v) charcoal 

dextran- treated calf serum into phenol red-free improved min-
imum essential medium (MEM).   

   3.    Transfection media: Serum-free improved MEM medium.   
   4.    24-well plates.   
   5.    Transfection solution A (each well): Mix 5 μL of lipofectin, 16 

μL of transferrin, and 54 μL of HBSS.   
   6.    Transfection solution B (each well): 0.5 μg of pCMV β-gal, 1 

μg of 2ERE-pS2-Luc, 100 ng of ER expression vector, add 
HBSS up to 150 μL.   

   7.    1000× ligand stock solution.   
   8.    PBS.   
   9.    5× reporter lysis buffer.   
   10.    Opaque 96-well plate.   
   11.    1 M K 2 HPO 4  stock solution: Dissolve 87.09 g of K 2 HPO 4  into 

0.5 L of ddH 2 O.   
   12.    1 M KH 2 PO 4  stock solution: Dissolve 68.045 g of KH 2 PO 4  

into 0.5 L of ddH 2 O.   

2.7  Ligand Dose- 
Response Assay 
(Yeast Transactivation 
Profi les)

2.8  Subcloning 
of Evolved hERα LBDs

2.9  Mammalian 
Transfection 
and Luciferase Assays 
(Mammalian Cell 
Transactivation 
Profi les)
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   13.    0.1 M potassium phosphate buffer, pH = 7.0: Mix 61.5 mL of 
1 M K 2 HPO 4  stock solution with 38.5 mL of 1 M KH 2 PO 4  
stock solution, and add ddH 2 O up to 1 L.   

   14.    4 mg/mL ONPG ( o -nitrophenyl-β- d -galactopyranoside) sub-
strate. Dissolve 80 mg of ONPG into 20 mL of 0.1 M potas-
sium phosphate buffer, pH = 7.0.   

   15.    1 M sodium carbonate: Dissolve 105.99 g of sodium carbon-
ate in 1 L of ddH 2 O.   

   16.    Luciferase Assay Reagent.   
   17.    LJL Biosciences Analyst HT plate reader.   
   18.    CO 2 -containing incubator.       

3    Methods 

       1.    Load the hERα-diethylstilbestrol (DES) structure (PDB ID 
code: 3ERD) into Molecular Operating Environment (MOE) 
(Chemical Computing Group, Montreal).   

   2.    Apply the force fi eld MMFF94s [ 24 ], then add hydrogen 
atoms, and assign partial charges to all atoms. The structure is 
subsequently energy-minimized by using a sequential combi-
nation of steepest descent, conjugate gradient, and truncated 
Newton algorithms.   

   3.    Draw a docking box with a grid consisting of 47 × 30 × 27 
points around the DES ligand to specify the boundaries for the 
movement of the ligand to be docked. In this orientation, the 
box includes the entire DES ligand and a few atoms of the 
interacting residues. Delete the DES ligand subsequently from 
the structure, and dock  the   4,4′-dihydroxybenzil (DHB) 
ligand (which has been assigned partial charges and minimized 
by using the MMFF94s force fi eld) into the docking box by 
using a simulated annealing algorithm [ 25 ] with the following 
parameters: initial temperature 12,000 K, 25 runs involving six 
cycles per run, and 20,000 iterations per cycle.   

   4.    Compare the fi ve structures with the best docking score (low-
est overall energy) from these docking runs, and ensure them 
within a root-mean-square deviation (rmsd) of 0.5 Å from 
each other. The lowest energy of these fi ve is then subjected to 
energy minimization as described earlier, to determine the 
most  favorable   conformation and orientation  of   DHB in the 
ligand-binding pocket. Residues within 4.6 Å of the docked 
DHB are considered to be in contact with the ligand for pur-
poses  of   receptor engineering.   

   5.    To gauge the individual role played by the A350M and M388Q 
mutations, make the appropriate amino acid substitutions to 

3.1  Molecular 
Modeling
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the docked DHB-hERα structure, and energy-minimize the 
resulting structure.   

   6.    Superimpose the energy-minimized E 2 -hERα crystal structure 
(PDB ID code: 1GWR) on the docked and energy-minimized 
DHB- hERα structure by using the align function in MOE.      

         1.    PCR-amplify the 5′ portion and 3′ portion of the hERα ligand- 
 binding   domain (LBD) gene containing the NNS substitution 
at the codon of interest. Four primers are involved in the 
library  creation. The two primers fl anking the hERα-LBD are 
CamL-ERα, 5′-CGACATCATCATCGGAAGAG-3′, and 
CamR-ERα, 5′-GCTTGGCTGCAGTAATACGA- 3′. Two 
exactly complementary degenerate primers incorporate the 
residue to be mutated (one primer for generating the sense 
strand and the other for generating the antisense strand). The 
two degenerate primers incorporating the randomized amino 
acids substitute the codon corresponding to the target residue 
with the sequence NNS ( see   Note 3 ) and contain 9–10 addi-
tional bases on either side (5′ and 3′). Standard PCR reaction: 
5 μL of 10× PCR reaction buffer, 3 μL of 25 mM MgCl 2 , 1 μL 
of 10 mM dNTP mix, 25 pmol forward primer, 25 pmol 
reverse primer, 5 ng of template plasmid, 0.6 U of  Taq  DNA 
polymerase, and 0.6 U of  PfuTurbo  DNA polymerase. Adjust 
the volume to 50 μL with ddH 2 O.   

   2.    PCR condition: Fully denature at 94 °C for 30 s, followed by 
25 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 
1 min, with a fi nal extension at 72 °C for 10 min.   

   3.    Load the 50 μL of PCR products onto 1 % agarose gels and 
perform electrophoresis at 120 V for 20 min.   

   4.    Gel-purify PCR products.   
   5.     Dpn I digestion to remove any residual methylated template: 

5 μL of 10× CutSmart buffer, 1 μg of PCR product, 1 μl of 
 Dpn I, add ddH 2 O to 20 μL, incubate at 37 °C overnight.   

   6.    Gel-purify digestion products.   
   7.    Use overlap extension PCR [ 26 ] to combine the 5′ portion 

and 3′ portion of the hERα LBD gene containing the NNS 
substitution at the codon of interest to generate the full-length 
gene. PCR reaction: 5 μL of 10× PCR reaction buffer, 3 μL of 
25 mM MgCl 2 , 1 μL of 10 mM dNTP mix, 100 ng of 5′ por-
tion PCR product, 100 ng of 3′ portion PCR product, 0.6 U 
of  Taq  DNA polymerase, and 0.6 U of  PfuTurbo  DNA poly-
merase. Adjust the volume to 50 μL with ddH 2 O.   

   8.    Overlap extension PCR condition: Fully denature at 94 °C for 
30 s, followed by ten cycles of 94 °C for 1 min, 55 °C for 1 
min, and 72 °C for 3 min, with a fi nal extension at 72 °C for 
10 min.   

3.2  Library Creation 
by Single-Site 
Saturation 
Mutagenesis
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   9.    PCR-amplify the mutagenized full-length hERα LBD. Primers 
used: CamL-ERα and CamR-ERα. Standard PCR reaction: 
5 μL of 10× PCR reaction buffer, 3 μL of 25 mM MgCl 2 , 1 μL 
of 10 mM dNTP mix, 25 pmol forward primer, 25 pmol 
reverse primer, 5 μL of overlap extension PCR products from 
 step 8 , 0.6 U of  Taq  DNA polymerase, and 0.6 U of  PfuTurbo  
DNA polymerase. Adjust the volume to 50 μL with ddH 2 O.   

   10.    PCR condition: Fully denature at 94 °C for 30 s, followed by 
25 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 
1 min, with a fi nal extension at 72 °C for 10 min.   

   11.    Gel-purify PCR products.      

       1.    Generate randomly mutagenized hERα LBD genes using 
error- prone PCR. Primers used: CamL-ERα and CamR-ERα. 
PCR reaction: 10 μL of 10× mutagenic buffer, 3 μL of MnCl 2  
( see   Note 4 ), 20 ng of template plasmid, 5 U of  Taq DNA  
polymerase, 10 μL of 10× EPdNTP, 25 pmol forward primer, 
and 25 pmol reverse primer. Adjust the volume to 100 μL with 
ddH 2 O.   

   2.    PCR condition: Fully denature at 94 °C for 30 s, followed by 
15 cycles of 94 °C for 30 s, 50 °C for 30 s, and 72 °C for 
1 min, with a fi nal extension at 72 °C for 10 min.   

   3.    Gel-purify PCR products.      

           1.    Inoculate a single colony of  S. cerevisiae  YRG2 strain into 3 mL 
of YPAD medium, and grow overnight in a shaker at 30 °C 
and 250 rpm ( see   Note 5 ).   

   2.    Measure the OD 600  of the seed culture and inoculate the 
appropriate amount to 50 mL of fresh YPAD medium to 
obtain an OD 600  of 0.2.   

   3.    Continue growing the 50 mL of culture for approximately 4 h 
to obtain an OD 600  of 0.8.   

   4.    Spin down the yeast cells at room temperature, 4000 ×  g  for 
5 min and remove the spent medium.   

   5.    Use 50 mL of ddH 2 O to wash the cells once and centrifuge 
again.   

   6.    Discard water, add 1 mL of 0.1 M LiAc to suspend the cells, 
and move them to a sterile Eppendorf tube.   

   7.    Spin down the cells using a benchtop centrifuge for 30 s at 
4500 ×  g .   

   8.    Remove liquid and resuspend cells in 500 μL of 0.1 M LiAc 
(for ten individual transformations).   

   9.    Transfer 50 μL resuspended cells to each sterile Eppendorf 
tube for each transformation.   

3.3  Library Creation 
by  Random 
  Mutagenesis

3.4  Yeast 
Transformation
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   10.    Spin down the cells using a benchtop centrifuge for 30 s at 
4500 ×  g  and remove the liquid.   

   11.    Add the following components in the following order: (1) 240 
μL of 50 % w/v PEG, (2) 36 μL of 1 M LiAc, (3) 50 μL of 2.0 
mg/mL SS- DNA, (4) X μL DNA, and (5) 34-X μL sterile 
ddH 2 O.   

   12.    Vortex each tube vigorously until the cell pellet has been com-
pletely mixed.   

   13.    Heat shock in a water bath at 42 °C for 40 min.   
   14.    Spin down the cells using a benchtop centrifuge for 30 s at 

4500 ×  g . Remove liquid by pipetting.   
   15.    Pipette 1000 μL of sterile water into each tube and resuspend 

the pellet by pipetting it up and down gently.   
   16.    Plate 200 μl onto Sc-Trp agar plate.   
   17.    Incubate the plates at 30 °C for 2–3 days until colonies appear.      

          1.    Linearize pBD-Gal4-Cam by  Eco RI and  Sal I digestion. 
Digestion condition: 1 μg of pBD-Gal4-Cam, 2 μL of 10× 
buffer, 1 μL of  Eco RI, 1 μL of  Sal I, add ddH 2 O to fi nal volume 
of 20 μL. Digest at 37 °C for 3 h.   

   2.    Gel-purify the linearized plasmid.   
   3.    Use  S. cerevisiae  YRG2 strain carrying pGAD424-SRC1 plas-

mid as a parental strain for library cloning. For individual  site 
   saturation   mutagenesis library, 20 ng of linearized plasmid is 
cotransformed with 20 ng of previously obtained mutagenized 
hERα LBD PCR product (Subheading  3.2 ) by using the previ-
ously described transformation method (Subheading  3.4 ).   

   4.    Plate all saturation mutagenesis library transformants onto a 
SC- Leu- Trp agar plate ( see   Note 6 ).   

   5.    For error-prone PCR libraries, cotransform 150 ng of linear-
ized plasmid with 150 ng of previously obtained error-prone 
PCR product by using the previously described transformation 
method (Subheading  3.4 ) ( see   Note 7 ).   

   6.    Plate error-prone PCR library transformants onto a SC-His-
Leu- Trp agar plate containing an appropriate concentration of 
the target ligand (DHB) for screening.      

       1.    Add 50 μL of SC-Leu-Trp minimal liquid media in each well 
of round-bottom 96-well plates.   

   2.    Pick transformants from the individual  site    saturation   muta-
genesis library plates or the error-prone PCR library plates 
with sterile toothpicks to individual wells of 96-well plates, and 
incubate them overnight (16–20 h) at 30 °C.   

3.5  Library Cloning 
and Transformation

3.6  Y2H System- 
Based Screening
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   3.    As a control, inoculate one well in every microtiter plate with 
a yeast colony expressing the parental hERα LBD construct.   

   4.    After this overnight incubation, add 250 μL of sterile ddH 2 O 
to every well. Mix well by pipetting.   

   5.    Add 200 μL of SC-His-Leu-Trp media with an appropriate 
concentration of either target ligand (DHB) or E 2  to two iden-
tical sterile fl at-bottom 96-well microtiter plates.   

   6.    Transfer 5 μL of each diluted culture to the corresponding 
wells of two identical 96-well plates.   

   7.    Incubate these ligand-containing microtiter plates at 30 °C for 
24 h.   

   8.    Identify mutants with strengthened response toward the target 
ligand (higher cell density than parental mutant control) and 
weakened response toward E 2  (lower cell density than parent) 
using visual check.   

   9.    Streak mutants that appear to be more selective for the target 
ligand relative to E 2  onto SC-Leu-Trp agar plates, and incu-
bate at 30 °C for 2 days.   

   10.    Pick single colonies from these streaked plates and subject 
them to a yeast ligand dose-response assay.      

       1.    Pick single colonies from the abovementioned streaked plates 
into individual wells of round-bottom 96-well plates contain-
ing 50 μL of SC-Leu-Trp liquid medium, and grow at 30 °C 
for overnight.   

   2.    After this overnight incubation, add 250 μL of sterile ddH 2 O 
to every well. Mix well by pipetting.   

   3.    Transfer 5 μL of each diluted culture to sterile fl at-bottom 
96-well microtiter plates containing 200 μL of SC-His-Leu-
Trp medium to obtain a diluted culture with fi nal OD 600  of 
~0.002.   

   4.    Transfer 190 μl of each diluted culture to the corresponding 
wells of fl at-bottom 96-well plates.   

   5.    Add 10 μl of 20× ligand stock solution.   
   6.    Incubate these ligand-containing microtiter plates at 30 °C for 

24 h.   
   7.    Mix culture in each well by pipetting and determine their 

OD 600  values by using a SpectraMax 340PC plate reader.      

       1.    PCR-amplify the evolved LBD genes using primers ERα-
pCMV5- 5KpnI (5′CCGGTACCCCATGACCATGAC-3′) 
and ERα-BamHI-C (5′AGCTCTGGATCCTCAGACTGT
GGCAGGGAAAC-3′) ( see  Subheading  3.2 ).   

   2.    Gel-purify PCR products.   

3.7  Ligand Dose- 
Response Assay 
(Yeast Transactivation 
Profi les)

3.8  Subcloning 
of Evolved hERα LBDs
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   3.    Linearize the pCMV5-ERα plasmid with  Hind III using condi-
tions described in Subheading  3.5 .   

   4.    Gel-purify 1 kb fragment of the linearized plasmid.   
   5.    The two purifi ed DNA fragments share an overlap region of 

approximately 100 bp. Perform overlap extension PCR to gen-
erate full-length mutant hERα genes. PCR reaction: 5 μL of 
10× PCR reaction buffer, 3 μL of 25 mM MgCl 2 , 1 μL of 10 
mM dNTP mix, 100 ng of PCR product, 100 ng of linearized 
plasmid, 0.6 U of  Taq  DNA polymerase, and 0.6 U of  PfuTurbo  
DNA polymerase. Adjust the volume to 50 μL with ddH 2 O.   

   6.    Overlap extension PCR condition: Fully denature at 94 °C for 
30 s, followed by ten cycles of 94 °C for 1 min, and 72 °C for 
4 min, with a fi nal extension at 72 °C for 10 min.   

   7.    PCR-amplify the full-length mutant hERα genes. Primers 
used: ERα-pCMV5-5KpnI and ERα-BamHI-C. Standard 
PCR reaction: 5 μL of 10× PCR reaction buffer, 3 μL of 25 
mM MgCl 2 , 1 μL of 10 mM dNTP mix, 25 pmol forward 
primer, 25 pmol reverse primer, 5 μL of overlap extension PCR 
products, 0.6 U of  Taq  DNA polymerase, and 0.6 U of 
 PfuTurbo  DNA polymerase. Adjust the volume to 50 μL with 
ddH 2 O.   

   8.    Overlap extension PCR condition: Fully denature at 94 °C for 
30 s, followed by 25 cycles of 94 °C for 1 min, and 72 °C for 
4 min, with a fi nal extension at 72 °C for 10 min.   

   9.    Gel-purify PCR product.   
   10.    Digest PCR product with  Kpn I- Bam HI using condition 

described in Subheading  3.5 .   
   11.    Digest pCMV5-ERα plasmid with  Kpn I- Bam HI using condi-

tion described in Subheading  3.5 .   
   12.    Ligation reaction: 100 ng of  Kpn I- Bam HI digested pCMV5-

ERα, 180 ng of  Kpn I- Bam HI digested PCR product, 1 μL of 
10× T4 ligation buffer, 0.25 μL of T4 ligase. Incubate at 16 °C 
overnight.   

   13.    Transform  E. coli  DH5α using a heat shock method: Add 4 μL 
of ligation reaction mixture to 50 μL of  E. coli  DH5α chemi-
cally competent cells in a sterile Eppendorf tube.   

   14.    Heat shock  E. coli  DH5α at 42 °C for 30 s and add 1 mL of LB 
medium.   

   15.    Transfer the suspended cells to a 14 mL round-bottom tube 
and grow at 37 °C for 1 h.   

   16.    Spread 250 μL on a LB-Amp +  plate and incubate at 37 °C 
overnight.   

   17.    Inoculate single colonies to 4 mL of LB-Amp +  medium and 
grow with shaking at 37 °C overnight.   

Meng Wang and Huimin Zhao
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   18.    Purify plasmids from each 4 mL of culture.   
   19.    Confi rm the identity of the plasmids by  DNA   sequencing.      

       1.    Seed human endometrial cancer (HEC-1) cells in 1 mL of 
pre-/post-transfection medium in each well of the 24-well 
plates. Incubate the plate at 37 °C for 24 h.   

   2.    Preheat transfection medium at 37 °C.   
   3.    In each well, add 75 μL of transfection solution A and 75 μL 

of transfection solution B. Then add 350 μL of transfection 
medium. Incubate at 37 °C in a 5 % CO 2 -containing incubator 
for 5 h.   

   4.    Preheat pre-/post-transfection medium at 37 °C.   
   5.    Remove the medium in each well via vacuum and wash with 

1 mL of pre-/post-transfection medium.   
   6.    Add 1 mL of pre-/post-transfection medium and 1 μL of 

1000× ligand stock solution to each well. Incubate the plate at 
37 °C in a 5 % CO 2 -containing incubator for 24 h.   

   7.    Wash cells with 500 μL of PBS twice.   
   8.    Add 100 μL of reporter lysis buffer and freeze at −70 °C.   
   9.    Thaw cells and transfer cells to a round-bottom 96-well plate. 

Centrifuge at 4000 ×  g  for 5 min at room temperature.   
   10.    For the β-galactosidase assay, transfer 20 μL of supernatant to 

a fl at-bottom 96-well plate.   
   11.    Add 200 μL of ONPG substrate mixture to each well in 96-well 

plates. Develop color at room temperature until a faint yellow 
color appears.   

   12.    Stop the reaction by adding 150 μL of 1 M sodium carbonate. 
Mix by pipetting the contents of each well.   

   13.    Read the absorbance of the samples at 405 nm in a SpectraMax 
340PC plate reader.   

   14.    For the luciferase assay, transfer 20 μL of supernatant from 
 step 9  to each well in an opaque 96-well plate.   

   15.    Add 100 μL of Luciferase Assay Reagent per well.   
   16.    Read samples with a plate reader.       

4    Notes 

     1.    Aliquot 10× mutagenic buffer into Eppendorf tubes for stor-
age to avoid multiple cycles of freeze and thaw.   

   2.    Make sure the container of PEG solution is tightly sealed. The 
transformation effi ciency is highly dependent on the PEG 
concentration.   

3.9  Mammalian 
Transfection 
and Luciferase Assays 
(Mammalian Cell 
Transactivation 
Profi les)
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   3.    The choice of the substitution NNS allows the incorporation 
of all 20 amino acids while keeping the total number of codon 
possibilities low, at 32.   

   4.    Mutation rate can be adjusted via changing MnCl 2  concentra-
tion between 0.1 and 0.2 mM.   

   5.     S. cerevisiae  competent cell need to be prepared freshly every 
time.   

   6.    Plate a series of different amount of the transformation mix-
ture (10, 50, 100 μL) on different plates to determine the 
transformation effi ciency.   

   7.    In order to obtain suffi cient transformants for the  random 
  mutagenesis library, it might be necessary to perform large-
scale transformation. In such case, components of transforma-
tion mixture and plasmids (Subheading  3.4 ,  step 11 ) can be 
premixed and aliquoted (360 μl each) into Eppendorf tubes 
containing  S. cerevisiae  cells to perform the heat shock step .         
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Chapter 9

Improving Binding Affinity and Selectivity 
of Computationally Designed Ligand-Binding Proteins 
Using Experiments

Christine E. Tinberg and Sagar D. Khare

Abstract

The ability to de novo design proteins that can bind small molecules has wide implications for synthetic 
biology and medicine. Combining computational protein design with the high-throughput screening of 
mutagenic libraries of computationally designed proteins is emerging as a general approach for creating 
binding proteins with programmable binding modes, affinities, and selectivities. The computational step 
enables the creation of a binding site in a protein that otherwise does not (measurably) bind the intended 
ligand, and targeted mutagenic screening allows for validation and refinement of the computational model 
as well as provides orders-of-magnitude increases in the binding affinity. Deep sequencing of mutagenic 
libraries can provide insights into the mutagenic binding landscape and enable further affinity improve-
ments. Moreover, in such a combined computational–experimental approach where the binding mode is 
preprogrammed and iteratively refined, selectivity can be achieved (and modulated) by the placement of 
specified amino acid side chain groups around the ligand in defined orientations. Here, we describe the 
experimental aspects of a combined computational–experimental approach for designing—using the soft-
ware suite Rosetta—proteins that bind a small molecule of choice and engineering, using fluorescence-
activated cell sorting and high-throughput yeast surface display, high affinity and ligand selectivity. We 
illustrated the utility of this approach by performing the design of a selective digoxigenin (DIG)-binding 
protein that, after affinity maturation, binds DIG with picomolar affinity and high selectivity over structur-
ally related steroids.

Key words Computational design, Rosetta macromolecular modeling, Affinity optimization, Binding 
selectivity, Steroid binding, Protein-small molecule interactions

1 Introduction

Computational de novo design of protein function has seen remark-
able success in recent years, enabling, for example, the construction 
of enzymes for catalyzing reactions that are not natively catalyzed 
by natural enzymes [1, 2], protein binders against pathogenic pro-
teins [3], and, more recently, the design of small-molecule binding 
proteins with high affinity and programmable selectivity [4]. In all 
cases, the initial hits obtained from the computational design 
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approach were weakly active, and the use of high-throughput 
experimental characterization to screen and improve designed pro-
teins was critical for success. Many of the limitations of computa-
tional design methodology, including force field inaccuracies, lack 
of explicit modeling of solvent and properties such as protein solu-
bility, and, more generally, our limited understanding of protein 
sequence–function relationships [5], were, at least in part, over-
come by screening tens of computationally designed proteins using 
sensitive experimental assays, identifying weakly active hits and 
subsequently improving their efficacies using mutagenic screening 
or selection techniques [6]. Conversely, the directed evolution 
methods used to improve activities in these efforts could be made 
more efficient, compared to random mutagenesis approaches, by 
virtue of being guided by an atomic-resolution (but partially accu-
rate) computational model of the bound state. This iterative, com-
bined computational–experimental strategy builds upon the 
strengths of these complementary methods and will continue to be 
a key component of various protein design applications [7].

Here, we describe the experimental strategy and protocols 
used in our efforts to de novo design small-molecule binding sites 
in proteins—these computationally designed and subsequently 
laboratory- evolved proteins feature affinities and selectivities that 
rival those of natural small-molecule binding proteins. On the 
computational end, we developed and used a computational design 
approach, in the context of the Rosetta macromolecular modeling 
suite, to transplant idealized binding sites for a chosen ligand—the 
steroid digoxigenin (DIG)—into a set of protein scaffolds. The 
scaffolds were remodeled to accommodate predefined interactions 
to DIG, and then Rosetta Design [8] was used to optimize the 
binding site amino acid sequences for ligand-binding affinity. A 
more complete description of the computational strategy and pro-
tocols used to obtain the binders can be obtained elsewhere [4]. As 
mentioned above, the initial hits were weak affinity binders and 
could be detected only with a sensitive and relatively high-through-
put yeast surface display assay that conveniently allowed testing 
tens of computationally designed proteins (referred to as designs 
hereafter) and their mutagenic libraries. We focus here on the 
experimental assays and methods for subsequent affinity matura-
tion as well as selectivity modulation. Results from these experi-
mental strategies (impact of point mutations on binding) were 
used to both validate (or invalidate) and refine initial designs, and 
models of mutagenized proteins were then used to guide further 
optimization, for instance, by the model-guided enumeration of 
ligand-proximal residue positions for which mutagenic libraries 
were constructed and tested. The experimental data-guided design 
model of one of our designs was subsequently validated by the 
observed atomic-resolution agreement with X-ray crystallographic 
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structures of a series of its variants [4]. Below, we describe our 
approach and offer some practical suggestions for the choices that 
are made while performing various steps.

2 Materials

Streptavidin–phycoerythrin (SAPE).
Yeast strain EBY100.
pCTCON2 or pETCON vector.
Highly avid ligand–biotin conjugate.
Monovalent ligand–biotin conjugate.
Monovalent ligand–fluorophore conjugate.

3 Methods

The overall goals of the approach are (1) to detect (initially weak) 
binding of the designed proteins and (2) to improve binding affin-
ity and selectivity of the designed proteins. In the latter case, the 
choice of residue positions to mutate is based on the spatial prox-
imity of these positions to the ligand in the computational model 
of the bound state. Typically, first-shell positions are chosen for 
site–saturation mutagenesis, beneficial mutations are combined 
(combinatorially), and these experimentally identified amino acid 
substitutions are used to refine or invalidate initial design model. 
For the optimized variant, a single-site mutagenic library at both 
first- and second- shell residue positions is generated, and high-
throughput sequencing of screened libraries is used to guide fur-
ther affinity improvements. The experimental data-guided 
computational model is then used to design mutations to predic-
tively modulate the selectivity of designed proteins for the small 
molecule over a series of congeners.

 1. Designed proteins are tested for ligand binding using yeast 
surface display [9]. We used the vector pETCON and the 
NdeI/XhoI restriction sites in this vector to clone synthetic 
genes of the designs. Standard yeast surface display materials 
and protocols were used for growth and induction unless 
stated otherwise below.

 2. For hydrophobic ligands (such as DIG) and designed proteins 
that are expected to have low affinities, it is important to guard 
against false-positives as exposed hydrophobic patches in pro-
teins can nonspecifically bind the ligand with low affinity. To 
control for nonspecific binding, we used proteins that are both 
structurally and functionally unrelated to designed proteins as 
controls. Negative controls for binding were two tandem Z 

3.1 Overview 
of Approach

3.2 Initial Screen 
of Computationally 
Designed Proteins
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domains of protein A (ZZ domain) [10, 11] and a mutagenic 
library of HIV glycoprotein (gp120) variants developed for an 
unrelated project.

 3. The genes for the “negative control” proteins as well as designs 
cloned into the pETCON vector are transformed into cells of 
the yeast strain EBY100 using lithium acetate and polyethylene 
glycol [12]. Transformants are plated on selective media (C –
ura –trp) that select for both the strain and the vector.

 4. Freshly transformed cells are inoculated into 1 mL of SDCAA 
media [9] and grown at 30 °C, 200 rpm. After ~12 h, 1e7 cells 
are collected by centrifugation at 1700 × g for 3 min and resus-
pended in 1 mL of SGCAA media to induce protein 
expression.

 5. Following induction for 24–48 h at 18 °C, 4e6 cells are col-
lected by centrifugation and washed twice by incubation with 
PBSF (PBS supplemented with 1 g/L of BSA) for 10 min at 
room temperature. Induction times and temperatures required 
to obtain the highest expression levels of displayed proteins 
can vary and need to be empirically determined. For our sys-
tem, 24–48 h at 18 °C was optimal.

 6. For proteins expressed from their gene in the pETCON vec-
tor, yeast surface protein expression can be monitored by the 
binding of anti-cmyc-FITC antibody to the C-terminal myc-
epitope tag of the displayed protein (Fig. 1a).

 7. Small-molecule (in our case, DIG) binding is assessed by quan-
tifying the phycoerythrin (PE) fluorescence of the displaying 
yeast population following incubation with small-molecule- 
biotinylated protein conjugates: DIG-BSA-biotin, DIG-
RNase- biotin (Fig. 1b, c), or DIG-PEG3-biotin (Fig. 1d) in 
our case, and streptavidin–phycoerythrin (SAPE). See Note 1.

 8. Following a 2–4-h incubation at 4 °C in the dark on a rotator, 
cells are collected by centrifugation at 1700 × g for 3 min and 
washed with 200 μL of PBSF at 4 °C.

 9. Cell pellets are resuspended in 200 μL of ice-cold PBSF imme-
diately before use. For detecting weak affinity binders, it is 
important to keep the samples on ice until resuspension and 
resuspend immediately before use.

 10. Cellular fluorescence is monitored on an Accuri C6 flow 
cytometer using a 488 nm laser for excitation and a 575 nm 
band pass filter for emission. Phycoerythrin fluorescence is 
compensated to minimize bleed-over contributions from the 
FITC fluorescence channel.

 11. While negative controls are important (see Subheading 3.2, 
step 3), positive controls of varying affinities, if available, 
should be used to validate, and tune the sensitivity of, the assay. 
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In our case, two positive controls having different affinities for 
digoxigenin were used in the binding assay: a previously engi-
neered steroid binding protein DigA16 [13] and a commer-
cially available anti-DIG monoclonal antibody 9H27L19 (Fig. 
2). Experiments using DigA16 were conducted in an identical 
fashion to design DIG1-17. For those employing the anti-DIG 
antibody, an Fc-region-binding protein, the ZZ domain (see 
Subheading 3.2, step 3), was displayed on the yeast cell sur-
face, and washed cells were resuspended in 20 μL of PBSF with 
2 μL of rabbit anti-DIG mAB 9H27L19. Following a 30-min 
incubation at 4 °C on a rotator, excess antibody was removed 
by washing the cells with 200 μL of PBSF. Labeling reactions 
were then performed as above.

Fig. 1 Outline of assay used for detection and evolution of binding affinity of designed proteins. (a) Designs are 
expressed on the surface of yeast using the plasmid pETCON as described by Wittrup and co-workers. A c-myc 
tag is attached at the C-terminus of the protein to enable detection using an anti-c-myc antibody that is con-
jugated to a fluorophore (e.g., FITC, green ). Binding can detected in a high-avidity format to identify initial hits 
(top ) or low-avidity format to enable more sensitive detection of affinity increase during affinity maturation 
(bottom ). (b, c) NHS esters of DIG and biotin that are used for conjugation to a carrier protein (e.g., BSA or 
RNase) in the high-avidity format. (d) The DIG-biotin conjugate that was used in the low-avidity format
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 12. To test if the hits identified above are not false-positives on 
account of binding to other assay components (such as SAPE), 
it is important to perform competition experiments with the 
free ligand (Fig. 2a). See Note 2.

 13. To further ensure specific binding to the small molecule, 
knockout mutagenesis of key interacting residues is performed. 
Residues that interact with the ligand in the computational 
model are mutated to amino acids that disfavor binding. This 
step serves to confirm that the ligand and not other assay com-
ponents are binding the design as well as confirm the design 
model.

 1. Based on the identified hits in Subheading 3.2, affinity matura-
tion is performed using single site–saturation mutagenesis 
(SSM) library constructed by Kunkel mutagenesis [14] using 
degenerate NNK primers (Fig. 3).

 2. Positions for mutagenesis are chosen based on the computa-
tional design model. Positions are chosen from the model 
based on the following requirements: (1) they have Cα within 

3.3 Affinity 
Improvement Using 
Yeast Surface Display 
Selections 
and Fluorescence-
Activated Cell Sorting 
of Mutagenic Libraries

Fig. 2 Typical assay results for hits obtained in a set of computationally designed proteins. (a) Example results 
and validation experiments carried out for a hit identified from the binding assay showing no binding signal for 
negative control (ZZ (−)), high binding signal for positive control (Ab (+)), binding signal for the design (DIG10), 
no binding signal for design incubated with excess unlabeled DIG (DIG10 + 1 mM DIG), no binding signal for the 
wild-type scaffold protein on which the design DIG10 is based (scaffold), and similar binding signal (as DIG10) 
when an alternative carrier protein, RNase, is used (DIG10*). (b) Binding signals for controls and all 17 tested 
designs. Designs DIG10 showed reproducible binding signals with both carrier proteins, DIG5 and DIG8 showed 
high signals with RNase carrier protein but not BSA, and DIG15 showed high signals with BSA but not RNase. 
Tests described in (a) identified DIG10 and DIG5 as being specific binders to DIG. These were used for further 
affinity maturation
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7 Å of any ligand heavy atom, and/or (2) they have Cα within 
9 Å of any ligand heavy atom and Cβ closer to any heavy atom 
in the ligand than Cα. The theoretical library size can be calcu-
lated (in our case, we chose 34 positions for design DIG10 
yielding a size of 1088 clones).

 3. Kunkel mutagenesis of each position using mutagenic oligo-
nucleotides is carried out independently. DNA from each reac-
tion is dialyzed into dH2O using a 0.025 μm membrane filter, 
and then the dialyzed reaction mixtures are pooled, concen-
trated to a volume of <10 μL using a Savant SpeedVac centrifu-
gal vacuum concentrator, and transformed into yeast strain 
EBY100 using the method of Benatuil [15]. Typical yields are 
1E7–1E8. See Note 3.

 4. After transformation, cells are grown in 250 mL of SDCAA 
media for 36 h at 30 °C. Cells (5e8) are collected by centrifu-
gation at 1700 × g for 4 min, resuspended in 50 mL of SGCAA 
media, and induced at 18 °C for 24 h.

Fig. 3 Directed evolution of computational designs. (a) Outline of scheme used for site-directed mutagenesis 
of designs for affinity improvement. Several rounds of single site–saturation mutagenesis followed by combi-
natorial mutagenesis using identified beneficial single mutations are performed to obtain affinity improve-
ments. (b) Comparison of the binding properties of the initial hit (DIG10) with the affinity matured variant 
(DIG10.1). High binding signals are detectable at ~6 orders-of-magnitude lower labeled ligand concentrations 
after affinity maturation
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 5. Cells are subjected to multiple (we used three) rounds of per-
missive cell sorting to enrich for improved variants. During 
each round of sorting, cells are washed and then labeled with a 
preincubated mixture of 2.66 μM DIG-BSA-biotin, 644 nM 
SAPE, and anti-cmyc-FITC as noted above for single clones. 
During each round, the top ~10 % of cells in the PE channel 
are collected. It is important to sort 10–100 times the library 
transformation efficiency to ensure that each clone in the 
library is sampled during the sort. See Note 4.

 6. After each round of sorting, cells are grown in SDCAA for 24 
h and then induced in SGCAA for 24 h before the next sort. It 
is important to recover the cells in this way so that low repre-
sentation clones are allowed to amplify.

 7. After the final sort, an increase in the mean compensated PE 
fluorescence of the expressing population of the sorted cells 
compared to that of the original design indicates the presence 
of a point mutant(s) with increased binding affinity.

 8. After each sort, a portion of cells are plated and grown at 30 
°C. Plasmids from individual colonies are harvested and the 
gene is amplified by PCR. Sanger sequencing is used to 
sequence at least ten colonies from each population to identify 
mutations that increase affinity.

 1. Beneficial mutations identified in the SSM library (Subheading 
3.3) are combined by Kunkel mutagenesis [14] using degener-
ate primers. At each mutagenized position, the original DIG10 
amino acid and chemically similar amino acids to those identi-
fied in the first round of directed evolution are also allowed, 
resulting in a combinatorial library.

 2. Four independent Kunkel reactions using different mutagenic 
oligonucleotide concentrations ranging from 36 to 291 nM 
during polymerization are performed to minimize sequence-
dependent priming bias. For the same reason, oligonucleotides 
encoding native substitutions contain at least one codon base 
change.

 3. Library DNA is pooled, prepared as above, and transformed 
into electrocompetent E. coli strain BL21(DE3) cells (1800 V, 
200 Ω, 25 μF). Library plasmid DNA is isolated from expanded 
cultures. Gene insert is amplified from 10 ng of library DNA 
by 30 cycles of PCR (98 °C 10 s, 61 °C 30 s, 72 °C 15 s) using 
Phusion high-fidelity polymerase with the pCTCON2r and 
pCTCON2f primers. See Note 5.

 4. Yeast EBY100 cells are transformed with 4.0 μg of PCR-
purified DNA insert generated in the previous step and 1.0 μg 
of gel- purified pETCON digested with Nde1 and Xho1 using 
the method of Benatuil [15], yielding 1E7–1E8 transformants. 

3.4 Combinatorial 
Mutagenesis Using 
Identified Beneficial 
Single-Point Mutations
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After transformation, cells are grown in 150 mL of low-pH 
SDCAA media supplemented with Pen/Strep for 48 h at 30 
°C. Cells (~5e8) are collected by centrifugation at 1700 × g for 
4 min, resuspended in 50 mL of SGCAA media, and induced 
at 18 °C for 24 h.

 5. Cells are subjected to several rounds of cell sorting (we per-
formed seven rounds). For the first four rounds, cells are 
washed and then labeled with a preincubated mixture of small-
molecule BSA- biotin, SAPE, and anti-cmyc-FITC as noted 
above for single clones. Small-molecule-label concentrations 
can be decreased progressively in every round to increase the 
selection stringency. It is important to maintain a 4:1 (biotin/
SAPE) ratio. For example, our concentrations for rounds one 
through four were (1) 1 μM DIG- BSA- biotin and 250 nM 
SAPE, (2) 750 nM DIG-BSA-biotin and 187.5 nM SAPE, (3) 
50 nM DIG-BSA-biotin and 12.5 nM SAPE, and (4) 5 nM 
DIG-BSA-biotin and 1.25 nM SAPE. Selection stringency is 
increased in each round by dropping the label concentration or 
decreasing the avidity of the label. Note that these concentra-
tions in this example refer to the concentration of carrier pro-
tein molecules, not DIG molecules.

 6. To ensure that the identified mutations do not select for bind-
ing to the carrier protein (e.g., BSA in our case) or a specific 
linkage between small molecule and carrier protein or other 
assay components (e.g., SAPE), it is important to use an unre-
lated protein for labeling with small molecule (Fig. 3b). For 
rounds five through seven, we used DIG-RNase-biotin in a 
multistep labeling procedure to minimize selection for carrier 
protein (BSA) binding. The use of RNase also allowed a larger 
dynamic range in several control experiments. DIG-RNase-
biotin label concentrations were 10, 5, and 5 pM (concentra-
tions referenced to RNase) for rounds five through seven, 
respectively.

 7. At least ten clones from each round are sequenced as noted for 
the SSM library. After several rounds, the library typically con-
verges to a small number of sequences differing by a single or 
a few point substitutions.

 1. Paired-end 151 Illumina sequencing is used to simultaneously 
assess the effects of mutation on binding.

 2. A number of mutagenic libraries are designed, based on the 
distribution of mutagenized positions in and length of the 
gene under consideration and the optimal read length of the 
deep- sequencing approach being used (Fig. 4). In our case, 
two libraries were constructed to allow optimal probing of the 
mutagenic landscape using 151-bp paired-end sequencing on 
an Illumina MiSeq.

3.5 Mutagenic 
Libraries and Deep 
Sequencing
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 3. For each library, the full-length protein gene having additional 
pETCON overlap fragments at either end for yeast homolo-
gous recombination is assembled via recursive PCR. To intro-
duce mutations, degenerate PAGE-purified oligos are used in 
which selected positions within the binding site are doped with 
a small amount of each nonnative base at a level expected to 
yield 1–2 mutations per gene. For this study, we ordered cus-
tom-doped oligos. See Note 6.

 4. For each library assembly, overlapping oligonucleotides, 
including overlapping regions with the ends of the pETCON 
plasmid, are combined with dNTPs, 5× Phusion buffer HF, 
DMSO, and Phusion high-fidelity polymerase. Full-length 
products are assembled by PCR, and correctly assembled PCR 
products are amplified by a second round of PCR using oligo-
nucleotides that overlap with the pETCON plasmid. Correct 
length PCR products are isolated using agarose gel electro-
phoresis and are purified using a Qiagen PCR cleanup kit and 
eluted in ddH2O.

 5. Yeast EBY100 cells are transformed with 5.4 μg of library 
DNA insert and 1.8 μg of gel-purified pETCON digested with 
Nde1 and Xho1 using the method of Benatuil [15], yielding 
~1e6 transformants.

Fig. 4 Preparation for the deep sequencing-based illumination of the mutagenic landscape of binding. A muta-
genic library is synthesized (see main text) and is screened first for expression and then binding. Harvested 
DNA at both stages is deep sequenced, and the relative frequency of individual mutations in the selected and 
unselected pools is used to compute the landscape
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 6. After transformation, cells are grown for 24 h in 100 mL of 
low- pH SDCAA media supplemented with Pen/Strep at 30 
°C, passaged once, and grown for an additional 24 h under the 
same conditions. Cells (~5e8) are collected by centrifugation, 
resuspended in 50 mL of SGCAA, and induced overnight at 
18 °C.

 7. Induced cells (3e7) ware labeled with 4 μL of anti-cymc-FITC 
in 200 μL of PBSF for 20 min at 4 °C to label cells expressing 
full- length protein variants. Then, labeled cells are washed 
with PBSF and sorted. In this first round of sorting, all cells 
showing a positive signal for protein expression are collected.

 8. Cells were recovered overnight in ~1 mL of low-pH SDCAA 
supplemented with Pen/Strep at 30 °C, pelleted by centrifu-
gation at 1700 × g for 4 min, resuspended in 5 mL of low-pH 
SDCAA supplemented with Pen/Strep, and grown for an 
additional 24 h at 30 °C.

 9. Cells (~2e7) are collected by centrifugation, resuspended in 2 
mL of SGCAA, and induced overnight at 18 °C.

 10. Induced cells from expression-sorted libraries and two refer-
ence samples of the template protein (5e6 cells per sample) 
prepared similarly are washed with 600 μL of PBSF and then 
labeled with a chosen concentration of the small-molecule-
biotin complex (100 nM of DIG-PEG3-biotin in our case) in 
400 μL of PBSF for the libraries or 200 μL of PBSF for the 
reference samples for >3 h at 4 °C. The concentration of the 
label should be sufficient to observe a binding signal with the 
parent clone. Labeled cells are washed with 200 μL of PBSF 
and then incubated with a secondary label solution of 0.8 μL 
of SAPE (Invitrogen) and 4 μL of anti-cymc- FITC in 400 μL 
of PBSF for 8 min at 4 °C. Cells are washed with 200 μL PBSF, 
resuspended in either 800 μL of PBSF for the libraries or 400 
μL of PBSF for the reference samples, and sorted.

 11. Clones having binding signals higher than that of the parent 
reference sample are collected using FACS. Collected cells are 
recovered overnight in ~1 mL of low-pH SDCAA supple-
mented with Pen/Strep at 30 °C, pelleted by centrifugation at 
1700 × g for 4 min, resuspended in 2 mL of low-pH SDCAA 
supplemented with Pen/Strep, and grown for an additional 24 
h at 30 °C. Cells (2e7) are resuspended in 2 mL of SGCAA 
and induced overnight at 18 °C.

 12. To reduce noise from the first round of cell sorting, the sorted 
libraries are labeled and subjected to a second round of cell 
sorting using the same conditions and gates as in the first 
round. Collected cells are recovered and grown as described 
above.

 13. One hundred million cells from the expression-sorted libraries 
and at least 2e7 cells from doubly sorted library are pelleted by 

Experimental Ptimization of Ligand Binding Affinity and Specificity



166

centrifugation at 1700 × g for 4 min, resuspended in 1 mL of 
freezing solution (50 % YPD, 2.5 % glycerol), transferred to 
cryogenic vials, slow-frozen in an isopropanol bath, and stored 
at −80 °C until further use.

 1. Library DNA is prepared as detailed previously [16]. Illumina 
adapter sequences and unique library barcodes are appended 
to each library pool through PCR amplification using 
population- specific HPLC-purified primers.

 2. The library amplicons are verified on a 2 % agarose gel stained 
with SYBR Gold and then purified using an Agencourt AMPure 
XP bead-based purification kit. Each library amplicon is dena-
tured using NaOH and then diluted to 6 pM. A sample of 
PhiX control DNA is prepared in the same manner as the 
library samples and added to the library DNA to create high 
enough sample diversity for the Illumina base-calling algo-
rithm. The final DNA sample is prepared by pooling 300 μL of 
6 pM PhiX control DNA (50 %), 102 μL of 6 pM expression-
sorted library, and 33 μL of 6 pM sorted libraries each.

 3. DNA is sequenced in paired-end mode on an Illumina MiSeq 
using a 300-cycle reagent kit and custom HPLC-purified 
primers.

 4. Data from each next-generation sequencing library is demulti-
plexed using the unique library barcodes added during the 
amplification steps. For example, in our experiment, of a total 
5,630,105 paired-end reads, 2,531,653 reads were mapped to 
library barcodes. For each library, paired-end reads are fused 
and filtered for quality (Phred ≥ 30).

 5. The resulting full-length reads are aligned against the relevant 
segments of the template gene sequence using scripts from the 
software package Enrich [17].

 6. For single mutations having ≥7 counts in the original input 
library, a relative enrichment ratio between the input library and 
each selected library is calculated [16, 18, 19]. This cutoff value 
is used to establish statistical significance in the final data set.

 7. A pseudocount value (0.3 in our case) is added to the total 
reads for each selected library mutation, to allow calculation of 
enrichment values for mutations that disappeared completely 
during selection.

 1. To verify binding and to measure binding dissociation con-
stants, fluorescence polarization assays are using purified pro-
tein and fluorescent ligand (Fig. 5). Fluorescence 
polarization-based affinity measurements of designs and their 
evolved variants are performed as noted previously [20] using 
a small-molecule-fluorescent dye conjugate (in our case 
Alexa488-conjugated DIG; DIG-PEG3-Alexa488).

3.6 Next- Generation 
Library Sequencing

3.7 Selectivity 
Assays by Equilibrium 
Fluorescence 
Polarization 
Competition Assays
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 2. In a typical experiment, the concentration of the conjugate is 
fixed near the Kd of the interaction being monitored, and the 
effect of the increasing concentrations of protein on the fluo-
rescence anisotropy of the fluorescent dye is determined.

 3. Fluorescence anisotropy (r) is measured in 96-well plate for-
mat at appropriate excitation and emission wavelengths 
(λex = 485 nM and λem = 538 nM using a 515 nm emission cut-
off filter, in our case). In all experiments, PBS (pH 7.4) is used 
as the buffer system and the temperature is 25 °C. For high-
affinity complexes, it is important to use NBS-coated plates to 
improve the signal-to- noise aspect.

 4. Equilibrium dissociation constants (Kd) are determined by fit-
ting plots of the anisotropy averaged over a period of 20–40 min 
(equilibrium) after reaction initiation versus protein concen-
tration to Eq. 1:
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Fig. 5 Measuring and modulating selectivity of designed proteins guided by the computational model of bind-
ing. (a) The specificity of the designed binding protein can be modulated for congeneric ligands that differ in 
their chemical structure by as little as a hydroxyl group, as is the case with DIG and digitoxigenin. (b) Guided 
by the computational model of DIG10.3, in which tyrosine side chain groups were positioned to make hydrogen 
bonds with the DIG hydroxyl, a Tyr to Phe substitution was chosen, and (c and d) the selectivity of DIG10.3 and 
DIG10.3_Y110F was measured as described in the text. Robust specificity switching was observed (compare 
c and d), demonstrating the programmability of computationally designed ligand-binding proteins
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where A is the experimentally measured anisotropy, Af is the 
anisotropy of the free ligand, Ab is the anisotropy of the fully 
bound ligand, [L]T is the total ligand concentration, and [R]T 
is the total receptor concentration.

 5. For ensuring assay robustness, reported Kd values should rep-
resent the average of at least three independent measurements 
with at least two separate batches of purified protein.

 1. Fluorescence polarization equilibrium competition binding 
assays are used to determine the binding affinities of designed 
proteins and their variants for unlabeled ligands and conge-
neric compounds (for which selectivity measurements and 
modulation is desired; in our case, these were digoxigenin, 
digitoxigenin, progesterone, β-estradiol, and digoxin; Fig. 5a). 
During the computational design procedure, careful place-
ment of interacting amino acid side chains allows for explicit 
design of selectivity (Fig. 5b). Selectivity can be switched by 
manipulation of these residues. In our case, we considered 
Tyr to Phe mutations as candidates to switch the specificity 
toward more hydrophobic steroids (Fig. 5b). The labeled small 
molecule (Subheading 3.5) is used, and the ability of different 
ligands to inhibit its binding to the designed protein variant is 
used to calculate their affinities for the protein.

 2. In a typical experiment, the concentration of labeled small 
molecule is kept near or below the Kd of the interaction being 
monitored, the concentration of protein is fixed at a saturating 
value such that >95 % the labeled small molecule in the system 
is bound to protein, and the effects of increasing concentra-
tions of unlabeled ligand on the fluorescence anisotropy of the 
fluorescent dye are determined as described above in 
Subheading 3.5.

 3. If the ligands being considered are insoluble or sparingly solu-
ble in aqueous buffers, stock solutions are typically made in 
organic solvents such as DMSO or methanol. For each ligand 
concentration, a negative control sample containing only the 
appropriate dilution of the corresponding organic solvent-only 
control solution (in aqueous assay buffer, PBS in our case) is 
measured. While we found that at all concentrations employed, 
methanol or DMSO solvents did not affect fluorescence anisot-
ropy with our binding assay. However, correction for this effect 
must be made.

 4. The concentration of total unlabeled ligand producing 50 % 
binding signal inhibition (I50) is determined by fitting a plot of 
the anisotropy averaged over a period of 30 min to 3 h after 
reaction initiation versus unlabeled ligand concentration [20]. 
See Note 7.

3.8 Fluorescence 
Polarization 
Equilibrium 
Competition Binding 
Assays
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 5. For cases in which Kd for competitor is much smaller than Kd 
for the labeled small molecule, the data cannot be fit to the 
model and only qualitative conclusions can be reached (Fig. 
5c, d).

 6. The inhibition constant for each protein–ligand interaction, 
Ki, is calculated from the measured IC50 and the Kd of the 
protein-label interaction according to a model accounting for 
receptor- depletion conditions [20].

 7. IC50 values, the concentrations of free unlabeled ligand pro-
ducing 50 % binding signal inhibition, are calculated from the 
measured I50 values [20].

 8. For assay robustness, reported I50 and subsequent Ki values 
should represent the average of at least three independent 
measurements from at least two batches of purified protein and 
a fresh unlabeled inhibitor stock prepared for each 
experiment.

4 Notes

 1. In a typical experiment using DIG-BSA-biotin or DIG-RNase- 
biotin, 4e6 cells are resuspended in 50 μL of a premixed solu-
tion of PBSF containing a 1:100 dilution of anti-cmyc-FITC, 
2.66 μM DIG- BSA- biotin or DIG-RNase-biotin, and 664 nM 
SAPE (to achieve a 1:4 streptavidin/biotin ratio). The use of 
carrier protein–ligand molecules offers a highly avid label for 
detection of weak binders. The avidity of the system (i.e., num-
ber of copies of the ligand on the carrier protein) can be tai-
lored by changing the concentration of reagents in the carrier 
protein–ligand conjugation reaction.

 2. In our case, competition assays with free digoxigenin were per-
formed: between 750 μM and 1.5 mM of digoxigenin (Sigma 
Aldrich, St. Louis, MO) prepared as a stock solution in MeOH 
was added to each labeling reaction mixture, and binding of 
the resultant samples was determined as above. For “true” hits, 
the addition of excess free ligand should abolish the binding 
signal. Control experiments performed in a similar manner 
showed that the small amount of MeOH added does not affect 
the fluorescence or binding properties of SAPE.

 3. It is best to restrict the library size such that each clone in the 
library can be oversampled by 10–100 in the transformed pool.

 4. The stringency of the sort can be increased from round to 
round in order to hone in on one or a few binding clones by 
lowering the label concentration. However, it is important for 
the first round to be permissive to ensure that clones with low 
representation in the library pool are able to enrich if they have 
desirable binding properties.

Experimental Ptimization of Ligand Binding Affinity and Specificity
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 5. Transformation of Kunkel libraries is typically not as efficient as 
is transformation of other library formats, so we found that 
preparing the library DNA in more efficient E. coli prior to 
transformation into yeast led to higher overall transformation 
efficiencies and a better chance of having complete clone cov-
erage in the transformed library.

 6. It is best to restrict the total library size so that each clone can 
be oversampled at 10–100 in both the transformed library and 
in the sequencing run (Illumina MiSeq runs currently yield up 
to 107 reads/run).

 7. Note that for some experiments, due to the lack of solubility, 
limiting competitor ligand concentrations can make it impos-
sible to collect data in the regime of complete inhibition. In 
these cases, data are fit by fixing the anisotropy at infinite ste-
roid concentration to a value measured for other ligands for 
which this value could be determined experimentally.
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Chapter 10

Computational Design of Multinuclear Metalloproteins 
Using Unnatural Amino Acids

William A. Hansen, Jeremy H. Mills, and Sagar D. Khare

Abstract

Multinuclear metal ion clusters, coordinated by proteins, catalyze various critical biological redox reac-
tions, including water oxidation in photosynthesis, and nitrogen fixation. Designed metalloproteins featur-
ing synthetic metal clusters would aid in the design of bio-inspired catalysts for various applications in 
synthetic biology. The design of metal ion-binding sites in a protein chain requires geometrically con-
strained and accurate placement of several (between three and six) polar and/or charged amino acid side 
chains for every metal ion, making the design problem very challenging to address. Here, we describe a 
general computational method to redesign oligomeric interfaces of symmetric proteins for the purpose of 
creating novel multinuclear metalloproteins with tunable geometries, electrochemical environments, and 
metal cofactor stability via first and second-shell interactions.

The method requires a target symmetric organometallic cofactor whose coordinating ligands resem-
ble the side chains of a natural or unnatural amino acid and a library of oligomeric protein structures fea-
turing the same symmetry as the target cofactor. Geometric interface matches between target cofactor and 
scaffold are determined using a program that we call symmetric protein recursive ion-cofactor sampler 
(SyPRIS). First, the amino acid-bound organometallic cofactor model is built and symmetrically aligned to 
the axes of symmetry of each scaffold. Depending on the symmetry, rigid body and inverse rotameric 
degrees of freedom of the cofactor model are then simultaneously sampled to locate scaffold backbone 
constellations that are geometrically poised to incorporate the cofactor. Optionally, backbone remodeling 
of loops can be performed if no perfect matches are identified. Finally, the identities of spatially proximal 
neighbor residues of the cofactor are optimized using Rosetta Design. Selected designs can then be pro-
duced in the laboratory using genetically incorporated unnatural amino acid technology and tested experi-
mentally for structure and catalytic activity.

Key words Metalloprotein, Metalloenzyme design, Multinuclear metal site, Unnatural amino acid, 
2,2′-Bispyridine, Computational design

1 Introduction

Much progress has been made in the last two decades toward the 
de novo design of novel metalloproteins [1–9], where the guiding 
principle is simultaneous placement of two or more metal coordi-
nating side chain groups from naturally occurring amino acid 
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residues, cysteines, aspartate and glutamate, and histidine residues. 
However, successful design attempts have been largely dominated 
by mononuclear (a single metal ion per designed protein) inser-
tions into a single type of scaffold—the geometrically well defined 
alpha helical bundles [3]. One of the challenges while designing a 
multinuclear (metal ion site composed of two or more metal ions) 
metalloproteins is the need to incorporate multiple side chain 
coordinating groups in close spatial proximity in a single protein—
placing exacting constraints on design. Another challenge is the 
design of the electrostatic environment of the metal ions, which 
has a large impact on the stability of the highly charged cofactor 
and the associated catalytic activity.

Computational algorithms could, in principle, aid in address-
ing both challenges. We previously developed an algorithm that 
utilized the metal-chelating unnatural amino acid 2,2′-bispyridyl 
alanine (BPY) [10, 11] for designing mononuclear metal-binding 
sites [9]. The algorithm uses RosettaMatch [12] to combinatori-
ally search, in a given protein scaffold (typically a single chain), for 
a constellation of backbone structures that can support the multi-
ple (~3–6) side chain metal-chelating functional groups in the 
appropriate coordination geometry. The use of BPY simplified the 
combinatorial design problem as, unlike any natural amino acid 
side chain, the bipyridyl moiety contributes two metal ligands from 
the same amino acid side chain. Metalloproteins featuring BPY 
with His and Asp/Glu residues were designed, and their crystal-
lographic structure demonstrated close agreement with the design 
model. However, this algorithm is limited by its combinatorial 
complexity and is not applicable, practically, to construct multinu-
clear metal-binding sites.

Here, we describe an approach to computationally design 
incorporation a symmetric multinuclear metallo-cofactor via inte-
gration into a similarly symmetric protein scaffold (Fig. 1). For this 
task, we have developed a matching algorithm, symmetric protein 
recursive ion-cofactor sampler (SyPRIS), and implemented it in 
Python. This algorithm allows expanding metalloprotein design to 
scaffolds other than alpha helical bundles, as well as gaining access 
to a greater variety of symmetric multinuclear cofactors such as 
iron-sulfur clusters and cubane complexes. We illustrate the method 
by describing the incorporation of the D2 symmetric cobalt- oxygen 
cube-like cofactor (Co-cubane) [13–20]. This cofactor is a mimic 
of the water oxidation center in photosystem II and features four 
bipyridyl moieties coordinating four Co-ions, respectively. Though 
Co-cubane is used as an example, the method is generally applica-
ble to incorporate all types of cofactors of either C or D symmetry 
within any complementary symmetric scaffold. Theozyme [21] 
matches generated from SyPRIS can be further designed with the 
enzyme design modules in the Rosetta macromolecular modeling 
software [12, 22–25] (Fig. 2).

William A. Hansen et al.
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2 Methods

 1. Generate and standardize a symmetric scaffold library (Fig. 3b).
 2. Prepare a target cofactor for symmetric insertion (Fig. 3c).
 3. Use SyPRIS to identify inverse rotamer positions suitable for 

design (Fig. 3d).
 4. Perform kinematic loop closure on residue matches that reside 

within a loop secondary structure (Figs. 3e, f).
 5. Design the oligomeric interface with constraints (Fig. 3g).
 6. Revert extraneous residue mutations to favor wild-type 

sequence.
 7. Experimental validation through protein expression, purifica-

tion, and crystallization (not discussed here).

2.1 The General 
Pipeline 
for the Method 
(Fig. 3a) Includes 
the Following Steps 
(Also See Note 1)

Fig. 1 Several target cofactors that this method was intended to implement using 
scaffolds of various symmetries. (a) Co4O4(Ac)2(bipyridine)4 converted from CCDC 
crystal structure to noncanonical amino acid-bound model featuring D2 symme-
try. (b) Cu2(OH)2(bipyridine)2 converted to models featuring C2 symmetry. (c) 
CuOH(bipyridine)2 converted to models featuring C2 symmetry. (d) Fe4S4(Cys)4 
cluster featuring D2 symmetry. (e) Cu(OH)2(His)4 featuring C4 symmetry

Design of Metal Binding Sites and Metalloproteins 
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Potential protein scaffold candidates are selected from the RCSB 
protein databank to feature a given symmetry in the oligomeric 
protein, i.e., D2, C2, 3, 4…, etc. Search parameters include symmetry 
type, chain stoichiometry, expressibility in E. coli, 90 % sequence 
identity threshold, and <3.0 Å resolution (for structures deter-
mined by X-ray crystallography). From these constraints, a raw 
scaffold library is generated. More than 70 % of the scaffold files 
generated in this way contain asymmetries in the form of  incomplete 
chains—due to missing electron density in the crystal structures. 

2.2 Generate 
and Standardize 
Symmetric Scaffold 
Library

Fig. 2 Method overview, incorporation of a Co4O4(Ac)2(bipyridine)4 cofactor with noncanonical amino acids into 
a D2 symmetric scaffold

William A. Hansen et al.
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In order to use the symmetry package of the Rosetta suite, all input 
files must be composed of chains that are equal in both residue 
length and residue type. To correct the intrinsic asymmetries, a 
hybrid Smith-Waterman local alignment is performed on all com-
binations of chains, removing residues absent from other chains, 
until a single converging monomeric sequence and all its symmet-
ric partner protomers in the structures are found.

Cofactors of interest include organometallic compounds containing 
ligands that resemble either canonical amino acids or previously 
characterized noncanonical amino acids. PDB files are generated 
for cofactors of interest using their crystal structures and, where 
needed, the programs Mercury 3.5 and ConQuest 1.17 from the 

2.3 Target Cofactor

Fig. 3 (a) SyPRIS flow chart starting from generating scaffold library and ultimately ending in designable or 
discarded match. (b) An example scaffold, part of a library, will be considered by SyPRIS for the incorporation 
of a target cofactor. (c) A target cofactor, in this case an oxocobalt cubane coordinated by bipyridine ligands, 
has been modified with the appended magenta atoms creating a noncanonical amino acid. (d) The rotameric 
degrees of freedom for the atoms comprising the new backbone are sampled recursively with a chi distribution 
file (or exhaustively if desired) and compared to that of nearby backbone residues of the scaffold. (e) If the 
matched residue is part of a loop and the match was not geometrically identical, the loop is remodeled. (f) 
Three residues upstream and downstream of the translated backbone position are remodeled using Generalized 
KIC in Rosetta. (g) A fully designed oligomeric interface showing incorporated cofactor

Design of Metal Binding Sites and Metalloproteins 
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Cambridge Crystallographic Database (CCDC). Small structural 
changes may be applied to the supplied atom positions to reduce 
asymmetries within the X-ray crystallographic models. If necessary, 
backbone atoms are appended to each symmetric ligand, and all 
dihedrals are set to a default 0.0° prior to matching. To identify 
dihedral positions acceptable for each cofactor, an ensemble is gen-
erated of all dihedral rotations while simultaneously performing 
internal atomic clash checks. Dihedral rotations that pass the clash 
check are stored and plotted against each subsequent dihedral rota-
tion within a heat map. Preferred geometries are classified as regions 
of the heat map with the highest bin density at a determined thresh-
old. These geometric constraints are then converted into a “chi 
distribution” file necessary for the symmetric protein recursive ion 
sampler (SyPRIS). A chi distribution file depicts the four atoms par-
ticipating in a dihedral rotation, a range of values between which to 
sample, and the degree with which to iterate. A Rosetta parameter 
file, which stores information about the asymmetric unit of the mul-
tinuclear cluster (i.e., one Co-ion and one oxygen atom for the 
Co-cubane, one Fe and one S atom for an iron-sulfur cluster), is 
defined for integration within the Rosetta suite during design. 
Lastly, a Rosetta enzyme design constraints file, which adds an 
energy term favoring the coordination geometry between ligand 
and complex, is generated to more accurately determine the energy 
of the integrated cofactor.

With the scaffold set and cofactor model in place, the following 
steps are utilized in finding symmetric matches between the cofac-
tor coordinated to an UAA and the protein scaffold.

 1. The axis of symmetry for the scaffold protein and each cofactor 
are determined by finding the eigenvector and eigenvalues—
multiplying the coordinate matrix by its transpose matrix. 
Consequently, this creates unit vectors for each set of coordi-
nates and supplies the principal rotational axes defined as the 
eigen minimum and maximum and their orthogonal cross 
product. In C-symmetry proteins, the eigen minimum and 
maximum can each be the target axis of symmetry. To correctly 
identify the axis of symmetry in a C-system, the midpoint of all 
symmetric Cα atoms is generated, and the average of all vectors 
connecting atoms to the origin becomes the symmetric axis.

 2. Translate all Cartesian atoms of all files so that the axis of sym-
metry origin of the scaffold and each model lie on a theoretical 
(0, 0, 0) origin.

 3. Align the axes of symmetry of the complex so that the eigen 
maximum and eigen minimum are aligned with that of the 
given scaffold (Fig. 4b). In C-symmetry, the eigen minimum 
of the cofactor is aligned to the midpoint average vector gener-
ated in step 1.

2.4 Symmetric 
Protein Recursive Ion 
Sampler (SyPRIS)

2.4.1 Align Scaffold 
and Cofactor Axes 
of Symmetry

William A. Hansen et al.
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Fig. 4 (a) Residues that satisfy user-specified distance from symmetric axis highlighted in red sticks. (b) Rigid 
body rotation about symmetric axis to align symmetric axes. (c) Pictorial view of the enumerative exhaustive 
backbone sampling (left ). Schematic view of the recursive atom placing algorithm for direct matching (right ). 
(d) Ensemble of backbone positions generated via the recursive method. (e) A matched cofactor output from 
SyPRIS ready for Rosetta Design

Design of Metal Binding Sites and Metalloproteins 
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 4. If the input features C-symmetry, SyPRIS will locate the 
 midpoint of the Cβ atoms of the cofactor and translate to the 
midpoint of each protein Cβ combination that is within ± <user 
input (default = 1.0) > Å of the cofactor Cβ radii (Fig 3a). The 
cofactor is then rotated about the plane of symmetry until the 
Cβ atoms of both the cofactor and protein are aligned (Fig 3b). 
Each rotational/translational position unique to a residue sub-
set will store the lowest atom magnitude difference position as 
well as two other rotational positions clockwise and counter-
clockwise to the aligned atoms within a < user input (default = 
1.0) > Å direct distance. The four unaligned positions will be 
stored to further generate an ensemble of positions and dihe-
drals starting from step 6, below.

 5. If the input features d-symmetry, SyPRIS will perform 90° and 
180° rotations of the cofactor about the vectors that corre-
spond to each of the defined symmetric axes. Each rotational 
position will be further sampled in step 6.

 1. A cofactor to scaffold backbone clash check is performed by 
determining distances between all heavy atoms of the cofactor 
not included in the chi distribution file and the backbone heavy 
atoms of nearby residues (not including the residue making the 
match ± one residue position proximal in sequence). Any dis-
tances to heavy atoms < user input (default = 2.8 Å) are consid-
ered clashes and discarded.

 2. For each unique cofactor rotation, cofactor backbone atoms 
(branches) are rotated within the range of values about the 
bonds defined by the atoms in the chi distribution file.

 3. To score a given rotation, a vector is produced from the last 
stationary atom (LASA) to the first atom changing location 
(FACL). For example, while rotating about a chi1 bond of 
BPY UAA, the LASA is the alpha carbon, while the FACL 
would be the backbone nitrogen atom. The vector produced 
by the LASA and FACL of the cofactor is compared to that of 
the scaffold. The angle difference is calculated as an AngleLog:

 
AngleLog = < > < > ´ ´( )é

ëê
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where n is the number of compared vectors and a value of 
zero is an average deviation of 20° across all n vectors. To 
further score a matched position, the magnitude of the cofac-
tor FACL to the compared scaffold atom is calculated. The 
default  threshold for AngleLog and atom magnitude is < user 
input (default = 0.0) > and < user input (default = 0.8) > Å, 
respectively.

2.4.2 Sample Inverse 
Rotamers

William A. Hansen et al.
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 4. Enumerative sampling. A predefined ensemble of inverse 
 rotameric states is stored within one cofactor file. Each state is 
sampled exhaustively (Fig. 4c, left).

 5. Recursive sampling. For any range of values tested in the chi 
distribution file, the best scoring rotation (as long as it meets the 
thresholds) is stored along with the best adjacent rotation. 
Recursive ½ angles are sampled within this range to minimize to 
the best solution. The algorithm to locate new half dihedrals:

 A or B) / ) /j j j jo n

n

n n

n+( ) +( )-2 21  

where n is the number of half angles calculated as set by the 
user, φo is first dihedral (best scored), and n = 1 is the best scor-
ing adjacent dihedral. SyPRIS starts with the algorithm in A. If 
two of the newly calculated half angles score better than the 
original dihedral, the B algorithm takes over for subsequent 
tests. Only the φo, φ1, and φn (n = max) FACL rotated branches 
will be stored to further sample a wider ensemble of positions 
(Fig. 4c, right). This algorithm occurs for each subsequent tor-
sion angle at all stored positions (3^# of chis). Therefore, a 
cofactor with three chis featuring D2 symmetry will store 27 
positions (with tunable tolerance) at a given rotation. A C2 
cofactor with the same number of chis will store up to five 
times this many positions due to the rigid body rotational 
degrees of freedom (Fig. 4d).

 6. For both the recursive and enumerative methods, final matches 
are determined by scoring the average AngleLog and RMSD 
over all FACL atom positions as defined in step 8 (Fig. 4e).

 7. A table for each protein is generated containing all the intrinsic 
properties of the ion cluster at a given match—model number 
and rotation about an axis. The table also includes the residue 
matched within the scaffold, the average AngleLog score, each 
individual AngleLog for all chains, the RMSD for all compared 
atoms, and the scaffold name. If an exact match is found (pri-
ority 1 designs), the scaffold will be mutated at the given resi-
due position and passed to Rosetta Design. All other matches 
are subjects for the KIC procedure (priority 2 designs).

This predesign method takes the tables generated by SyPRIS and 
locates the preferred residues for replacement with the ligand-like 
amino acid within the protein scaffold. The secondary structure of 
that residue with ± <user input (default = 3) > residues is determined 
based on Ramachandran preferred angles of phi and psi using a 
standard DSSP check. If the query within the scaffold is a loop 
region, the scaffold is accepted as designable; otherwise, if the 

2.5 Kinematic Loop 
Closure (KIC)

Design of Metal Binding Sites and Metalloproteins 



182

region is helical or forms beta sheets, the scaffold is rejected. 
The scaffolds containing loops at match locations are then subjects 
of programs that:

 1. Take the scaffold and corresponding model as arguments.
 2. Translate the backbone coordinates of the matched residue on 

the scaffold to the location of the model to ensure exact match 
(generally changing atom positions by 0.5 Å across the entire 
residue).

 3. Generate a coordinate constraint file (see Note 2) of the heavy 
atoms comprising the multinuclear cluster in the model cor-
responding to chain A for use during design. A coordinate 
constraint (CST) file contains coordinates that ensures that the 
metal cluster atoms do not change positions during design.

 4. Generate two “loops” files (upstream and downstream of the 
matched residue) specific to each scaffold and matching resi-
dues necessary for performing KIC. The loop file contains 
information for which residue backbones will be sampled to 
make connection to another end point residue (i.e., remodel-
ing the upstream or downstream loop about the ligand-like 
residue).

 5. Utilizing a Rosetta-generalized KIC [26, 27], the four resi-
dues upstream and downstream are remodeled to accommo-
date the new position of the matched residue (step II). The 
remodeling includes sampling of backbone phi and psi angles 
while progressively closing the chain break. More details can 
be found in Kortemme et al.

 6. A deterministic de novo loop is generated for each use of 
generalized KIC.

 7. Generated loops are evaluated based on void formation, 
electrostatic repulsion, etc.

All redesigned loop scaffolds that pass are subject to four rounds of 
rotamer sampling followed by gradient-based minimization of side 
chain and backbone atoms. Design and repack shells are defined as 
residues with Cα atoms within 12 and 16 Å radii, respectively, 
about the matched residue. The design shell specifies that all resi-
dues within the shell excluding the metal cofactor and UAA will be 
allowed to mutate to other more favorably scoring residues. 
Residues within the repack shell sample their rotameric preferred 
side chain conformations while keeping their identity fixed. The 
talaris2013 symmetric score function with constraints is used to 
evaluate the states of the protein during design. The coordinate 
constraint file generated in step 3 of Subheading 2.5 is used to 
force the ligand-like residue into a conformation conducive for 

2.6 Rosetta Design

William A. Hansen et al.
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coordinating the ions of the cofactor. The symmetry definition file 
generated in stage 2 was used to copy any change made on the 
master unit to all slave units as defined by Rosetta symmetry. 
Backbone minimization is allowed for residues that are part of the 
UAA-containing loop and nearby residues. Heavy coordinate 
constraints are placed on the scaffold to only allow movement of 
backbone atoms if necessary due to redesigned loop clashes. Final 
designs are chosen by low backbone RMSD of the design shell, 
smallest change to void volume, and favorable energies of inter-
action of the design shell residues with the cofactor (see Notes 3 
and 4). Lastly, reversions are made on extraneous residues  
(see Note 5) to favor the wild-type sequence, and the protein is 
ready for expression (Fig. 5).

Fig. 5 Two designs incorporating a catalytic D2 symmetric organometallic cofac-
tor (Co4O4(Ac)2(bipyridine)4). The noncanonical amino acid bipyridine is incorpo-
rated on one chain, forming the cofactor upon oligomerization. The design protein 
(green and white) is compared to the wild-type scaffold (wheat). Mutation posi-
tions are represented by sticks

Design of Metal Binding Sites and Metalloproteins 
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3 Notes

 1. All Python scripts and skeleton RosettaScripts XML files are 
attached.

 2. The Rosetta force field, as other molecular mechanics force 
fields, does not accurately model interactions of protein func-
tional groups with metal ions. Therefore, it is necessary to treat 
these interactions with restraints. The weights used in the 
restraints will be system dependent, but in the final models, 
one should end up with a metal site geometry similar to the 
one from the starting crystal structure with some small devia-
tion. If the metal site is completely distorted, the weights of 
the restraints should be increased to keep the geometry fixed.

 3. Another metric that is currently evaluated by human intuition 
in our protocol is that access of small ions/substrates to the 
metal site has not been blocked by new mutations introduced 
in the design protocol. Conformational changes upon sub-
strate binding are not modeled, and system-dependent knowl-
edge of the dynamics of the closure and opening of the active 
site should be kept in mind when either picking out scaffolds 
for design and evaluating designs by inspection.

 4. Many substitutions can be introduced, but as a designer, one 
should also make sure that the initial protein scaffold can 
accommodate these changes in the absence of any substrate; 
otherwise, the enzyme will either not express or be unfolded. 
In particular, we paid special attention to the maintenance of 
the symmetric interface of the oligomer in question.

 5. Chemical intuition is almost always required to evaluate the 
goodness of designs.
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    Chapter 11   

 De Novo Design of Metalloproteins and Metalloenzymes 
in a Three-Helix Bundle                     

     Jefferson     S.     Plegaria     and     Vincent     L.     Pecoraro      

  Abstract 

   For more than two decades, de novo protein design has proven to be an effective methodology for model-
ing native proteins. De novo design involves the construction of metal-binding sites within simple and/or 
unrelated α-helical peptide structures. The preparation of α 3 D, a single polypeptide that folds into a native-
like three-helix bundle structure, has signifi cantly expanded available de novo designed scaffolds. Devoid 
of a metal-binding site (MBS), we incorporated a 3Cys and 3His motif in α 3 D to construct a heavy metal 
and a transition metal center, respectively. These efforts produced excellent functional models for native 
metalloproteins/metalloregulatory proteins and metalloenzymes. Morever, these α 3 D derivatives serve as 
a foundation for constructing redox active sites with either the same (e.g., 4Cys) or mixed (e.g., 2HisCys) 
ligands, a feat that could be achieved in this preassembled framework. Here, we describe the process of 
constructing MBSs in α 3 D and our expression techniques.  

  Key words     De novo protein design  ,   Three-helix bundle  ,   Metal-binding site  ,   Metalloprotein  , 
  Metalloregulatory protein  ,   Metalloenzyme  ,   Protein expression  

1      Introduction 

    De novo protein design offers a methodology for modeling the 
metal centers of metalloproteins  and   metalloenzymes [ 1 – 3 ]. This 
approach involves the construction of a desired metal-binding 
site(s) in a peptide scaffold with a sequence that is not found in 
nature, thus allowing scientists to uncover physical properties that 
may remain hidden from direct studies of native proteins. The most 
commonly used scaffolds have an α-helical fold and have previously 
been engineered to contain heme, nonheme iron, and zinc centers 
[ 4 ]. Much of our efforts have focused on building a 3Cys site in 
the TRI and Coil-Ser (CS) peptide system [ 3 ,  5 ]. This thiol-rich 
site is accomplished through the self-association of a single TRI or 
CS peptide into a three-stranded coiled tertiary structure (3SCC) 
(Fig.  1a ) [ 6 ]. Our work with the 3SCC scaffolds has generated 
excellent spectroscopic, structural, and functional models for  native 
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  metalloregulatory proteins that bind toxic heavy metals, including 
arsenic, cadmium, mercury, and lead [ 3 ]. Moreover, in an effort to 
recapitulate the activity of metalloenzymes bound to a transition 
metal, TRI constructs with a 3His site had also been developed 
and shown to possess copper nitrite reductase activity [ 7 ,  8 ] and 
zinc carbonic anhydrase [ 9 ,  10 ].

   DeGrado and coworkers expanded available de novo designed 
scaffolds through the preparation of a native-like peptide, α 3 D [ 11 ] 
(Fig.  1b ). This scaffold is a single polypeptide chain that preas-
sembles into an  antiparallel   three-helix bundle, a major  advance-
ment   in de novo protein design. Lacking a metal-binding site, our 
fi rst approach aimed to introduce a 3Cys site in α 3 D. Through the 
substitutions of apolar residues, as shown in Fig.  1b , four locations 
(categorized as layers) were identifi ed that could accommodate 
this design. Based on Nuclear Magnetic Resonance (NMR) analy-
sis on α 3 D, the fourth layer, which is composed of L18, L28, and 
L67, was predicted to be the most amenable to mutations. 
Chakraborty et al. prepared α 3 D IV  (Fig.  2a ), an α 3 D derivative 
with a 3Cys site at the C-terminal end of the bundle [ 12 ]. The 
authors showed that α 3 D IV  binds heavy metals Cd, Hg, and Pb in 

  Fig. 1    Structures of de novo designed peptides. ( a ) X-ray crystal structure of 
As(III) bound CSL9C (PDB 2JGO), a three-stranded coiled coil scaffold. ( b ) Solution 
structure of α 3 D. Apolar residues of α 3 D divided into four layers, as indicated by 
varying shades of  gray . The fi rst layer comprises F7, L42, and L56 at the 
N-terminal end of the bundle. Subsequent layer contains L11, F38, and A60. The 
third layer has all isoleucine residues at the 14th, 35th, and 63rd positions. The 
C-terminal layer composes of L18, L28, and L67. These layers were predicted to 
provide a 3Cys metal-binding site       
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the expected mode, serving as a  spectroscopic and functional 
model  for   metalloregulatory proteins that contain an MS 3  center. 
The NMR structure of α 3 D IV  was also solved, which revealed that 
the overall fold of α 3 D was not signifi cantly perturbed after the 
removal of stabilizing Leu residues [ 13 ]. Subsequently, a 3His zinc 
metal site was also incorporated in the fourth layer, generating 
α 3 D H   3   [ 14 ] (Fig.  2b , Table  1 ).

  Fig. 2    Subsequent α 3 D derivatives for heavy and transition metal binding. ( a ) 
Solution structure of α 3 D IV , which exhibits a 3Cys site at positions 18, 28, and 67 
that coordinates Cd, Hg, and Pb. ( b ) Model of a 3His α 3 D derivative, α 3 D H   3  , which 
was demonstrated to bind Zn and perform the function of carbonic anhydrase. 
This model was constructed from the α 3 D IV  structure       

   Table 1  
  Amino acid sequence of α 3 D constructs   

 Construct  Sequence 
 Molecular 
weight (Da)  PDB code 

 α 3 D  MGSWAEFKQR LAAIKTR LQAL GGS EAELAAFEKE 
IAAFESE LQAY KGKG 

 NPEVEALRKE AAAIRDE LQAYRHN 

 7977.2  2A3D 

 α 3 D IV   MGSWAEFKQR LAAIKTR  C QAL GGS EAE C AAFEKE 
IAAFESE LQAY KGKG 

 NPEVEALRKE AAAIRDE  C QAYRHN 

 7946.9  2MTQ 

 α 3 D H   3    a    MGSWAEFKQR LAAIKTR  H QAL GGS EAE H AAFEKE 
IAAFESE LQAY KGKG 

 NPEVEALRKE AAAIRDE  H QAYR V N GSGA  

 8283.5 

  Bolded residues indicate change from the sequence of α 3 D 
   a   See   Note 1   
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    Construct α 3 D H   3   was extended with a glycine-serine-glycine- 
alanine (GSGA) tail in an attempt to increase its overall stability 
after the incorporation of bulky His residues inside the core, with-
out perturbing the overall framework of α 3 D ( see   Note 1 ). This tail 
can also be modifi ed to glycine-serine-glycine-cysteine (GSGC) 
with an A77C mutation. Both derivatives resulted in high expres-
sion yields of 100 mg/L, and from chemical denaturation studies, 
the GSGA construct increased the Gibbs free energy of unfolding 
(ΔG U ) of α 3 D H   3   to 3.1 from 2.5 kcal/mol compared to α 3 D IV . 
Moreover, α 3 D H   3   was shown to bind Zn and perform the CO 2  
hydrolysis associated with carbonic anhydrase. Overall, these efforts 
increased in scope the use of α 3 D as a viable framework for model-
ing the metal centers of native proteins. They provide the opportu-
nity to tackle redox active sites with either the same ligands (e.g., 
4Cys) or mixed ligands (e.g., 2HisCysMet) [ 15 ], which can be 
achieved in this preassembled scaffold. This chapter presents our 
design and expression techniques in preparing α 3 D derivatives.  

2    Materials 

 Prepare all solutions using MQ or double distilled H 2 O. Prepare 
and store solutions at room temperature, unless noted otherwise. 
Prepare all solutions on a sterile lab bench, cleaned with 10 % 
bleach and followed by 70 % ethanol. Autoclave all the necessary 
glassware. 

   Access to a computer console connected to the Internet that con-
tains a more recent version of PyMOL (1.3–1.7) is required [ 16 ]. 
A payment is required to obtain a license for PyMOL (  http://
www.pymol.org    ), but a free version for students and educators is 
available (  http://pymol.org/edu/?q=educational/    ). Once a com-
puter is equipped  with   PyMOL, download the structure of α 3 D 
(PDB code 2A3D) and/or α 3 D IV  (   PDB code 2MTQ) from the 
 RCSB   Protein Data Bank (RCSB PDB) (  http://www.rcsb.org/
pdb/home/home.do    ) by entering the PDB code in the search box 
and downloading the PDB text fi le under the Download Files tab. 
A computer mouse with at least three customizable buttons is ideal 
for visualizing structures  on   PyMOL.  

       1.    A synthetic gene that contains the DNA sequence of the 
designed α 3 D derivative cloned into pET-15b.   

   2.    One-shot (50 μL) BL21(DE3) chemically competent 
 Escherichia coli  cells.   

   3.    LB agar plates: Plates are prepared on a sterilized lab bench and 
under a fl ame provided by an isopropanol lamp. Suspend 4.0 g 
LB agar powder in 250 mL beaker containing 100 mL water 

2.1  Modeling 
Using PyMOL

2.2  Transformation 
Components

Jefferson S. Plegaria and Vincent L. Pecoraro
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and autoclave using a liquid program. Allow the solution to 
cool to touch and then add 100 μL of a 100 mg/mL ampicillin 
(amp) solution. Pour LB agar solution in 100 × 15 mm petri 
dishes, allow to solidify, and store plates upside down in 4 °C.   

   4.    SOC media, which can be prepared or commercially pur-
chased. SOB media: Dissolve 0.20 g tryptone, 0.05 g yeast 
extract, and 0.005 g NaCl in 9.8 mL H 2 O. Autoclave this solu-
tion using a liquid program and allow to cool to room tem-
perature. Subsequently, add 100 μL of 1.0 M MgCl 2  and 100 
μL of 1.0 M MgSO 4  to the SOB solution. A 1.0 mL SOC stock 
media is prepared by adding 20 μL of 20 % glucose (w/v) into 
980 μL SOB media. Store leftover SOB and SOC media in 4 
°C or −20 °C for short or long storage, respectively.      

       1.    An autoinduction media [ 17 ] is the preferred expression media 
( see   Note 2 ) and prepared in 6 L batches (3 × 2 L solutions), 
which contains a rich media and a sugar solution. In a 4 L fl ask, 
suspend 48 g yeast extract powder and 24 g tryptone powder 
in 1.8 L H 2 O. For a 6 L rich media, prepare the sugar solution 
by adding in a 2 L fl ask containing 600 mL H 2 O 13.8 g 
KH 2 PO 4  (monobasic), 62.0 g K 2 HPO 4  (dibasic), 5.0 mL glyc-
erol, 0.5 g glucose, and 2.0 g lactose. Autoclave the rich and 
sugar solutions using a short liquid program ( see   Note 3 ). The 
autoinduction media is prepared by aliquoting 0.2 L of the 
sugar solution into a 1.8 L of rich media ( see   Note 4 ).   

   2.    LB media: Suspend 10 g tryptone powder, 5 g yeast extract 
powder, and 10 g NaCl in a 2 L fl ask containing 1.0 L 
H 2 O. Autoclave using a liquid program.      

       1.    Lysis buffer: 1X PBS and 2 mM DTT. To prepare a 1 L 10X 
PBS buffer, dissolve in 800 mL H 2 O 80 g NaCl, 2.0 g KCl, 
14.4 Na 2 HPO 4 , and 2.4 KH 2 PO 4 . Adjust pH to 7.4 and auto-
clave using a liquid program. For a 100 mL 1X lysis buffer 
solution, add 10 mL of 10X PBS solution into 90 mL H 2 O 
and dissolve 30.9 mg DTT. Prepare the lysis buffer solution 
fresh every expression.   

   2.    A centrifuge for 1 L and 50 mL cell cultures.   
   3.    A sonicator and a steel cup that can hold 100–200 mL 

volume.   
   4.    A water bath set at 55 °C.   
   5.    A pH electrode and lyophilizer.   
   6.    A reverse-phase C18 HPLC. Solvents: The polar solvent is 

composed of H 2 O and 0.1 % trifl uoroacetic acid and the non-
polar solvent is comprised of 90 % acetonitrile, 10 % H 2 O, and 
0.1 % trifl uoroacetic acid.       

2.3  Protein 
Expression 
Components

2.4  Protein 
Purifi cation 
Components
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3    Methods 

       1.     Run   PyMOL and open the α 3 D IV  (PDB 2MTQ) or α 3 D 
structure (   PDB 2A3D).   

   2.    Show structure as carton.   
   3.    To model a new metal-binding site in the layers described in 

the introduction (Fig.  1 ), in the Menu tab, choose Wizard and 
 then   Mutagenesis.   

   4.    In Mutagenesis option, select backbone- dependent   rotamers 
and show residues as sticks.   

   5.    Pick a residue to mutate and then the desired residue that can 
provide a metal-binding ligand such as S(Cys), N(His), or 
O(Asp or Glu).   

   6.    Notice that several rotamers are possible. Choose  the   rotamer 
that is conducive to metal binding, that is, where the ligand is 
oriented toward the hydrophobic core.   

   7.    Repeat according to the number of desired ligands ( see   Note 5 ).   
   8.    Under the Wizard tab, use the Measurement option to deter-

mine the distances between the ligands. To obtain a qualitative 
sense of a suitable metal binding, these distances should be 
between 3.5 and 4.5 Å.      

   Prior to the transformation experiment, prepare the amino acid 
sequence with the desired mutations. The gene for this sequence is 
placed between restriction sites BamHI and NcoI in the pET-15b 
vector ( see   Note 6 ).

    1.    Add 4–5 μL of 1 ng/μL of DNA to a tube of one-shot (50 μL) 
BL21(DE3) chemically competent  E. coli  cells thawed on ice 
for 10 min. Let stand for 10 min.   

   2.    Heat shock in a 42 °C water bath for 30 s.   
   3.    Cool on ice for 2 min.   
   4.    Add 200 μL SOC and shake at 200 rpm in 37 °C for 30–50 min.   
   5.    Prepare a diluted culture solution by adding 10 μL of 

BL21(DE3) cells into 90 μL fresh SOC.   
   6.    Plate 100 μL culture on LB agar amp plate and incubate upside 

down overnight in 37 °C.   
   7.    Save unused cells in 4 °C, which can be re-platted if the over-

night plate does not show single colonies or is overgrown with 
no distinguishable single colonies.    

         1.    Pick single colonies from the overnight plate and inoculate 20 
mL LB broth containing 20 μL of 100 mg/mL amp. Grow 
cultures overnight at 200 rpm and 37 °C.   

3.1  Design of α 3 D 
Derivatives  Using 
  PyMOL

3.2  Transformation

3.3  Protein 
Expression Using 
Autoinduction Media
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   2.    Add 2 mL of 100 mg/mL amp to a 2 L autoinduction media. 
Inoculate with a 20 mL overnight culture.   

   3.    Incubate overnight, 16–20 h, at 180 rpm and 25–30 °C.   
   4.    Harvest cells by spinning down in 1 L centrifuge tubes at 

8,000 ×  g  and 4 °C. Re-suspend pelleted cells with 15–25 mL 
of lysis buffer pre-chilled on ice.   

   5.    Transfer re-suspended cells in a steel cup chilled on an ice 
bucket.   

   6.    Insert sonicator tip in steel cup, ~80 % submerged in re- 
suspended cells. Keep steel cup on ice.   

   7.    Sonicate for total of 5 min, at 30 s on and 30 s off intervals. 
Repeat three times or until the solution has turned 
translucent.   

   8.    Transfer to centrifuge tubes (50 mL) and spin-down at 
17,000 ×  g  and 4 °C for 30 min.   

   9.    Transfer supernatant to 50 mL conical tubes and heat denature 
at 55 °C for 20–30 min. Transfer to the appropriate centrifuge 
tubes and spin-down at 17,000 ×  g  and 4 °C for 30 min.   

   10.    Pour supernatant in a beaker and acidify to pH 1.9 to precipi-
tate salts and cellular debris. Transfer to the appropriate centri-
fuge tubes and spin-down at 17,000 ×  g  and 4 °C for 30 min.   

   11.    Place supernatant in 50 mL conical tubes and fl ash-freeze in 
liquid nitrogen for 10–15 min or until completely frozen. 
Lyophilize frozen protein for 2–3 days or until dry.      

       1.    Redissolve dry protein powder in H 2 O (15–20 mL) and check 
pH ( see   Note 7 ).   

   2.    Purify on a reversed-phase C18 HPLC using a fl ow rate of 20 
mL/min and a linear gradient of polar solvent (0.1 % TFA in 
water) to nonpolar solvent (0.1 % TFA in 9:1 CH 3 CN/H 2 O) 
over 45 min.   

   3.    Retention time of α 3 D constructs is between 26 and 30 min.   
   4.    The molecular weight is determined using an electrospray 

mode on a Micromass LCT Time-of-Flight mass ionization 
spectrometer. The MW accounts for 72 of the 73 amino acids 
as Met1 is cleaved posttranslation ( see   Note 8 ).       

4    Notes 

     1.    The sequence of α 3 D H   3   was extended with a GSGA tail to 
increase the overall protein stability [ 14 ]. This extension also 
improved protein expression yield to ~100 mg/L compared 
from 50 mg/L compared to α 3 D IV .   

3.4  Protein 
Purifi cation
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   2.    Autoinduction media and induction via IPTG work by the 
same mechanism, which involves the induction of gene expres-
sion by relieving the repression of the  lac  promoter. Using the 
latter induction technique, repression is relieved by the bind-
ing of IPTG (allolactose analog). However, in the case of auto-
induction media, protein overexpression is controlled by the 
availability of sugar source instead of the addition of IPTG. Cell 
density relies on sugar source, as well as the expression of the 
designed gene without monitoring the cell density at 600 nm 
(OD 600 ). After exhausting the more metabolically available 
sugars, glucose and glycerol, the cells will use lactose as the 
sugar source. This natural switch will turn on the components 
of the  lac  operon, including our gene of interest that is down-
stream of the  lac  promoter region in pET- 15b. Overall, com-
pared to IPTG induction in LB media, the autoinduction 
technique eliminates 3–5 h waiting for the cell density to reach 
the proper OD 600  and has also improved our protein yield by 
20–50 mg/mL.   

   3.    For the sugar solution, autoclave using a short liquid program 
to avoid sugar oxidation, which can make them less bioavail-
able. If this sugar oxidation is suspected, the solution can be 
prepared by dissolving all the components in autoclaved water 
and vacuum fi lter through a sterile 0.22 μm fi lter.   

   4.    Prepare the autoreduction media several hours before inocula-
tion to avoid contamination. Contamination was often 
observed when the media was prepared one to two days prior 
to expression.   

   5.    Depending on your design goals, each metal-binding residue 
can be positioned on separate helices to form a triangular 
pocket. Or the two ligands can be placed on the same helix, 
spaced by two to three residues, to replicate a chelate-like motif 
and the third on a second helix, requiring only two of the three 
helices to form a metal-binding site.   

   6.    Carefully indicate where to place the stop codon in the 
sequence. If a 73 amino acid sequence is desired, place the stop 
codon (TAA, TAG, or TGA) after Asn73. If a GSGA or GSGC 
tail is desired, place the stop codon after Ala/Cys77 ( see   Note 
1 ). As described in the introduction and Note 1, the addition 
of a GSGA tail had a signifi cant effect on the expression yield 
(100 mg/L) of α 3 D H   3   and improved the  ΔG   U   of α 3 D H   3   by 
0.6 kcal/mol compared to α 3 D IV . The latter effect, which 
demonstrates an increase in stability, showed that the addition 
of these tails does not change or perturb the overall framework 
of α 3 D. Moreover, an A77C mutation to generate a GSGC tail 
also had the same effect on the expression yield of α 3 D H   3  . 
Therefore, we expect that the addition of a GSGA or GSGC 
tail is essential in stabilizing α 3 D derivatives that aim to modify 
layers 2 or 3 (see Fig.  1b ).   

Jefferson S. Plegaria and Vincent L. Pecoraro
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   7.    The pH of the polar solvent is about 1.9. It is important to 
make sure that the crude protein solution matches this pH 
condition. When the pH conditions do not match, we have 
observed precipitation after the crude solution is mixed with 
the polar solvent. This precipitate can clog the HPLC tubings 
and lines and ultimately damage the solvent pump system.   

   8.    Met1-containing species is observed in the mass spectrum of 
α 3 D IV  and α 3 D H   3   but at a low amount compared to the 
Met1- cleaved species. Met1-containing species make up about 
<5 % of the total protein.         
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Chapter 12

Design of Light-Controlled Protein Conformations 
and Functions

Ryan S. Ritterson, Daniel Hoersch, Kyle A. Barlow, and Tanja Kortemme

Abstract

In recent years, interest in controlling protein function with light has increased. Light offers a number of 
unique advantages over other methods, including spatial and temporal control and high selectivity. Here, we 
describe a general protocol for engineering a protein to be controllable with light via reaction with an exog-
enously introduced photoisomerizable small molecule and illustrate our protocol with two examples from the 
literature: the engineering of the calcium affinity of the cell–cell adhesion protein cadherin, which is an 
example of a protein that switches from a native to a disrupted state (Ritterson et al. J Am Chem Soc (2013) 
135:12516–12519), and the engineering of the opening and closing of the chaperonin Mm-cpn, an example 
of a switch between two functional states (Hoersch et al.: Nat Nanotechn (2013) 8:928–932). This protocol 
guides the user from considering which proteins may be most amenable to this type of engineering, to con-
siderations of how and where to make the desired changes, to the assays required to test for functionality.

Key words Photoswitches, Computational protein design, Light-modulatable proteins, Protein 
engineering

1  Introduction

There has been considerable interest in light-based control of pro-
tein functions [1], and successful applications include light modu-
lation of neuronal ion channels [2], light-switchable cell adhesion 
proteins [3], and light-controlled protein machines [4]. Light-
based methods offer titratable, precise spatial, and temporal regu-
lation that has been demonstrated in vitro [5], in cell culture [6, 
7], and in whole animals [8]. Most examples of light-based control 
fall into one of two categories: (a) those that are genetically 
encoded using fusions with a light-sensitive protein borrowed from 
nature [6] and (b) those created via targeted insertion of amino 
acids into a protein sequence and subsequent reaction with them 
of an exogenously introduced photoisomerizable small molecule, 
typically azobenzene based [9]. Azobenzene and its derivatives 
undergo a reversible cis–trans isomerization upon illumination 
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with either near-ultraviolet or visible light, leading to a change in 
end-to-end distance of ~18 Å in the trans state to a ~5–12 Å dis-
tribution in the cis state; this change in molecular shape can then 
be coupled to changes in protein function.

In this chapter, we describe two related methods for designing 
category (b) molecules (Fig. 1). The first method was applied to 
engineer light control of the group II chaperonin Mm-cpn [4] and 
illustrates the design of protein photoswitches that reversibly 
change between two known protein conformations. The described 
design method is useful when the target protein has two known 
functional conformations (e.g., chaperonins, nuclear hormone 
receptors, many small molecule binders), and the researcher would 
like to maintain both of them. (Note that, due to the two-state 
nature of azobenzene- based molecules, directing proteins into 
three or more conformations using light alone would require addi-
tional engineering.) The second method was applied to engineer 
light control of the cell adhesion protein cadherin [3] and designed 
a protein photoswitch that reversibility changes from a native to a 
disrupted conformation. Such designs are useful when a target 
protein has one functional conformation of interest to be dis-
rupted, and the conformation in the disrupted state need not be 
specified in detail. We also include basic protocols for conjugating 
the small molecule to the protein, as well as for measuring the 
extent to which the protein is conjugated and switchable.

In general, the considerations for both design protocols share 
much in common. Most importantly, the target protein must be 

Fig. 1 Cartoon representation of two strategies for controlling protein function 
with light. In the first (top), the protein is switched between two defined confor-
mations. In the second (bottom), the protein is switched between a functional 
state and a “disrupted” state, in which, for example, the conformation of an 
active or ligand-binding site is destabilized

R.S. Ritterson et al.
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 suitable for cross-linking with a cysteine-reactive small molecule at 
defined sites, which requires elimination of all or most native cyste-
ines and introduction of two nonnative cysteines to use as conjuga-
tion sites for cross-linking. In addition, the distance of the side-chain 
sulfur atoms of the engineered cysteines in the conformation(s) of 
the target to be maintained must match the end-to-end distance of 
the chosen azobenzene molecule in its trans and/or cis states, and 
the side-chain sulfur atoms of the engineered cysteines must be sol-
vent accessible for cross-linking. The requirement of ensuring geo-
metric compatibility necessitates experimentally determined 
structures or high-quality models for the protein conformations to 
be maintained. In addition, as initial characterizations of the photo-
switches are carried out in vitro, protein targets should be amenable 
to protein purification and, ideally, be stable.

Where the protocols differ is in the detailed constraints neces-
sary to satisfy. With two protein target states, one must find an 
interatomic distance between a pair of residues in the target such 
that in one state the distance is only compatible with one isomer of 
the chromophore and the second state only compatible with the 
other isomer of the small molecule; illumination should then lead 
to selective destabilization of one of the two protein states and 
hence reversible interconversion between them. Two states pro-
vide the advantage that the desired structures of both illumination 
states are known, increasing the probability that successful conju-
gation will produce a functional photoswitch. However, because of 
the additional geometric constraints, it is likely that only a small 
number of suitable cross-linking sites will be available, reducing 
the likelihood of finding one compatible with protein stability, 
structure, and function.

In comparison, with one functional state, one only needs to 
find a pair of attachment sites compatible with one isomer of the 
chromophore. Illumination should alter this distance and thus dis-
rupt the conformation and function of the protein target. Because 
the geometric constraints need only be satisfied in one conforma-
tion, there are likely many more possible attachments sites. As the 
conformation of the illuminated state is not known, however, it is 
more likely that chromophore illumination may not result in the 
desired change in protein function. For example, if the local con-
formation of the protein is too flexible, the change in structure of 
the chromophore may be accommodated without a significant 
change in protein structure [9, 10].

2  Materials

 1. Azobenzene chromophore suitable for cross-linking cysteine 
residues. For Mm-cpn we used azobenzene–dimaleimide 
(ABDM), and for cadherin we used 3,3′-bis(sulfonato)-4,4′-
bis(chloroacetamido)azobenzene (BSBCA).

Design of Light-Controlled Ligand Binding
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 2. Structure(s) or high-quality models of protein of interest.
 3. Academic license of the molecular modeling and design pro-

gram Rosetta [11].
 4. A protein structural viewer (such as PyMOL) capable of measur-

ing distances, or script to compute distances from coordinates.
 5. Supplies required to purify the target protein.
 6. An assay for target functionality. Mm-cpn, 4 % native polyacryl-

amide gel (PAGE); cadherin, surface plasmon resonance (SPR).
 7. UV–Vis spectrophotometer to determine the switching effi-

ciency of the chromophore.
 8. An assay to determine the efficiency of chromophore 

conjugation/cross-linking. Mm-cpn, 4–20 % SDS-PAGE gel; 
cadherin, mass spectrometer that is capable of detecting 1 Da 
changes in whole proteins, such as a Waters LCT Premier.

 9. Illumination sources for ultraviolet and visible light to switch 
the chromophore between the cis and trans isomerization states. 
Mm-cpn and cadherin: high-power LEDs with emission wave-
length of 365 nm (1 W, Advancemart) and 455 nm (3 W, 
SparkFun).

3  Methods

In this section, we detail the strategies and techniques to computa-
tionally design protein photoswitches with the goal of producing a 
ranked-ordered list of pairs of cysteine mutations to introduce into 
the target protein. At certain points in the method, the procedures 
bifurcate into parallel methods, depending on whether the target 
protein of interest has two conformations to maintain and switch 
between or a single conformation to disrupt.

In order to preserve target structure and stability, locations must 
be identified within the target structure where a pair of cysteines 
can replace the native residues with minimal disruption to the 
overall fold. One strategy to identify the safest positions for these 
mutations is to estimate the folding free energy contribution of 
each native side chain. This energy is commonly estimated by inde-
pendently mutating each residue to alanine, as alanine reduces the 
side chain to a single methyl group. This procedure, “alanine scan-
ning,” can be performed experimentally or computationally, which 
has provided rich data for the development of robustly tested com-
putational protocols, including within Rosetta [12, 13]. Alanine 
scanning can be run within Rosetta using the RosettaScripts XML 
scripting interface. Detailed instructions are available within the 
RosettaScripts documentation [14].

3.1 Computational 
Design of Protein 
Photoswitches

3.1.1 Mutational 
Robustness

R.S. Ritterson et al.
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We use computational alanine scanning within Rosetta to iden-
tify positions amenable to mutation to cysteine by only allowing 
mutations at positions where mutation to alanine is predicted not 
to destabilize the protein significantly (energy increase of less than 
1 Rosetta energy units (approximately 1 kcal/mol); all positions 
that had a decrease in energy were accepted).

 1. To shift an equilibrium between two defined conformational 
states of a protein, select cross-linking positions for which the 
following criteria are satisfied:

 (a) The expected distance of the side-chain sulfur atoms of the 
engineered cysteines in one conformational state matches the 
end-to-end distance of the chosen chromophore in its trans 
state, and the other conformational state matches the length of 
the cis state (positive design) (see Note 1).

 (b) Each isomerization state is only compatible with one of 
the two conformational states of the protein and not the other 
(negative design).

 2. To shift an equilibrium between one functional and one non-
functional state (or ensemble) of a protein, select cross-linking 
positions for which the following criteria are satisfied:

 (a) The expected distance of the side-chain sulfur atoms of the 
engineered cysteines in the functional, known state matches 
the end-to-end distance of the chromophore in either the trans 
or cis states.

 (b) The expected distance of the side-chain sulfur atoms of the 
engineered cysteines after isomerization is incompatible with 
the functional state, leading to a disrupting conformation 
change in the protein. This can be accomplished, e.g., by dis-
rupting secondary structure or distorting conformations of 
functional loops.

In order for the azobenzene chromophore to react efficiently with 
the target, the residues chosen as cross-linking sites must be sol-
vent accessible. Using PyMOL [15] (or another method of the 
users’ choice), identify all residues that are buried (have a solvent 
accessible surface area below a given threshold) and remove them 
from the list of possible mutations.

Finally, residues to be cross-linked must be pointing toward each 
other, and the chromophore must be sterically compatible with the 
protein structure (e.g., a line drawn between the Cβ atoms should 
not penetrate the protein). Generally, this process is easily done by 
visual inspection; in our experience, the vast majority of potential 
cross-link pairs are obviously sterically incompatible, leaving only a 
few pairs for consideration.

3.1.2  Distance Matching

3.1.3 Solvent 
Accessibility

3.1.4 Steric Clashes 
(Visual Inspection)

Design of Light-Controlled Ligand Binding
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The following two sections describe the specific parameters of 
the general protocol that we used for engineering photoswitchable 
Mm-cpn (Subheading 3.1.5) or cadherin (Subheading 3.1.6):

 1. Using the PDB structures of Mm-cpn in the open and closed 
conformation (identifiers 3IYE and 3IYF, cryo-EM structures, 
and 3KFB and 3KFK, X-ray structures), calculate the expected 
distances between sulfur atoms for every possible pair of cyste-
ine mutations in neighboring subunits of Mm-cpn as well as 
the expected accessible surface area of the sulfur. To create the 
models of the cysteine mutants and to do the calculations, use 
PyMOL or software of your choice.

 2. Screen for residue pairs with an expected sulfur distance of 
5–14 Å in the closed and 16.6–19.5 Å in the open state and a 
minimum expected surface accessible area for the sulfur atoms 
of 8 Å2 (10 % of the maximum surface-exposed area of the 
sulfur atom in a deprotonated cysteine residue).

 3. Keep residue pairs which satisfy the selection criteria in both 
sets of structures (3IYE/3IYF and 3KFB/3KFK).

 4. Exclude residue pairs with an intra-monomer (Mm-cpn is a 
homooligomer of 16 subunits) distance smaller than 19.5 Å to 
avoid off-target cross-linking.

 5. Visually inspect the list of possible cross-linking sites for resi-
due pairs for which there is enough unoccupied space between 
the attachment sites to accommodate the chromophore 
ABDM, and choose promising cross-linking sites for in vitro 
testing.

 1. Using Rosetta and the PDB structures of cadherin (identifiers 
1FF5, 1EDH, 2O72, and 1Q1P) with the methodology 
described in Subheading 3.1.1, computationally mutate all 
residues in the protein to alanine, and record the predicted 
change in protein stability. Eliminate all residues with predicted 
change in stability >1 Rosetta energy unit.

 2. Eliminate all residues that directly bind calcium ions.
 3. For the residues that remain, compute the Cβ–Cβ distance 

between all possible remaining pairs. Eliminate all pairs whose 
distances do not fall into the range 17–20 Å. After this step, 
the number of potential cross-linking pairs was reduced to 
approximately 1500.

 4. Eliminate all pairs that do not have at least one cross-linking 
site (Cβ atom) within 20 Å of a calcium ion.

 5. Eliminate all pairs that do not have solvent accessible surface area 
(SASA) of both cross-linking sites >30 Å2. After this step, the 
number of potential pairs was reduced to approximately 300.

3.1.5 Protocol 
for the Structure-Based 
Design 
of a Photoswitchable 
Mm-cpn

3.1.6 Protocol 
for the Structure-Based 
Design of Photoswitchable 
Cadherin

R.S. Ritterson et al.
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 6. Visually inspect the remaining pairs by drawing a line between 
the cross-linking sites. Eliminate all pairs whose line intersects 
with the protein structure, by using the surface representation 
in PyMOL. This step reduced the number of possible pairs to 
approximately 30.

 7. Using experimenter judgement, select a subset of pairs that 
meet the criteria of the study. We chose ten pairs based on a 
desire to have a diverse set of potential cross-linking sites.

After selecting the potential cross-linking sites via computational 
design, the next stage is to express and test the selected pairs exper-
imentally. This method describes the removal of native cysteines 
and the addition of the cross-linking cysteines.

The chromophores we used (ABDM and BSBCA) are cysteine 
reactive. As native cysteines in the protein target may also be reac-
tive and give undesired side products, native cysteines should be 
removed, if possible, prior to mutation to cysteine residues at the 
cross-linking sites (see Note 2).

 1. Using a suitable cloning method (e.g., Gibson assembly, site- 
directed mutagenesis), mutate a single native cysteine residue 
in the protein-coding sequence to an alternate amino acid (see 
Note 3).

 2. Express and purify the mutated protein using a method appro-
priate for the specific protein, and then test the change in sta-
bility of the protein after the mutation using a method of 
choice (see Note 4).

 3. If the protein has a specific function to be maintained, test 
changes in protein functionality after the mutation using a 
method appropriate to the specific function.

 4. If steps 1–3 result in a satisfactory outcome, repeat steps 1–3 
for an additional cysteine residue, continuing until all possible 
cysteines have been removed.

 5. If steps 1–3 do not result in a stable or functional protein, 
replace that cysteine by a different residue (repeat steps 1–3) 
or maintain the cysteine and repeat steps 1–3 for the next cys-
teine in series (see Note 5).

After all possible native cysteines have been removed, mutations to 
nonnative cysteines can be made.

 1. Using a suitable cloning method (e.g., Gibson assembly, site- 
directed mutagenesis), mutate both native residues at the tar-
geting cross-linking sites in the protein-coding sequence to 
cysteine.

3.2 Protein 
Engineering

3.2.1 Elimination 
of Native Cysteines

3.2.2 Addition of Cross-
Linking Cysteines

Design of Light-Controlled Ligand Binding
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 2. Express and purify the mutated protein using a method of 
choice appropriate for the specific protein, and then test the 
change in stability of the protein after the mutation using a 
method of choice (see Note 6).

 3. If the protein has a specific function to be maintained, test 
changes in protein functionality after the mutation using a 
method appropriate to the specific function.

 4. If steps 1–3 result in a satisfactory outcome, keep the potential 
pair. If not, eliminate it from future consideration.

In this section, we detail how to cross-link the azobenzene-based 
chromophore to the target protein, with the goal of optimizing the 
percentage of cross-linked and folded protein. We describe details 
of the important parameters controlling the outcome of the reac-
tion, including how they may change based on the particular chro-
mophore chosen.

 1. Chromophore absorption spectrum. Azobenzene cross-linkers 
with  have been recently developed to enable the user to choose 
between a wide variety of wavelengths to switch the isomer 
equilibrium of the chromophore [9, 16–18]. The two chro-
mophores used in the methods described in this chapter have 
the following absorption properties: The absorption peak of 
the π–π* transition of the trans state of ABDM is at 342 nm, 
and the long wavelength n–π* band of the cis state used for 
selective cis–trans isomerization is at 440 nm [19]. For BSBCA, 
the π–π* band is shifted to 363 nm and the cis n–π* band is at 
450 nm [20].

 2. Reactive groups. Maleimide, the reactive group of ABDM, 
reacts fast and specifically with thiols at a pH between 6.5 and 
7.5 but is unstable in water. Proteins can be cross-linked at 
incubation times of less than 1 h at RT and at fairly low con-
centrations of protein and cross-linker (e.g., see Subheading 
3.3.3). This strategy may be advisable for the conjugation of 
sensitive target proteins or for the conjugation of metastable 
protein states.

Chloroacetamide, the reactive group of BSBCA, is also spe-
cific toward thiols, but is stable in water, and its reactivity is 
considerably lower than that of maleimides. This makes incuba-
tion times of several hours, high chromophore concentrations, 
optimized buffer conditions, and elevated incubation tempera-
tures necessary to achieve satisfactory conjugation efficiency (see 
Subheading 3.3.4).

 3. Chromophore solubility and bistability of azobenzene isomeri-
zation states. ABDM is not very soluble in aqueous solutions 
in its trans isomerization state. Therefore, it is advisable to 
cross-link a protein with ABDM in the cis state after pre-illumi-
nation with UV light. An advantage of ABDM, however, is the 

3.3 Conjugating 
Protein with Small 
Molecule

3.3.1 Choice 
of Chromophore 
and Reactive Group (ABDM 
vs. BSBCA)

R.S. Ritterson et al.
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high bistability of its two isomers. The cis isomerization state is 
stable for several hours due to a low rate of the thermal cis to 
trans isomerization [4, 19].

BSBCA is designed to be highly soluble in water due to the addi-
tion of sulfonate groups to the aromatic rings of the azoben-
zene. The rate of thermal cis to trans isomerization at room 
temperature is approximately 20 min, though this can be con-
siderably longer when conjugated to protein [3, 20].

See Burns et al. [20] for a comprehensive overview of conjugation 
reaction conditions with BSBCA. For ABDM refer to [4, 19, 21] 
or the protocol below.

 1. Dilute purified Mm-cpn to 500 μl at a concentration of 0.25 
μM Mm-cpn (complex concentration) in Buffer A (20 mM 
HEPES pH 7.4, 50 mM KCl, 5 mM MgCl2, 10 % glycerol).

 2. Bias the conformational equilibrium of Mm-cpn toward the 
closed state via addition of ADPAlFX (a phosphate analogue 
which binds to hydrolyzed ATP after phosphate release) by 
adding 1 mM ATP, 6 mM Al(NO3)3, and 25 mM NaF to the 
solution (buffer A+, pH 7.0), and incubate the sample for 
20 min at 43 °C [22].

 3. Dissolve ABDM in dimethylformamide (DMF) to a concen-
tration of 1.2 mM. Prior to cross-linking, illuminate ABDM 
for 1.5 min using the UV LED. UV illumination results in an 
accumulation of ~75 % cis isomer in the solution (estimated by 
analyzing the absorption spectrum of the sample [19]).

 4. Add ABDM to the Mm-cpn solution at a ratio of 1 μl ABDM 
solution per 50 μl protein solution and shield the sample from 
background illumination. Quench the reaction after 40 min 
incubation time by adding dithiothreitol (DTT) to a concen-
tration of 2 mM.

 1. Dilute purified cadherin (protocol described in Ritterson et al. 
[3]) to a final concentration of 160 μM in 25 mM Tris–HCl 
pH 8.5, 400 mM NaCl, 1 mM EDTA, 3 mM KCl, 3 mM 
Tris(2-carboxyethyl)phosphine (TCEP), 500 μM BSBCA.

 2. Place reactions at 25 ° C in the dark for 72 h.
 3. Desalt excess chromophore using a HiPrep 26/10 (GE) col-

umn (see Note 7) into 25 mM Tris–HCl pH 8.5, 400 mM 
NaCl, 1 mM EDTA, 3 mM KCl, 3 mM TCEP.

In this section, we describe methodologies for measuring the frac-
tion of total protein conjugated, with the goal of providing the 
researcher insight into which parameters of the reaction may need 
optimization and information about which cysteine pairs conju-
gate most completely. As in other sections, the method splits into 

3.3.2 Reaction 
Conditions

3.3.3 Protocol 
for Conjugating Mm-cpn 
with ABDM

3.3.4 Protocol 
for Conjugating Cadherin 
with BSBCA

3.4 Measuring 
Protein Conjugatability
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parallel methods, based on the target structure of interest (cad-
herin monomer versus Mm-cpn chaperonin protein complex). 
Generally, a wide range of potential methods are possible, and the 
particular method chosen will depend on the protein target of 
interest.

 1. Remove 20 μl of the sample cross-linked in Subheading 3.3.3, 
and analyze it on a 4–20 % gradient SDS-PAGE gel. Formation 
of covalently linked Mm-cpn multimers after subunit cross-
linking by ABDM leads to multimer bands which can be easily 
distinguished from the 60 kDa band of the Mm-cpn monomer 
(see Fig. 2 in ref. [4]).

 2. Estimate the cross-linking stoichiometry of the sample defined 
as the fraction of cross-links to possible cross-linking sites in 
the protein ensemble by calculating the sum of the relative 
intensities of the multimer bands (band intensity divided by 
the sum of the band intensities for all multimers) weighted by 
their ratio of cross-links to subunits using, e.g., the ImageJ 
[23] software package.

This example method for photoswitchable cadherin assumes one 
has the results of a conjugation reaction on hand (from Subheading 
3.3.4) and wishes to know to what extent the reaction completed. 
Buffers are provided in the original work [3].

 1. Estimate the protein concentration using A280.
 2. Dilute protein to an estimated 1 μM concentration in pure 

water (see Note 8).
 3. Inject the conjugated sample into the mass spectrometer, 

observing a peak at 23,813 Da for unconjugated protein and 
24,266 Da for conjugated (see Note 9).

 4. Estimate the fraction of protein conjugated by calculating the 
peak areas for each subspecies and dividing the area of the con-
jugated peak by the sum of the areas of all subspecies. Potential 
conjugatabilities range widely, from 0 to 100 % depending on 
the cysteine pair (see Note 10).

In this section, we describe a method to determine the extent to 
which the chromophore in a cross-linked system undergoes isom-
erization upon illumination, without describing whether that 
isomerization causes a functional change in protein structure or 
state. We also provide a method to measure the half-life of the cis 
isomerization state, so that a researcher may determine which pho-
toswitchable candidates are most promising to test in functional 
assays.

3.4.1 Measuring 
Cross-Linking Ratio 
for ABDM- Mm- cpn 
with an SDS- PAGE Gel

3.4.2 Estimating 
Conjugatability 
for Cadherin Using Mass 
Spectrometry

3.5 Measuring 
Chromophore 
Switchability/Rate 
of Thermal Cis–Trans 
Back Reaction
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The cis–trans isomer equilibrium of azobenzene-based chromo-
phores can typically be switched in the direction of the cis state by 
exciting the π–π* band of the trans state in the near UV. To switch 
the equilibrium in the direction of the trans state, excite the n–π* 
band of the cis isomer with blue (or green) light [9]. We recom-
mend the use of high-power LEDs for illumination as they are 
widely available, relatively inexpensive, portable, and intense 
enough to isomerize protein in bulk within seconds to minutes. 
Lasers can also be used for illumination, particularly in microscope 
and other applications where high spatial precision is desirable. 
Keep isomerized protein in the dark to the extent possible to pre-
vent undesirable isomerization due to ambient light.

Prior to assessing the extent to which illumination modulates pro-
tein function, we recommend determining whether the chromo-
phore conjugated to the protein is photoisomerizable by 
illuminating trans-relaxed protein with UV light. The trans states 
of the azobenzene- based chromophores used in this protocol have 
a characteristic near-UV absorption peak of the π–π* transition, 
and, upon illumination at that wavelength, the peak amplitude 
decreases as the small molecule isomerizes into the cis state.

 1. Measure extinction coefficient εtrans of the unconjugated pro-
tein for the peak wavelength of the π–π* transition of the chro-
mophore (ABDM: 342 nm; BSBCA 363 nm) using protein at 
a known concentration (if the protein has no cofactor bound 
that absorbs light at that wavelength, ε should be approxi-
mately zero) (see Note 11).

 2. Compute εtrans for the conjugated protein using the sum of the 
extinction coefficients of the free chromophore in the trans 
state and the unconjugated protein.

 3. Measure the absorption spectrum of the conjugated protein 
prior to illumination (see Note 12).

 4. Illuminate the protein at the absorbance maximum (ABDM: 
342 nm; BSBCA 363 nm) using a method of choice, and 
remeasure the absorption spectrum of the protein every 2 min 
of illumination time. Cease illumination once the absorption 
of the π–π* band reaches a minimum.

 5. Estimate the fraction of protein that photoswitches using the 
following equation:

 
Frac peak peak mix

peak peak

=
-

-

e e

e e
, ,

, ,*
trans

trans transR  

where R is the cis–trans extinction coefficient ratio for the π–π* 
band of the chromophore; peak refers to the wavelength of the 
chromophore- specific absorption maximum; εtrans is the mea-

3.5.2 UV–Vis 
Spectroscopy

3.5.1 Illumination 
Techniques
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sured extinction coefficient for the thermodynamically equili-
brated, 100 % trans state; and εmix is the measured extinction 
coefficient for the photostable, UV-illuminated state containing 
a mix of cis and trans (Notes 12 and 13).

 6. Measure the absorbance of the conjugated protein at the peak 
wavelength of the π–π* transition of the chromophore (ABDM: 
342 nm; BSBCA 363 nm) prior to illumination.

 7. Using the same methods as in Subheading 3.5.2, illuminate 
the protein to photostability.

 8. Measure the absorbance of the conjugated protein at the peak 
wavelength of the π–π* transition of the chromophore (ABDM: 
342 nm; BSBCA 363 nm) immediately following illumination 
(time zero, t0).

 9. Keep the conjugated protein in the dark. Every 5 min (or a 
time of the experimenter’s choosing), remeasure the absor-
bance of the sample.

 10. Repeat step 3 until the protein relaxes back to the unillumi-
nated state. The half-life (t1/2 of the illuminated state) is the 
time point at which the absorbance of the sample is halfway 
between the absorbances measured in steps 1 and 2.

The particular method chosen for assaying whether photoswitch-
ing induces a structural or functional change will depend on the 
target protein. Here, we provide an example of a native gel assay 
used to determine changes in conformation upon illumination.

 1. Use the cross-linked samples from Subheading 3.3.3.
 2. To switch azobenzene between the cis and the trans isomeriza-

tion states, expose the cross-linked Mm-cpn sample to alter-
nating illumination for 20s with the blue LED (cis → trans 
isomerization) or for 90s with the UV LED (trans → cis isom-
erization). For this the sample is pipetted in a 200 μl PCR tube 
without a cap and placed in a PCR tube rack. Illuminate from 
the top by placing the LED as close to sample as possible (in 
our case in a distance of ~1 cm) to maximize light exposure (see 
Note 14).

 3. Illuminate the sample alternately with blue and UV light. After 
each illumination step, remove 20 μl of the sample for struc-
tural characterization.

 4. Load the samples on a 4 % native PAGE gel and run it for 
30 min at 160 V.

 5. Stain and destain the gel with Coomassie blue and take a pic-
ture of the gel. You can observe the light-induced switching 
between the closed and open conformations of Mm-cpn via a 

3.5.3 Measuring 
Bistability/Relaxation Rate

3.6 Structural/
Functional Assay

3.6.1 Native Gel Assay 
to Probe the Light- Induced 
Conformational Switching 
of ABDM-Mm- cpn
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clear distinct band shift between both conformations on the 
gel (see Fig. 2 in ref. [4]).

4  Notes

 1. Keep in mind that the end-to end distance distribution of the 
cis isomerization state is significantly broader than the one of 
the trans state (i.e., more rigid due to the planar extended π 
electron system) [9].

 2. Deeply buried cysteines in the native protein may not be reac-
tive and could be maintained. However, proteins often have 
some flexibility and can transiently expose buried positions. As 
a result, we recommend attempting to mutate all native cyste-
ines and adding back those that cannot be mutated to an alter-
nate residue without compromising protein stability or 
function.

 3. We recommend using serine as a replacement for surface- 
exposed cysteine and alanine for buried cysteines. In theory, all 
cysteines could be removed in one step. Sequential mutation, 
although time consuming, allows one to identify any particu-
larly troublesome cysteines that may have to be added back 
later.

 4. There are a multitude of protein expression and purification 
methods, and the choice of a particular method is outside the 
scope of this chapter.

 5. It is possible that surface-exposed cysteines distant from the 
intended cross-linking sites, even if they are labeled with chro-
mophore, will not cross-link the protein and thus may not 
affect function. However, the presence of those additional 
labeled cysteines complicates measurement of protein concen-
tration, conjugatability, and switchability.

 6. When purifying and handling cysteine-containing proteins, 
maintain reducing agent (e.g., DTT, TCEP) wherever possible 
to avoid oxidation/disulfide bond formation of cysteine resi-
dues. Note, however, that thiol-based reducing agents can 
interfere with chromophore conjugation.

 7. BSBCA tends to migrate slowly in common chromatography 
media and can be difficult to elute, especially in the presence of 
salt. It can be removed by washing the column thoroughly and 
repeatedly with pure water.

 8. The presence of salts leads to adduct formation and the appear-
ance of side peaks in the instrument, obfuscating the results. 
Cadherin is stable for hours in pure water without any salt; the 
stability of other proteins may vary.

Design of Light-Controlled Ligand Binding
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 9. For BSBCA, the conjugated, cross-linked protein will appear 
at +453 Da relative to unconjugated protein. In our hands, we 
never observed single-linked protein or protein conjugated to 
two single-linked chromophores. This is likely due to the much 
faster intramolecular reaction rate of the single-linked protein 
to the remaining cysteine compared to side reactions. If native 
cysteines in the protein were required to be maintained, how-
ever, reaction to them by chromophore will result in the 
appearance of additional peaks.

 10. We assume the ionizability of the cross-linked protein is the 
same as the uncross-linked for the purposes of computing 
cross- linked fraction.

 11. Different chromophores have different extinction coefficients. 
If protein concentration is to be measured using A280, ε280 for 
the chromophore can be measured using pure chromophore of 
known concentration, and the conjugated protein concentra-
tion can be calculated using ε280,conjugate = ε280,chromophore + ε280,unconju

gated protein. This assumes the extinction coefficient of the small 
molecule does not change during conjugation; this assumption 
can be checked by comparing band intensities of unconjugated 
and unconjugated proteins at the same nominal concentrations 
with an alternate assay (e.g., Bradford or SDS-PAGE).

 12. A pure population of trans protein can be obtained by first 
illuminating protein with visible light, followed by keeping 
protein in the dark for an extended period of time (e.g., 
overnight).

 13. Computing R relies on knowing εpeak for the cis chromophore, 
which may be difficult to obtain, as cis chromophore may be 
difficult to isolate for measurement. A previous study used an 
R value of 0.541 for computing protein concentrations, based 
on measurements of BSBCA chromophore isomers separated 
by HPLC [3].

 14. UV light is absorbed by conventional glass and plastic.
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    Chapter 13   

 Computational Introduction of Catalytic Activity 
into Proteins                     

     Steve     J.     Bertolani    ,     Dylan     Alexander     Carlin    , and     Justin     B.     Siegel      

  Abstract 

   Recently, there have been several successful cases of introducing catalytic activity into proteins. One 
method that has been used successfully to achieve this is the theozyme placement and enzyme design 
algorithms implemented in Rosetta Molecular Modeling Suite. Here, we illustrate how to use this software 
to recapitulate the placement of catalytic residues and ligand into a protein using a theozyme, protein 
scaffold, and catalytic constraints as input.  

  Key words     Enzyme design  ,   De novo enzyme design  ,   Rosetta  ,   Theozyme  

1      Introduction 

 The design of enzyme catalysts with catalytic profi ciencies rivaling 
natural enzymes remains a major challenge in biochemistry. 
Successful design of active enzymes would be the ultimate proof of 
our understanding of enzymatic  catalysis  . The fi eld of computa-
tional enzyme  design   has had successes in the past decade, with the 
successful computational design of enzyme catalysts that perform 
 Kemp   elimination [ 1 ], retro-aldol condensation [ 2 ], and Diels-
Alder cyclization [ 3 ]. These examples used the Rosetta Molecular 
Modeling Suite [ 4 ] to introduce activity into protein scaffolds. 

 The introduction of new chemistry into a protein using the 
 Rosetta Molecular    Modeling Suite   consists of the following steps:

    1.      Theozyme     generation : A theozyme is a geometric description 
of the transition state of a reaction that is stabilized by interac-
tions from  protein   residues [ 5 ]. There are several ways to gen-
erate theozymes: they may be calculated using QM methods, 
by direct observation of a crystal structure with an inhibitor 
bound, or by chemical intuition. The goal of a theozyme is to 



214

defi ne the geometry of the transition state relative to the amino 
acids in the protein performing the chemistry. This includes 
selecting a low-energy mechanism for the reaction of interest 
and testing various amino acids to stabilize and lower the reac-
tion energy. The geometry of the  theozyme   is written in a con-
straint fi le, which defi nes the residues and atoms involved and 
distances, angles, and dihedrals between them.   

   2.     Scaffold selection : In order to place the  theozyme   into a pro-
tein, the engineer must choose a set of proteins to use as scaf-
folds. The proteins in this set will depend on the project goals. 
For example, if the end goal will be to introduce function into 
a protein that will be used in a thermophilic environment, then 
it would be best to select a subset of the proteins from the 
PDB that are already thermophilic proteins. It is recommended 
to work with crystal structures at high resolution (<2.0 Å).   

   3.     Match : With both a set of protein scaffolds and a  theozyme   in 
hand, the next step is to fi nd a protein in which the amino acids 
of the theozyme can be introduced and the ligand built off in 
a geometric orientation that satisfi es all of the constraints, 
while not sterically overlapping with the protein  bac  kbone. 
RosettaMatch [ 6 ] is one software package that can perform 
this search. It requires a geometric description of the catalytic 
residues geometric orientation relative to the transition state 
(i.e., a constraint fi le) and a set of “scaffold” PDB fi les and 
positions within the PDB  to   search for potential placement of 
the catalytic amino acids (i.e., a position fi le). First, all the 
amino acids in the positions defi ned in the position fi le are 
converted into alanine. Next, the algorithms searches residue 
by residue, attempting to fi nd a set of positions that allow both 
the catalytic residues and the  theozyme   to be introduced in an 
orientation that is within the geometric parameters defi ned in 
the constraint fi le. After running RosettaMatch, the result will 
be a set of scaffolds containing mutations and a ligand match-
ing the geometry in the constraint fi le (i.e., matches).   

   4.     Enzyme    design : The   next step is optimizing additional  molec-
ular   interactions at the protein–theozyme interface by intro-
ducing mutations predicted to stabilize the conformations of 
residues involved in the theozyme (including the ligand). The 
enzyme design  protocol   in Rosetta [ 7 ] starts with a “match” 
from the matcher containing the  theozyme   grafted onto the 
protein backbone and designs the local region for complemen-
tarity to the ligand and interactions that stabilize the catalytic 
residues. This step also refi nes the ligand placement with fi ner 
sampling than is performed in the matching step.   

   5.     Manual refi nement of designs : The fi nal computational step 
is an interactive assessment of the designs using real-time eval-

Steve J. Bertolani et al.
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uation with Rosetta’s energy function. Foldit [ 8 ] is used to 
enable the researcher to refi ne the automated designs using 
chemical intuition or external knowledge in order to optimize 
designs before experimental characterization.   

   6.     Experimental validation and characterization : Designed 
sequences should be predicted to have overall low energy and 
be in close agreement with the defi ned constraints. Designs 
may be selected for testing by a combination of visual assess-
ment and energetic scores, as well as other considerations such 
as viability of expression. In order to evaluate whether the 
introduced function is truly rate enhancing, we suggest follow-
ing the guidelines of Wolfenden and calculating the k cat /k uncat  
[ 9 ,  10 ]. The result, if all goes well, is a novel enzyme that per-
forms the desired function.    

2      Materials 

 Here, we will provide an example of  the   design of an enzyme by 
recapitulating the active site of a glycosyl hydrolase through plac-
ing a p-nitrophenyl-beta- d -glucopyranoside (pNPG) substrate 
and catalytic amino acids into the native enzyme scaffold using the 
protein scaffold,  theozyme  , and chemical constraints as inputs. 
The protein selected in this case natively performs the chemistry 
desired. But this illustrates how the entire process works and could 
be readily adopted for introducing function into protein scaffolds 
that do not natively carry out the desired chemistry. The materials 
needed are:

    1.    A 3D model of the desired substrate, pNPG.   
   2.    A constraint fi le describing the  theozyme  . In this case, we will 

use an experimentally derived geometry from the crystal struc-
ture 2JIE [ 11 ], which contains a transition state inhibitor 
(2-deoxy- 2-fl uoro-alpha- d -glucopyranose) that closely mimics 
the shape of the desired substrate, pNPG (Fig.  1 ).

       3.    A protein scaffold into which we can match the theozyme 
described in the constraint fi le. In this tutorial, we will use 
2JIE itself for this walkthrough as discussed earlier.   

   4.    A computer with Rosetta installed and Internet connection. 
For this tutorial, Rosetta has been installed from source into 
the home directory. The path to Rosetta binaries is  ~/Rosetta/
main/source/bin (  see   Note 1   ).    

   5.    FoldIt. In order to load designs with transition state models, 
this must be compiled from source. Instructions for doing so 
can be found at    https :// wiki.rosettacommons.org / index.
php / Foldit _ Getting _ Started     .   

Design of Catalytic Sites
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   6.     PyMOL   version 1.5.0.5 or greater. Any molecular modeling 
program may be used, but the commands in this example are 
tested with the executable version of PyMOL, built upon ver-
sion 1.5.0.5 © Schrodinger LLC [ 12 ].    

3      Methods 

 Entries beginning with > indicate the line is to be executed at a 
command prompt. Entries beginning with  PyMOL  > indicate the 
line is to be executed inside of the PyMOL command prompt. All 
of the fi les and commands used in this tutorial are available at 
  https://github.com/SiegelLab/matcher_fi les     ( see   Note 2 ). 

  
     1.    Begin with a 3D conformer of pNPG as a Sybyl Mol 2 fi le. 

The model  reaction   here will be modeled as an S n 2-like reac-
tion where the substrate transitions into a pentacoordinate 
transition state in which the anomeric carbon is approximately 
sp 2  hybridized. Therefore, the three atoms bonded to the 
anomeric carbon should be planar (Fig.  2 ). Using a program 
such as Spartan [ 13 ] constraints can be implemented using 
this chemical information where distances and dihedrals are 
locked at the proposed relative geometries for the transition 
state. The remainder of the molecular can undergo molecular 
mechanics minimization. The resulting model should be 
saved as LG1.mol2.

   In order for Rosetta to understand how to treat the ligand, 
we must convert the mol2 formatted fi le into a Rosetta params 
fi le. This fi le contains the atom type (e.g., primary carbon, 
hydroxyl, acid, etc.) specifi cations in order for Rosetta to calcu-
late the molecular energy of the system with the ligand in terms 
of the energy function being used.   

3.1  Theozyme 
Generation

  Fig. 1    The theozyme used in this example, showing the modeled pNPG, two 
glutamates, and one tyrosine residue in the proper orientation for hydrolysis       
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   2.    To generate a parameters fi le for pNPG, run the Python script 
molfi le_to_params.py using the 3D conformer of pNPG as the 
input: 

 >python ~/Rosetta/main/source/src/python/apps/public/
molfi le_to_params.py -n LG1 LG1.mol2. 

 The script will write a parameters fi le, LG1.params, and a  PDB 
  of the ligand called LG1_0001.pdb, which defi nes Rosetta 
atom types for each atom in the ligand. The params fi le defi nes 
a “neighbor” atom for the molecule, which is the center of 
mass atom of the ligand, by default. In the params fi le, this 
neighbor atom is denoted on the line that starts with “NBR_
ATOM.” This atom is used when overlaying alternate confor-
mations and may be a problem if the atom chosen moves in 
the alternate conformations. It is recommended that the user 
open the LG1_0001.pdb fi le, turn on the atom names, and 
verify the neighbor atom chosen, and the atoms it is directly 
bonded are the most relevant atoms for the chemistry being 
carried out.   

   3.    Convert the  theozyme   into a Rosetta enzyme design/matcher 
constraint fi le. Using the atom names in LG1_0001.pdb and 
the standard Rosetta atom names for canonical amino acids 
(located in the source at ~/ Rosetta / main / database / chemical 
/ residue _ type _ sets / fa _ standard / residue _ types / l - caa ), write the 
constraint fi le defi ning the theozyme geometry. This has been 
previously described, and we refer to the literature [ 7 ] and the 
online documentation found at   https://www.rosettacom-
mons.org/docs/wiki/rosetta_basics/fi le_types/match-cstfi le-
format    . In addition, there are several resources available at the 
Meiler lab research page   http://www.meilerlab.org/index.
php/jobs/resources     -> Rosetta  Reso  urces -> Enzyme Design. 
 Briefl y, we wish to defi ne three distinct constraints.

  Fig. 2    The crystal structure ligand ( cyan ) versus the model of the transition state 
of pNPG ( green ). Only the hydrogen mentioned (part of the sp 2  hybridization of 
the anomeric carbon) is shown       
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    1.    Nucleophile: The nucleophilic Glu353 must be con-
strained in accordance with an S n 2-like transition state 
geometry such that the carboxylate oxygen of Glu353, the 
anomeric carbon of the substrate, and the leaving group 
oxygen are collinear (Fig.  3 ).

       2.    Acid: The carboxylate of the acid–base, Glu164, must be 
constrained such that the carboxylate oxygen, the proton, 
and the leaving group oxygen are collinear (Fig.  4 ).

       3.    Backup: Finally, Tyr295 must be constrained to be within 
hydrogen bonding distance from the nucleophilic oxygen 
of Glu353 in order to maintain the Glu353 in the correct 
orientation for nucleophilic attack (Fig.  5 ).

  Fig. 3    Constraint Block 1 that describes the nucleophilic attach of the GLU353 in 
the native crystal structure       

  Fig. 4    Constraint Block 2 which describes the protonation of the leaving group. In 
the renumbered crystal structure 2jie, this is performed by residue GLU164       
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       For this tutorial, it is suffi cient to measure the distances, angles, 
and dihedrals from the crystal structure of 2JIE in complex 
with the transition state inhibitor and write these down in 
LG1.enzdes.cst for constraints #1 and #3. The inhibitor lacks 
a leaving group, and thus the researcher is left to make con-
straint #2 using knowledge of organic chemistry and idealized 
geometries. Here, we have idealized the angles and dihedrals 
to be round numbers in accordance with fundamental organic 
chemistry principles. The three constraints are as follows: 
 # GLU nucleophile to LG1 

 # The following describe the geometry desired in the matcher 
and for the enzyme design:

   TEMPLATE::  ATOM_MAP:  1   atom_name: C5 O2 C4  
  TEMPLATE::  ATOM_MAP:  1   residue3: LG1  
  TEMPLATE::  ATOM_MAP:  2   atom_name: OE2 CD CG  
  TEMPLATE::  ATOM_MAP:  2   residue1: E  
  CONSTRAINT:: distanceAB:  2.0  0.3  500.0  1  0  
  CONSTRAINT:: angle_A:  180.0  20.0  500.0  360  0  
  CONSTRAINT:: angle_B:  120.0  20.0  500.0  360  0  
  CONSTRAINT:: torsion_B:  -180.0  30.0  500.0  360  0  
  CONSTRAINT:: torsion_AB:  180.0  30.0  500.0  360  0  
  CONSTRAINT:: torsion_A:  -42.0  30.0  500.0  360  0    

 The last column describes the number of additional samples 
RosettaMatch will discretely test. When this column is set to 0, 
 RosettaMatch   will try the default value (2.0). If no matches are 
found, increase the degrees of freedom (DOFs) by increasing 
the values in this column ( see   Note 3 ). 

  Fig. 5    Constraint Block 3 which describes the TYR interaction with the nucleo-
phile, GLU       
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 # GLU acid to LG1 leaving group oxygen:
   TEMPLATE::  ATOM_MAP:  1  atom_name:  O2 C7 C9  
  TEMPLATE::  ATOM_MAP:  1  residue3:  LG1  
  TEMPLATE::  ATOM_MAP:  2  atom_name:  OE2 CD CG  
  TEMPLATE::  ATOM_MAP:  2  residue1:  E  
  CONSTRAINT::  distanceAB: 3.0  0.5  500.0  0  
  CONSTRAINT::  angle_B:  120.0 25.0  500.0  360  
  CONSTRAINT::  torsion_B:  180.0 35.0  500.0  180  
  ALGORITHM_INFO::  match  
  SECONDARY_MATCH:  DOWNSTREAM  
  ALGORITHM_INFO::END 

 # TYR backup to GLU nucleophile (Constraint block 1):  
  CST::BEGIN  
  TEMPLATE::  ATOM_MAP:  1  atom_name:  OE2  CD  CG  
  TEMPLATE::  ATOM_MAP:  1  residue1:  E  
  TEMPLATE::  ATOM_MAP:  2  atom_type:  OH  
  TEMPLATE::  ATOM_MAP:  2  residue1:  Y  
  CONSTRAINT::  distanceAB:  3.0  0.5  500.0  0  
  ALGORITHM_INFO::  match  
  SECONDARY_MATCH: UPSTREAM_CST  1  
  ALGORITHM_INFO::END    

 The resulting fi le in which these constraints are placed should be 
called LG1.enzdes.cst. This fi le serves as both the  RosettaMatch 
fi l  e and the Rosetta enzyme  design const  raint fi le.   

   4.    Generate conformations. 
 This step allows the researcher to control over which degrees of 
freedom are sampled of the ligand. There are many ways to 
achieve this including Spartan [ 13 ], Omega [ 14 ], Gaussian [ 15 ], 
and Confab [ 16 ]. These programs evaluate a number of different 
conformations while taking in consideration the energy, intramo-
lecular interactions, and steric interactions. It is highly recom-
mended to use one of these programs to generate a representative 
set of conformations. However, for simplicity we shall generate 
our conformations by hand. What follows describes how to hand 
generate rotations about the oxygen atom of the leaving group, 
thus  rotat  ing the  p -nitrophenyl group. It is important to note 
that when generating the conformations by hand, the energy of 
the ligand is not taken into consideration. This is critical since the 
intramolecular energy of the ligand is essentially not considered 
in the current implementation of the Rosetta Molecular Modeling 
Suite. Therefore, having low-energy conformations is of critical 
importance since Rosetta will not distinguish binding of a high- 
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energy to low-energy ligand conformation. The method 
described below assumes the conformation software does not 
change the atom names; if that is not the case, refer to the Notes 
section for a different method ( see   Note 4 ).   

   5.    Open the LG1_0001.pdb fi le in  PyMOL.   Changing mouse 
mode from 3 button selection to 3 button editing, the  p -nitro-
phenyl group can be rotated by holding Ctrl on the keyboard 
and right- clicking on the bond between the oxygen and the 
carbon on the ring, closer to the carbon side. This allows 
manipulation of the angle. Once the bond has been rotated, 
each conformation can be saved into separate fi les. Alternatively, 
for the fi le provided, use the following  PyMOL   commands:

   PyMOL>show labels, LG1  
  PyMOL>get dihedral n. C5, n. O2,n. C7, n. C8 # 
-46.454 degrees.  

  PyMOL>set_dihedral n. C5, n. O2,n. C7, n. C8, 
73.55  

  PyMOL>save LG1_rot2.pdb  

  PyMOL>set_dihedral n. C5, n. O2,n. C7, n. C8, 
193.55  

  PyMOL>save LG1_rot3.pdb      

   6.    Rename LG1_rot2.pdb to LG1.conf.pdb and concatenate the 
contents of LG1_rot3 on to the end in the command prompt, 
working in the same directory these fi les were created. 

 >mv LG1_rot2.pdb LG1.conf.pdb; cat LG1_rot3.pdb >>

LG1.conf.pdb. 
 This creates a fi le called LG1.conf.pdb that contains rota-

tions about the leaving group oxygen.   
   7.    Add conformations to params fi le. 

 To load the conformations into Rosetta, the conformation fi le 
must be identifi ed in the params fi le. This will allow the transi-
tion state to adopt the generated ensemble of conformations 
during  docking   and design ( see   Note 5 ).   

   8.    Add the following line to the bottom of the LG1.params fi le 
 PDB_ROTAMERS conf.lib.pdb.      

         1.     Open PyMOL.     
   2.    PyMOL>fetch 2jie. 

 This downloads the 2jie.pdb crystal structure into the direc-
tory from which  PyMOL   is executed from. Alternatively, just 
download the PDB directly from the website.   

   3.    Renumber the PDB. It is  im  portant to renumber before creat-
ing the positions fi le. Many Rosetta applications will internally 
renumber proteins to start at 1. Renumbering thus avoids 
potential mismatches of residues.   

3.2  Scaffold 
Selection
3.2.1  Download 
the Crystal Structures 
to Use as Scaffolds

Design of Catalytic Sites



222

   4.    >python ~/Rosetta/tools/renumber_pdb.py -pdb 2jie.pdb 
–o 2jie.renumbered.pdb -a 1.   

   5.    Create a position fi le. In order for the matcher to run on a 
given scaffold and to limit sampling to only residues that are 
buried or in pockets, one may select a subset of all residue posi-
tions ( see   Note 6 ) and declare these in a space-delimited posi-
tions fi le (positions.pos). For this example, the renumbered 
crystal structure of 2jie was opened in  PyMOL,   the ligand 
selected, and any residues within 8Å of the ligand were selected. 
The 8 Å cutoff defi nes the location of the pocket as being com-
prised of these residues. However, all residues or any arbitrary 
set can be selected as potential positions to use during the tran-
sition state placement stage depending on the researchers goals 
and hypothesis of what an optimal catalytic site would be going 
into the modeling ( see   Notes 8  and  9 ).   

   6.    The following assumes there are no other HETATM records in 
the PDB fi le other than waters (which get removed using  the   
commands below). The following set of commands is to be 
executed in the  PyMOL   command prompt ( see   Note 7 ):

   PyMOL>load 2jie.renumber.pdb  
  PyMOL>remove solvent  
  PyMOL>sele hetatm, HETATM  
  PyMOL>sele pos, hetatm expand 8 and n. CA  
  PyMOL>myfh = open("positions.pos","w")  
  PyMOL>iterate pos, myfh.write("%s " %resi)  
  PyMOL>myfh.close()    

 This loads the crystal structure, removes waters and other sol-
vent molecules, selects the ligand in the crystal structure, 
expands the selection by 8 Å around the ligand, opens a fi le 
called postions.pos, and writes to it the list of residues by index 
with a space in between. The positions.pos fi le should read as 
one line with the following residues: 
 “ 15 16 19 119 163 164 220 293 294 295 352 353 354 355 
356 399 400 404 405 406 407 415 .”       

  
     1.    Check the Constraint File –optional, requires additional modi-

fi cation to the constraint fi le ( see   Note 10  and  11 ). Although 
optional, this step is highly indicative of the accuracy of the con-
straint fi le. However, it does require the specifi cation of all 6 
DOFs for each constraint block. The Rosetta Cstfi leTo
TheozymePDB app creates a model of the  theozyme   based off of 
the constraint fi le (this is the inverse problem of specifying a con-
straint fi le from the theozyme). The reader is highly encouraged to 
consult the online matcher documentation for more details and to 
remove any extra degrees of freedom to be sampled in the LG1.

3.3  Match
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enzdes.csts fi le when running this app.  Warning : The LG1.enz-
des.cst fi le as provided in the GitHub repository will not run 
without defi ning all of the degrees of freedom.   

   2.    >~/Rosetta/main/source/bin/CstfileToTheozymePDB.
default.linuxgccrelease -database ~/Rosetta/main/database 
-extra_res_fa LG1.params -match:geometric_constraint_fi le 
LG1.enzdes.csts. 

 This will create a number  of   PDB fi les that may be opened in 
 PyMOL  . These fi les may be used to verify the constraint fi le is 
specifying the distances, angles, and dihedrals as intended. The 
fi les should approximately match the  theozyme   from which the 
constraints were generated.   

   3.    Run the matcher on the scaffold. Repeat for all scaffolds of 
interest; to do this just change the –s 2jie.renumber.pdb to 
another scaffold. Each scaffold should be renumbered and 
have its own unique position fi le. More information on each 
option used here may be found at   https://www.rosettacom-
mons.org/docs/latest/full-options-list    .   

   4.    >~/Rosetta/main/source/bin/match.default.linuxgccrelease 
( add all of the following fl ags after this binary command; do not 
include the lines starting with #) .

   #File I/O  
  -match:geometric_constraint_fi le LG1.enzdes.cst  
  -s 2jie.renumbered.pdb  
  -extra_res_fa LG1.params  
  #Extra side chain  rotamer   samples  
  -ex1 -ex2 -ex3 -ex1aro -ex2aro -use_input_sc #( see   Note 3 )  
  #Matcher Options  
  -match:lig_name LG1  
  -match:scaffold_active_site_residues positions.pos  
  -bump_tolerance 0.4  
  -consolidate_matches T  
  -output_matches_per_group 1  
  -match_grouper SameSequenceGrouper  
  #Other  
  -ignore_unrecognized_res T  
  -database ~/Rosetta/main/database  
  -mute protocols.idealize        

 This will create a series of fi les starting with UM_ that describes 
the matches found, in the order of the constraint block (Fig.  6 ). 
For example,
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   UM_13_E353E164Y295_2jie_LG1_1.pdb is the 13th hit 
found by the matcher, and it placed the fi rst constraint block resi-
due at  position 353 in the protein and matched the second con-
straint block to position 164 and the third constraint block to the 
295 tyrosine position. The LG1_1 refers to the fi rst (of 3) ligand 
 rotamers   that were used in sampling.  

  
 At this point, for every  scaffold   there may be many different UM* 
hit fi les. In order to optimize the position of the ligand, as well as 
to backup the mutations made with additional interactions, an 
enzyme design run should be carried out. This samples different 
mutations around the space where the  theozyme   was inserted into 
the scaffold protein. This has previously been described in litera-
ture [ 7 ]; we have provided the fl ags to run the binary as well as the 
sampling script in the online GitHub repository ( see   Note 12 ). 
Further details on the format and movers called in the design_
on.xml can be found at   https://www.rosettacommons.org/docs/
wiki/scripting_documentation/RosettaScripts/RosettaScripts    . 
This should be run for every UM* fi le that comes out of the 
RosettaMatch simulation. Rosetta simulations stochastically sam-
ple the design space, and the results may differ from run to run.

    1.    >~/Rosetta/main/source/bin/rosetta_scripts.default.
linuxgccrelease

   @enzfl ags_parser  
  -parser:protocol design_on.xml  
  -s UM_13_E353E164Y295_2jie_LG1_1.pdb  
  -nstruct 10  
  -database ~/Rosetta/main/database  
  -run::preserve_header  

3.4  Enzyme Design

  Fig. 6    Two examples of matches—pre optimization. Note that in these two examples, the Tyr is positioned at 
the same place, but the glutamic acids are on different loops (comparing the  left image  to the  right image ) 
resulting in a different orientation of the substrate       
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  -jd2::enzdes_out  
  -enzdes::cstfi le LG1.enzdes.cst  
  -extra_res_fa LG1.params    

 This will create 10 new structures in which the geometric position 
of the ligand has been optimized and the mutations to stabilize the 
active site have been introduced. Each simulation also creates a 
score fi le and a tab-delimited fi le that contains the individual terms 
of the score function for each of the ten models. Each match has its 
own score fi le (when ran in different folders), and all of the score 
fi les may be concatenated into one combined score fi le for fi ltering. 
This can be achieved with the following Bash commands:

   >fi nd . –name “score.sc” > myscorefi les.  
  >while read x; do; cat $x >> combo.scores; done < 
myscorefi les.  
  This combines all of the scores into a new fi le called combo.
score.    

 Rosetta carries out a  Monte-Carlo simulation   and is not determin-
istic of a low-energy solution. Ten simulations are not suffi cient to 
thoroughly sample the degrees of freedom with side chain, back-
bone, and rigid body movement. However, ten provide a general 
indication of whether or not a low-energy solution is possible while 
minimizing computational time.   

   2.    From the designs, a subset are chosen for further refi nement 
( see   Note 13 ). In this example, all of the score fi les for different 
position matches are combined into one fi le. Using the score 
terms as fi lters, a subset of designs can be selected for further 
refi nement. This step may be done in a spreadsheet or using 
command line tools. There are no rules or established “best 
practices” for fi ltering and selecting a subset of designs. 
However, the following is one series of fi lters we commonly 
employ. First, select all of the matches that have 0 constraint 
energy (i.e., the constraint fi le specifi cations are fully satisfi ed). 
Then sort on interface energy (the term in the score fi le that 
ends with interf_E_1_2) and select the lowest 5 from this set to 
visually inspect. The lowest fi ve found are 2 at position UM_18 
(interface energies: -8.56, -7.56), 1 at position UM_31 (inter-
face energy: -7.32), 1 at position UM_20 (interface energy: 
-7.15), and 1 at position UM_13 (interface energy: -6.49).   

   3.    At this point, further refi nement of the selected low-energy 
designs should be carried out. This can either include running 
a larger design simulation, which may be equivalent to the one 
above but with an –nstruct of 100 or 1000. However, at the 
very end, it is always critical to visually assess and evaluate the 
details of the designed interface. To do this, Foldit provides an 
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excellent way to understand why a mutation was chosen and 
the ability to assess if other mutations may also be favorable in 
real time. We will illustrate this with UM_13 in further detail.    

    
 At this point, we have identifi ed several designs from potentially 
several scaffolds that all appear to score well ( see   Note 14 ). As a 
fi nal computational step, Foldit is utilized to interact with each 
design and make a manual and visual assessment of each design.

    1.    Choose a representative set of enzyme design outputs to man-
ually refi ne in Foldit. In this case, we will select the structure 
UM_13_E353E164Y295_2jie_LG1_1_0001.pdb, which is 
one of the fi ve best found by removing models that have a 
nonzero constraint score and sorting based on the interface 
score found in the score fi le. The fi rst key step is to compare 
the design to the input scaffold to identify the mutations intro-
duced. Mutations may be found by opening up the designed 
structure and the original crystal structure in  PyMOL   and 
visually identifying them. Alternatively, a Perl script located on 
the GitHub repository may be used to identify mutations given 
the crystal structure (>perl mutation_id.pl 2jie.renumbered.
pdb UM_13_E353E164Y295_2jie_LG1_1_0001.pdb). In 
this case, the mutations are H119N,Y166A, and E399S.   

   2.    Copy the output design (also renaming to a simpler name, 
such as lowE.pdb, is recommended), the parameters fi le for 
pNPG (LG1.params), the conformers fi le for pNPG (LG1.
conf.pdb), and the ligand constraints fi le (LG1.enzdes.cst) in a 
working directory for loading into Foldit.   

   3.    Start Foldit and enter any puzzle. Once in a puzzle (e.g., the 
introduction level 1-1 One Small Clash), activate the open dia-
log with Control-Alt-Shift-A and choose all four fi les.   

   4.    Activate the Selection Interface by choosing Menu > Selection 
Interface and edit the viewing settings (recommended settings: 
Cartoon Thin structure and Score/Hydro+CPK coloring). 
Visually identify the ligand and zoom by hovering the moue 
over the ligand and pressing Shift-Q (no click necessary).   

   5.    With the protein system loaded into Foldit, relax  the   global 
structure by alternating between shake (S) and wiggling the 
side chains (E). The enzyme design protocol only relaxed the 
environment local to the ligand. This relax step will lower the 
overall protein score as well as remove many of the clashing 
interactions that are seen in Foldit ( see   Notes 15 – 17 ).   

   6.    Systematically evaluate each of the designed mutations intro-
duced during design ( see   Note 18 ), potentially reverting resi-
dues chosen by the enzyme  design   algorithm back to the native 
residues from the crystal structure. Additional mutations may 

3.5  Foldit
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also be incorporated at this stage based on chemical intuition 
and the Rosetta energy function. The end product should be a 
list of sequences to order and experimentally characterize.    

    
 Here we will briefl y illustrate how to carry out by analysis of a 
design by looking at each of the three mutations in the UM_13 
design:

    1.     H119N : This mutation exchanges a hydrogen bond to the 
ligand for two hydrogen bonds to neighboring protein  resi-
dues  . The per-residue score terms for any residue (including 
the ligand) can be viewed by hovering the cursor over it and 
pressing Tab. This opens an Info Panel which changes as we 
test reverting the asparagine 119 mutation back to the histi-
dine found in the crystal structure. Make the mutation (click 
to select the residue then press M [mutate to] and N 
[Asparagine]), and select a sphere of 20–30 residues around 
the Asn by Control-Alt-Shift-drag (a residue counter in the top 
left corner counts the number of residues selected). Once the 
sphere is selected, re-optimize the local region by using the 
shake (S), wiggle the side chains (E), and wiggle the backbone 
and side chains together (W). When the backbone is allowed 
to move, discontinuities in the energy function may make large 
changes that are not realistic. Therefore, the timer and cycle 
number (in parentheses after the timer, top left corner) are 
used to limit the movement. The protein is near convergence 
when the cycle count advances rapidly. On a modern com-
puter, a few seconds is likely suffi cient to re-optimize the posi-
tion of the side chain. 

 After minimizing the structure, this reversion is predicted to 
maintain the total ligand score and only slightly increase the 
residue’s score. Histidine has a much better Lennard-Jones 
attractive score term [ 4 ] than the Asparagine does, indicating 
that it is better packed in the area. What gives rise to the slightly 
higher total residue score is the Dunbrack energy [ 4 ]. The his-
tidine has a much higher Dunbrack energy term, but if it is in 
fact well packed, this residue may be locked into the conforma-
tion found, regardless of the Dunbrack score. Given the ligand 
score stays the same and reverting the mutation seems to have 
little energetic effect, a conservative design would revert the 
mutation to the native crystal structure residue. 

  Verdict :  revert to native (H) .   
   2.     Y166A : At fi rst, this mutation may seem desirable as reverting 

it to native in the enzyme design output structure has a signifi -
cant energy penalty on the total score. However, a “local wig-
gle” as described above rapidly decreases the system energy to 
an input- like score, and, furthermore, the ligand score decreases 
slightly. 

3.6  Examples
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  Verdict :  order a sequence with this mutation (Y166A) and 
one without (Y166Y) .   

   3.     E399S : Reverting this mutation to a W is predicted to increase 
both the total protein energy and the ligand energy. The 
increase in energy comes from strong repulsion between this 
large amino acid and the ligand and surroundings. The local 
refi nement within Foldit is unable to fi nd an alternative con-
formation where this is a favorable interaction. 

  Verdict :  order this mutant .       

4    Notes 

     1.    Anytime a Rosetta app is used, the user may need to change the 
ending to match his or her build environment. For example, 
when the binary rosetta_scripts.default.linuxgccrelease is 
referred to, if the Clang compiler was used, the user would 
need to call the rosetta_scripts.default.linuxclangrelease binary.   

   2.    The authors want to note the existence of an excellent review of 
this process on another substrate. This is located at   https://
github.com/RosettaCommons/teaching_resources/tree/
ma s ter/OtherTeach ingResources/whole_c la s ses/
tutorial_20121128jbei/tutorial_20121128jbei/enzyme_design    .   

   3.    One can restrict or remove the extra chi sampling for hydro-
gens or other DOFs. This can be controlled on the command 
line with –exX commands (where X is 1–4) and with addi-
tional commands in the LG1.enzdes.cst fi le in the algorithm 
blocks (see matcher documentation).   

   4.    It is also possible to feed in a mol2 formatted fi le into mol-
fi le_to_params.py that already has conformations made. This 
may be the case if using another piece of software to generate 
the conformations. In this case, the researcher will not need to 
add the PDB_ROTAMER conf.lib.pdb line into the params 
fi le. See the help options from the molfi le_to_params script for 
more information.   

   5.    The time and memory for  RosettaMatch   rise dramatically as 
the degrees of freedom increase (i.e., the last column of the 
constraint lines). If the runtime lasts too long, try reducing 
the DOFs.   

   6.    There are several methods available to automatically generate 
the positions fi les; see the matcher documentation for descrip-
tions of these methods.   

   7.    Ideally,  PyMOL   will be started from the command prompt in 
the directory the researcher will be working in. If PyMOL has 
been opened from an application icon or task bar, then upon 
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execution of some commands such as “fetch 2jie”, it may be 
diffi cult to locate the actual fi le.   

   8.    Many aspects may be involved in scaffold selection, such as the 
ability to express the protein in  E. coli  or another target organ-
ism of interest.   

   9.    If no positions.pos fi le is included, the matcher will check 
every single residue in the protein, which may be a waste of 
computational resources and time. In addition, this will lead 
to many matches on the surface of proteins which may be 
undesirable.   

   10.    Having too many constraints specifi ed may hinder the ability 
to fi nd matches. Only include as many constraints as are abso-
lutely necessary.   

   11.    The fi rst constraint defi ned must have all 6 DOFs/constraint 
lines defi ned.   

   12.    There are essentially unlimited enzyme design protocols avail-
able due to the  fl exibility   of the RosettaScripts app.  Only   one 
was suggested here; however, we highly recommend adjusting 
the steps in this script to implement new design protocols to 
potentially produce better designs. Currently, there is no sin-
gle protocol that has been conclusively demonstrated to be 
optimal.   

   13.    Additional criteria for selecting which designs to visually check 
may be the number of mutations made. The more mutations 
made to a given protein, the more risk there is that the protein 
will not express or the backbone may shift.   

   14.    Foldit may use a different energy function than what was used 
during design. This can lead to discrepancies between the pre-
dicted effect of  a   mutation in Foldit and enzyme design in 
Rosetta.   

   15.    By selecting the ligand and clicking the left or right arrow 
keys, different ligand conformations are accessible, and the 
way Rosetta is sampling ligand conformations may be visually 
verifi ed. If an undesired region of the ligand is moving during 
conformation sampling, adjusting the neighbor atom of the 
params fi le should fi x this.   

   16.    Undo (Cmd-Z) and Redo (Cmd-Y) work for  most   operations. 
The protein structure may be reset to the input by opening 
the Undo panel (press U) and choosing “Reset Puzzle.”   

   17.    It is recommended to sparsely use W (wiggle backbone and 
sidechains) or T (wiggle backbone). As a rule of thumb, if a 
full “register shift” in the backbone movement can be seen, it 
is advised to revert that change. The more the backbone 
moves, the less chance the model will be accurate.   

Design of Catalytic Sites
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   18.    Mutations from or to the following residues tend to disrupt 
the structure more so than other mutations: GLY, PRO, and 
CYS. In the case of GLY, if ALA can fi t almost as well, that 
should be chosen over GLY.         
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Chapter 14

Generating High-Accuracy Peptide-Binding Data in High 
Throughput with Yeast Surface Display and SORTCERY

Lothar “Luther” Reich, Sanjib Dutta, and Amy E. Keating

Abstract

Library methods are widely used to study protein–protein interactions, and high-throughput screening or 
selection followed by sequencing can identify a large number of peptide ligands for a protein target. In this 
chapter, we describe a procedure called “SORTCERY” that can rank the affinities of library members for 
a target with high accuracy. SORTCERY follows a three-step protocol. First, fluorescence-activated cell 
sorting (FACS) is used to sort a library of yeast-displayed peptide ligands according to their affinities for a 
target. Second, all sorted pools are deep sequenced. Third, the resulting data are analyzed to create a rank-
ing. We demonstrate an application of SORTCERY to the problem of ranking peptide ligands for the 
anti-apoptotic regulator Bcl-xL.

Key words Yeast surface display, Deep sequencing, High-throughput assay, Protein–protein interac-
tion, Bcl-2 family

1 Introduction

High-throughput analysis of functional mutations in proteins, 
peptides, or DNA by deep sequencing is emerging as a powerful 
technique. Properties such as protein stability, enzymatic activity, 
and peptide ligand or DNA binding have been studied [1–16]. 
The general approach involves screening a library of mutants or 
performing a selection for a desired function. Library sequences in 
pre- and post-selected pools are then identified by next-generation 
sequencing, and computational routines are used to extract infor-
mation about how sequence relates to function.

Many selection or screening processes have been employed for 
these types of studies, including in vitro assays, phage display, yeast 
surface display in combination with fluorescence-activated cell 
sorting (FACS), and in vivo assays. Some studies have used the 
observed frequencies of mutant variants in selected pools to infer 
sequence–function relationships [1–5]. As an alternative measure, 
enrichment scores have been calculated from the ratio of pre- and 
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post-selection frequencies [6–14]. The effects of mutations in par-
ticular sequence positions have been investigated, either by experi-
mentally screening single-mutant libraries or by assuming positional 
independence during computational post-processing. Position 
weight matrices have been built that score binding, stability, and 
function using this approach, sometimes with correction for non-
specific binding or consideration of enrichment changes over mul-
tiple selection rounds [5, 12, 13]. Analyzing single-residue 
substitutions benefits from enhanced statistical power, because it is 
easy to saturate a single- position sequence space. But important 
context-dependent effects may be neglected in this type of 
analysis.

In this chapter, we introduce a high-accuracy alternative to 
enrichment-based methods for probing mutational effects on the 
affinity of peptide ligands. Our protocol “SORTCERY” comprises 
the three steps of selection, deep sequencing, and computational 
analysis (Fig. 1a). The selection process involves two-color cell 
sorting of a yeast surface-displayed library based on the expression 
levels of displayed peptides and levels of binding to a target (Fig. 
1b). Our sorting protocol builds on reports that two-color FACS 
can accurately distinguish between binders of different affinities 
[15–19] and agrees with a theoretical model describing the 
expected signals for clones expressing peptides with a range of 
binding strengths [20]. This model can guide sorting of a library 
into pools according to binding affinity, and the pools can then be 
deep sequenced to obtain information about individual library 
member affinities. SORTCERY extracts information from deep 
sequenced library pools using computational routines that rank 
observed mutant sequences according to binding strength.

Applying SORTCERY to study helical peptide affinities for the 
apoptosis-regulating protein Bcl-xL, we obtained extremely accu-
rate rankings for ~1000 sequences over a range of dissociation con-
stants from 0.1 to 60 nM (Fig. 2a). Our study is described in Ref. 
[20], and the reader is referred to that paper for in-depth exposi-
tion of the theory underlying SORTCERY, the results when 
applied to Bcl-xL, and further discussion of strengths and limita-
tions of this method. A special variant of our approach is described 
here (Fig. 2b, see Note 9) that can potentially be used to analyze 
much larger libraries.

2 Materials

 1. SD + CAA/SG + CAA: Dissolve 5 g casamino acids, 1.7 g yeast 
nitrogen base, 5.3 g ammonium sulfate, 10.2 g Na2HPO4–
7H2O, and 8.6 g NaH2PO4-H2O in 700 ml water and auto-
clave for 15 min at 22 psi and 120 °C. For growth media 
(SD + CAA), dissolve 50 g glucose in 50 ml water then sterilize 

2.1 Cell 
Culture Media

Lothar “Luther” Reich et al.
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with a 0.2 μm filter. Add 40 ml of this 50 % glucose solution to 
the autoclaved media and fill up to 1 l with sterile water. For 
induction media (SG + CAA), dissolve 20 g galactose in 100 ml 
water then sterilize with a 0.2 μm filter. Add 100 ml of this 20 
% galactose solution to the autoclaved media and fill up to 1 l 
with sterile water.

 1. Low protein binding 0.45 μm filter plates or bottle-top filters.
 2. BSS pH 8.0: 50 mM Tris, 100 mM NaCl, 1 mg/ml BSA.
 3. Primary antibody mixture: anti-HA (Roche) 1:100 dilution 

and anti-Myc (Sigma) 1:100 dilution in BSS.

2.2 Fluorescence- 
Activated Cell Sorting

Fig. 1 (a) SORTCERY combines experimental and computational protocols to rank peptide ligands according to 
their affinity for a target. Yeast-displayed peptides are sorted into pools that include ligands of similar affinity 
using FACS. Deep sequencing information is generated for each sample, and the distribution of each sequence 
over the FACS gates is determined. Pairwise comparison of distributions permits calculation of the probability 
that one peptide binds more strongly than another, for each pair of peptides. A global rank order of affinities is 
computed from the probabilities. (b) SORTCERY’s yeast-display and gate-setting schemes. Peptide expression 
and target binding are detected via tags that are recognized by pairs of primary and fluorescently labeled 
secondary antibodies. Two-color cell sorting is based on these two signals. Gates are set to optimally separate 
binders of different affinities and to exclude non-binders and non-expressing cells

Peptide Binding Analyses using SORTCERY
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 4. Secondary antibody mixture: APC-labeled anti-mouse (BD 
Biosciences) 1:40 dilution and PE-labeled anti-rabbit (Sigma) 
1:100 dilution in BSS.

 1. Zymoprep Yeast Plasmid Miniprep I (Zymo Research).
 2. Isopropanol.
 3. High-Fidelity DNA Polymerase (e.g., Phusion).
 4. Thermocycler.
 5. Gel equipment.
 6. PCR purification and gel extraction kits (QiaGen).
 7. MmeI (New England Biolabs): MmeI restriction enzyme, 

NEB CutSmart Buffer, 1 mM SAM.
 8. T4 Ligase.
 9. Primers and oligos.

3 Methods

 1. Dilute cells to OD600 of 0.05 in SD + CAA and grow for 8 h at 
30 °C.

 2. Dilute cells to OD600 of 0.005 in SD + CAA and grow to OD 
of 0.1–0.4 at 30 °C.

 3. Dilute cells to OD600 of 0.025 in SG + CAA and grow to OD 
of 0.2–0.5 at 30 °C for induction of peptide expression.

2.3 Deep Sequencing 
Sample Preparation 
(See Note 1)

3.1 Cell Growth 
and Induction of Yeast 
Surface Display 
Library (See Note 2)

Fig. 2 (a) Individually measured dissociation constants vs. SORTCERY ranking 
indices for 19 sequences from a ranking of ~1000 sequences. Clones have been 
reindexed from 1 to 19. Error bars for rank indices are 95 % bootstrap confi-
dence intervals: error bars for dissociation constants indicate standard devia-
tions for four individual measurements. (b) Ranking indices for the same 19 
clones as determined by convoluted SORTCERY (see Note 9). Figure panel (a) is 
adopted with publisher’s permission from Fig. 4 in Ref. [20]

Lothar “Luther” Reich et al.
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 1. SORTCERY uses a two-color FACS setup to monitor expres-
sion (Fe) and binding (Fb) signals on a log/log or biexponen-
tial scale. On a log(Fb) vs. log(Fe) plot, points of equal binding 
strength lie on a line with a slope of 1 [20]. Subdivide the log/
log plot accordingly into areas (gates) of different affinities by 
dissecting it with lines of slopes of 1 (red lines in Fig. 3). The 
number, position, and spacing of the lines will affect the per-
formance of the procedure. We recommend an equal spacing 
between lines as this will result in optimal resolution between 
binders of different affinities. The number of lines (and the 
resulting gates) depends on the required resolution. This can 
be determined by measuring the FACS profiles of several 
yeast-displayed standards (see Note 3). Lines should be posi-
tioned such that the gates cover an area from the strongest 
binders to the baseline binding signal. FACS profiles of stan-
dards can help determine whether the experimental setup will 
generate samples with quality appropriate for a SORTCERY 
sort (see Note 4).

 2. Gate boundaries should be set to exclude cells without signifi-
cant expression signal and to prevent cells in the binding base-
line from being captured in gates for higher affinities. Cutoffs 

3.2 Gate Setting

Fig. 3 Gate setting for an affinity sort with 12 gates. The red, diagonal lines sub-
divide the axis of affinity into different intervals and thus insure that each gate 
corresponds to a unique range of dissociation constants. The green, lower left 
borders exclude non-binding cells from higher- affinity gates and exclude non-
expressing cells from all gates. The depicted FACS profile of a non-binder illus-
trates this. The blue, upper- right borders exclude cells with the maximum 
possible expression or binding signal, because affinities cannot be accurately 
estimated from such signals. This figure is adopted with the publisher’s permis-
sion from supplemental Fig. 3 in Ref. [20]

Peptide Binding Analyses using SORTCERY
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can be established by monitoring the FACS profile of a non-
binding yeast clone and noting: (1) the position of non-
expressing cells (blob in the lower left corner of Fig. 3) and (2) 
the binding baseline (lower right area in Fig. 3). Determine 
appropriate cutoffs and set gate lower-edge boundaries accord-
ingly (see example: green edges in Fig. 3).

 3. Cell sorters assign maximum signal values to any signal intensity 
above their scale of measurement. Such signals have, therefore, 
not been accurately determined. Exclude the maximum expres-
sion and binding signal areas from the gates by setting gate bound-
aries accordingly (see example: blue edges in Fig. 3) (Fig. 4).

 1. Filter grown and induced yeast cells (Subheading 3.1) and 
wash twice with BSS.

 2. Incubate cells with target molecule in BSS for 2 h at 21 °C (see 
Notes 5 and 6). Shake gently during incubation.

 3. Filter cells and wash twice with BSS.
 4. Incubate with mixture of primary antibodies (20 μl per 106 

cells, see Notes 7 and 8) at 4 °C.
 5. Filter cells and wash twice with BSS.
 6. Incubate with mixture of secondary antibodies at 4 °C.
 7. Filter cells and wash twice with BSS. Resuspend cells in BSS for 

sorting.
 8. Sort cells into each individual gate and retain sorted pools for 

deep sequencing analysis (see Notes 9 and 10). Note the number 

3.3 Cell Sorting

Fig. 4 FACS profile for a BH3 peptide ligand binding to Bcl-xL. The red line indicates 
the orientation of the first principle component for the profile of the expressing 
cells. This figure is adopted with publisher’s permission from Fig. 3 in Ref. [20]

Lothar “Luther” Reich et al.
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of cells sorted into each pool. Also determine the library distri-
bution across all gates by recording how many cells hit each 
gate during a set time interval, e.g., a minute. This information 
is important for the deep sequencing analysis (Subheading 3.5, 
step 4).

 1. If >80,000 cells are sorted, spin cells down, aspirate superna-
tant, and add 150 μl of solution 1 from the Zymoprep kit + 2 
μl Zymolyase. For smaller numbers of cells, directly add 50 μl 
of solution 1 per 100 μl cell suspension + 2 μl Zymolyase per 
150 μl total volume.

 2. Incubate at 37 °C for 1 h on a shaker.
 3. Successively add 150 μl of solutions 2 and 3 per 150 μl incuba-

tion volume and vortex after each addition. Spin down precipi-
tate, and retain supernatant.

 4. Add 1 volume isopropanol and 0.1 volume 3 M NaOAc to 
each volume of DNA extract. Store at −20 °C overnight.

 5. Spin at 14,000 × g at 4 °C for 10 min. Carefully remove super-
natant. Resuspend DNA pellet in 20 μl sterile water (pellet 
may not be visible for small numbers of sorted cells).

Most of this section is based on the excellent preparation protocol 
in Ref. [21].

 1. For each sorted sample, separately, amplify DNA sequences 
encoding the peptide ligands out of plasmids by PCR. The 5′ 
end of the forward primer needs to contain a binding site for 
the MmeI restriction enzyme: 5′ GGGACCACCACCTCCGAC 
3′ (see Note 11). The 5′ end of the reverse primer has to con-
sist of a part of the Illumina adapter sequence: 5′ 
CGGTCTCGGCATTCCTGC 3′ (see Notes 12 and 13).

 2. Purify PCR products with the Qiagen PCR purification kit. 
Elute in 30 μl sterile water.

 3. Digest each PCR product with the MmeI restriction enzyme. 
Incubate the digestion mixture for 1 h at 37 °C, then heat 
inactivate for 20 min at 80 °C (see Note 14).

Digestion reagents

PCR product 12.5 μl

1 mM SAM 2.5 μl

NEB CutSmart buffer 5 μl

MmeI 5 μl per 8.6 pmol PCR product

Sterile water Fill up to 50 μl

 4. Prepare double-stranded adapters by annealing single-stranded 
oligos. The forward strand should contain the standard 

3.4 Deep Sequencing 
Sample Preparation

3.4.1 DNA Extraction

3.4.2 DNA Amplification 
and Adapter Attachment

Peptide Binding Analyses using SORTCERY
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Illumina read binding site [22], a unique barcode for multiplex-
ing (see Note 15) and a 3′ TC, resultung in the sequence: 5′ 
ACACTCTTTCCCTACACGACGCTCTTCCGATCTbarcode 
TC 3′. The reverse complement strand should be 5′ phosphor-
ylated and lack the 5′ GA 3′ that would be complementary to 
the TC of the forward strand.

 5. Ligate each digestion product with an adapter containing a 
unique barcode. Ligate for 30 min at 20 °C, then heat inacti-
vate for 10 min at 65 °C.

 6. Run the products of the ligation reaction on a gel. Gel-purify 
the bands of correct size with the QIAquick gel purification 
kit. Elute in 30 μl sterile water.

 7. PCR-amplify the ligation product. Primers should contain 
overhangs that complete the Illumina adapter sequences.

Forward Primer: 5′ AATGATACGGCGACCACCGAG 
ATCTACACTCTTTCCCTACACGACGCT 3′.
Reverse Primer: 5′ CAAGCAGAAGACGGCATACGA 
GATCGGTCTCGGCATTCCTGCATCTT 3′.
15 PCR cycles should be sufficient using Phusion 
polymerase.

 8. Purify PCR products with the Qiagen PCR purification kit. 
Elute in 30 μl sterile water.

 9. Combine samples and perform a multiplexed deep sequencing 
run on an Illumina sequencer with the standard forward 
Illumina read primer: 5′ ACACTCTTTCCCTACACGAC 
GCTCTTCCGATCT 3′. If a reverse read is also to be carried 
out, use a custom primer (see Note 16).

 1. Filter the Illumina data by only considering sequences with a 
high Phred score for the mutated positions and a low number 
of read errors in unmutated positions (see Note 17). If a reverse 
read has been performed that overlaps the forward read, com-
pare complementary mutant codons and choose the version 
with the higher Phred score.

 2. Assign each Illumina read to its sorted pool/gate by barcode 
identification.

 3. Count the copies of each unique sequence across all pools. 
Discard sequences with low copy numbers when summing up 
counts from all gates. Calculate the number of sorted cells that 
each unique sequence likely originated from. Dividing the 
number of cells that were sorted into a pool by the number of 
sequence reads for this sample provides a rough estimate of the 
cells per read. As a rule of thumb, require at least 100 sorted 
cells for each observed sequence.

 4. If a convoluted sort strategy was used, see Note 18. Otherwise, 
calculate the distribution over the gates for each unique sequence.

3.5 Computational 
Analysis

Lothar “Luther” Reich et al.
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Here, fxj is the normalized frequency of sequence j in gate x, 
nxj is the number of reads of sequence j in deep sequencing 
data set x (which corresponds to gate x), and zx is the number 
of cells that hit gate x when measuring the distribution of cells 
across all gates.

 5. Calculate all possible pairwise probabilities that a peptide A is 
a stronger binder than a peptide B and vice versa:
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Note that gate indices x and y are assigned from lowest to high-
est affinity gates, i.e., in the equation the sum over y runs over 
all gates corresponding to lower affinities than that of gate x. 
Assign these probabilities as weights to the edges of a directed 
graph. The vertices of the graph represent peptides and the 
directed edge running from vertex B to vertex A indicates the 
assumption that peptide A is a stronger binder than peptide B 
(Fig. 5a).

 6. Find the maximum linear subgraph by first applying the 
method described in Ref. [23]. To do this, randomly choose a 
peptide/vertex A. For each other peptide/vertex B, compare 
the edge weights of the two edges that connect it to A. If 
p(A > B) > p(B > A), then B is considered a worse binder than A; 
if p(B > A) > p(A > B), then B is considered a better binder than 
A. Group all peptides according to whether they are better or 
worse binders than A. Then, within each group, repeat the 
procedure of randomly choosing one peptide and evaluating 
all others with respect to it, continuing to subdivide the groups 
until an ordering from best to worst binder has been con-
structed. Determine the likelihood score for this ordering by 
summing up the logarithms of the edge weights for all directed 
edges that agree with the ordering (Fig. 5b). Repeat the pro-
cedure of constructing an ordering several times and retain the 
one with the best score. Further refine this ordering by insert-
ing each individual peptide into all possible positions and keep-
ing the new position if a better score is obtained. Run the 
routine several times, alternately starting with the best and the 
worst binding peptide. Finally, run a Monte-Carlo search in 
which moves correspond to exchanging the positions of two 
peptides in the ordering. The final result represents an affinity 
ranking of all peptides.
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4 Notes

 1. We fine-tuned the protocols described in Subheading 3.4 using 
material from the specified suppliers. We have not tested cor-
responding products from other suppliers, and it is possible 
that these will also work for deep sequencing sample prepara-
tion. Experimenters may need to adjust protocols according to 
the specific products they use.

 2. This growth protocol has been optimized for EBY100 cells 
that have been transformed with a pCTCON2 plasmid [17]. 
The experimenter may have to choose other parameters for a 
different setup. In the authors’ experience, cell densities may 
have an impact on the quality of FACS profiles. Low-quality 
FACS profiles can lead to suboptimal sorts with respect to 
affinity. Users of the procedure should strictly monitor cell 

Fig. 5 (a) A directed graph representing four peptide ligands and assumptions 
about their relative binding strengths. Each edge is weighted by the probability 
that the ligand at its tail is a weaker binder than the ligand at its head. (b) A linear 
subgraph of (a). Note that no conflicting assumptions about binding strengths 
exist
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densities. The first growth step in this protocol ensures that 
samples contain mostly live and healthy cells for correct mea-
surements of ODs. It may be possible to skip this step if cells 
are not grown up from frozen stocks or plates.

 3. The number and position of gates can be chosen based on a set 
of standards. Record the FACS profiles of several yeast-dis-
played standards in a same-day experiment at a target concen-
tration chosen based on anticipated affinities. Construct a set 
of gates to be tested for adequate resolution. Determine for 
each FACS profile how many cells would have hit each gate. 
This provides a distribution over the gates for each standard. 
Then, simulate an experiment by drawing random samples 
with a size of ten cells for each standard. (Note that clones 
should be sampled more often than this during an actual 
SORTCERY sort. However, real samples may experience addi-
tional experimental noise during preparation for deep sequenc-
ing. Thus, we find 10 cells in this procedure provide useful 
information.) Use the random sample for each standard X and 
gate i to calculate the normalized frequency, fiX, with which 
the standard would be observed in the gate. Calculate the 
probability that standard X is a better binder than standard Y 
based on the random samples, using the formula given in 
Subheading 3.5, step 5. Compare the result to the actual affin-
ities of the standards. Repeat this many times to determine the 
range of values the probability can take. Sufficient resolution, 
i.e., a sufficient number and appropriate placement of gates, 
will be indicated by mostly high probabilities for the correct 
ordering of standards.

 4. Record several FACS profiles for standards. Consider data for 
expressing cells that have binding signals mostly above the 
baseline. Use a cutoff line with a slope of −1 to separate express-
ing from non-expressing cells; using other cutoffs may bias the 
analysis. Adjust the retained data by subtracting the average 
binding and expression signals from each data point. Calculate 
the covariance matrix of the data. Determine the first principal 
component by calculating the matrix’s eigenvectors and eigen-
values. The vector with the largest corresponding eigenvalue 
indicates the orientation of the first principle component. 
 Determine the first principle component’s slope, i.e., the slope 
of the vector. High-quality FACS profiles should result in a 
value close to 1 (Fig. 4). Reduction in quality can have many 
different experimental origins, such as inappropriate growth 
protocols (see Notes 1 and 2), excess dissociation of target 
molecule during washing steps (see Note 8), or nonspecific 
binding to tube walls (see Note 5).

 5. BSA is used as a blocking agent to prevent nonspecific binding 
to the cells and, more importantly, the test tube walls. 
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Adsorption to the tube walls may lead to significant depletion 
of target molecules and distortion of FACS profiles.

 6. The number of target molecules should be in excess of the 
number of surface-displayed peptides. For example, our yeast 
strain expresses about 30,000 peptides per cell [24]. If 106 
cells are incubated in 700 μl of 1 nM target molecule solution, 
then at most ~10 % of the target molecules are bound. Adjust 
your incubation volume accordingly. Choose the concentra-
tion of target molecule appropriately to investigate a specific 
range of affinities (see Note 3).

 7. We have used an HA tag for detection of expression and a Myc 
tag for detection of binding. However, other tags may work 
with our protocol and may be preferred by the experimenter. 
Required antibody concentrations may depend on the exact 
choice. Always test whether the antibodies provide high-qual-
ity FACS profiles (see Note 3).

 8. Swift application of antibodies is crucial because washing steps 
can disturb the equilibrium between free and bound target mol-
ecules. We have found that fully prepared samples are relatively 
stable, possibly because the antibodies cross-link the bound tar-
get molecules and thereby dramatically decrease dissociation.

 9. Because gate setting requires a significant amount of time, gates 
should be drawn prior to sample preparation. Adjust PMT volt-
ages so that the library’s FACS profile largely covers the preset 
gates. Adjustments may be guided by a set of standards.

 10. If the number of chosen gates exceeds the number of sample 
tubes that the cell sorter can sort into at the same time, gates 
have to be sampled successively. This may waste a huge num-
ber of labeled cells, because cells that hit unselected gates will 
be discarded. The experimenter can adopt an alternative, con-
voluted sorting strategy instead that permits sorting into all 
gates simultaneously. In this approach, cells from different 
gates are sorted into the same sample tubes. Successive sorts 
that combine different sets of gates can be carried out, which 
enables back-calculation of the number of cells in each gate for 
each clone in the subsequent analysis (see Note 17). For N 
gates, prepare N unique combinations of gates. A gate must 
not be paired with any other gate more than once in these 
combinations. Sort orthogonal sets of combinations succes-
sively. For example, if 12 gates are chosen and the sorter can 
only sort into four sample tubes at the same time, the follow-
ing set of combinations would be appropriate: {1,2,3}, {4,5,6}, 
{7,8,9}, {10,11,12}, {1,4,7}, {2,5,10}, {3,8,11}, {6,9,12}, 
{1,5,8}, {2,4,11}, {3,9,10}, and {6,7,12}. Note that any pair of 
two gate indices appears together at most once. This set of 
combinations could be processed in three successive sorts col-
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lecting four pools of cells (each pool derived from three gates, 
all pools sorted into individual sample tubes) at a time: first 
{1,2,3}, {4,5,6}, {7,8,9}, {10,11,12}, then {1,4,7}, {2,5,10}, 
{3,8,11}, {6,9,12}, and then {1,5,8}, {2,4,11}, {3,9,10}, 
{6,7,12}.

 11. MmeI recognizes the sequence 5′ TCCRAC 3′. Additional 
nucleotides 5′ of the binding site can improve binding (e.g., 5′ 
GGGACCACCACC 3′ in step 1, Subheading 3.4.2). MmeI 
cuts 20 nucleotides 3′ of its binding sequence.

 12. Use high-fidelity polymerase and as few PCR cycles as possible 
in order to reduce errors and amplification bias. 25 cycles gen-
erally suffice with the Phusion Polymerase standard protocol.

 13. High salt content from the DNA extraction step may prove 
inhibitory to sufficient amplification. 5 μl DNA extract in a 
100 μl reaction mixture generally provides enough dilution to 
obtain satisfactory results.

 14. Excess MmeI may block digestion. MmeI activity is also 
curbed by high amounts of salt. Excess salt may enter the 
reaction mixture via the PCR product from the PCR purifica-
tion step. In addition, MmeI has a very low turnover and stoi-
chiometric amounts of MmeI are required for sufficient 
digestion. Experimenters need to take special care to use the 
exact amounts of PCR product and MmeI indicated in 
Subheading 2.

 15. Diverse barcodes at the beginning of a deep sequencing read 
are required to ensure proper calibration of the base-calling 
algorithm. Barcodes need to be at least five nucleotides long, 
and deep sequencing runs should be multiplexed with at least 
20 different barcodes. Barcode sequences should vary such 
that all bases appear in each position with roughly the same 
frequency.

 16. Sequencing a library can be a difficult task for Illumina sequenc-
ers, because current base-calling algorithms expect significant 
sequence variety for all positions of a sample, whereas library 
samples generally contain regions of constant sequence. 
Spiking PhiX genome into the sample may help alleviate prob-
lems, as may running a reference lane with PhiX genome on 
the same flow cell.

 17. MmeI sometimes cuts 19 or 21 bases 3′ of its binding site. 
Furthermore, the TC 3′ of the barcode may be missing in 
some reads. A small fraction of undigested but ligated sample 
may also be observed.

 18. Analyze deep sequencing from convoluted sorts (see Note 9) 
in the following way: For each sequence j calculate its fre-
quency in each pool x as

Peptide Binding Analyses using SORTCERY
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with nxj being the number of reads for sequence j in pool x. 
Then calculate the corrected number of cells in pool x that 
contained sequence j as

 
m g zxj xj

y
y= å
 

where zy is the number of cells that hit gate y considering the 
distribution of cells across all gates, and the index y runs over 
all those gates that are part of pool x. Solve a linear equation 
system of the form

 M D Qj j j

� ��� � �� � ��
=  

for the elements of vector Qj. The xth entry of the vector Mj is 
mxi. The entry dxyj in the xth row and yth column of matrix 
Dj is 1 if gate y is part of pool x and zero otherwise. The entry 
qyj in vector Qj is the time-corrected number of cells in gate y. 
Normalize vector Qj to obtain the frequencies that are required 
for step 5.
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Chapter 15

Design of Specific Peptide–Protein Recognition

Fan Zheng and Gevorg Grigoryan

Abstract

Selective targeting of protein–protein interactions in the cell is of great interest in biological research. 
Computational structure-based design of peptides to bind protein interaction interfaces could provide a 
potential means of generating such reagents. However, to avoid perturbing off-target interactions, meth-
ods that explicitly account for interaction specificity are needed. Further, as peptides often retain consider-
able flexibility upon association, their binding reaction is computationally demanding to model—a stark 
limitation for structure-based design. Here we present a protocol for designing peptides that selectively 
target a given peptide-binding domain, relative to a pre-specified set of possibly related domains. We 
recently used the method to design peptides that discriminate with high selectivity between two closely 
related PDZ domains. The framework accounts for the flexibility of the peptide in the binding site, but is 
efficient enough to quickly analyze trade-offs between affinity and selectivity, enabling the identification of 
optimal peptides.

Key words Interaction specificity, Computational protein design, PDZ–peptide interactions, Cluster 
expansion, Flexible peptide docking

1  Introduction

The loss of precise control over cellular protein interactions often 
results in disease [1]. Therefore, reagents that target protein inter-
actions to rewire cellular signaling pathways in desired ways are of 
great relevance in both therapeutic development and mechanistic 
investigation [2]. A considerable fraction of the known cellular 
interactome is believed to be mediated by peptide-recognition 
domains (PRDs)—interaction-encoding modules that bind to 
short amino- acid stretches on their partner proteins [3–5]. Many 
PRD families are large, with members closely related in structure 
and sequence, but often having entirely divergent functions. 
Peptides are a natural choice for functional modulation of PRD-
encoded interactions, because they are well suited to occupy the 
PRD binding site and are amenable to computational design. 
Further, recognition sequence preferences of several PRDs have 
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been characterized experimentally [6–9], enabling the develop-
ment of computational models for binding prediction either by 
direct training on high-throughput  experimental data [10, 11], 
structure-based energy calculations [12–15], or combinations of 
the two [16, 17]. However, to effectively target a given interaction 
encoded by a PRD, the targeting peptide should in general be 
selective—i.e., it should avoid interactions with other proteins, 
including those within the same PRD family. Given the close simi-
larity among family members, achieving such selectivity by design 
is not trivial. Peptides chosen purely for binding to the target are 
likely to also bind other family members, with unpredictable func-
tional consequences.

Structure-based methods for modeling PRD–peptide binding 
have the potential to generalize across different PRDs [18]. 
However, the use of such techniques in designing selective recog-
nition is complicated by the inherent flexibility of peptides, which 
places high computational demands on modeling. To mitigate this 
problem, we have developed a general computational framework 
that decouples the complexity of the structure-based simulation 
used to model PRD–peptide binding from the computational effi-
ciency requirements imposed by the design of selectivity [19]. The 
framework uses the previously described method of cluster expan-
sion (CE) [20, 21] to produce simple sequence-based expressions 
that rapidly estimate the results of detailed structure modeling 
techniques. The efficiency gained by CE enables the fast identifica-
tion of optimal trade-offs between affinity for the targeted domain 
and selectivity against any number of undesired partners. The 
framework is detailed below.

2  Materials

The following resources or materials are needed to apply our 
framework:

 1. A Unix-/Linux-based computing platform with:
(a) A linear algebra engine (e.g., the proprietary MathWorks 

MATLAB or the open-source GNU Octave).
(b) Macromolecular modeling suite Rosetta, version 3.4 or 

higher [22].
(c) PyRosetta, a Python-based interface to Rosetta [23].
(d) Highly desirable: access to a high-performance computing 

cluster with the ability to perform at least hundreds of jobs 
independently in parallel.

 2. A basic understanding of and the capability to work with the 
computation resources in 1.

Fan Zheng and Gevorg Grigoryan
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 3. Optional, but highly desirable: experimentally validated exam-
ples of peptides that bind strongly and those that bind weakly 
(or undetectably) to members of the PRD family of interest.

3  Methods

In this section, we outline our framework for designing PRD-
binding peptides. We will refer to our experience with using it to 
design PDZ- targeting peptides [19], but we believe that the frame-
work should generalize to other systems. The procedure differs 
depending on whether the goal is to design high-affinity peptides 
for a single PRD or design selective peptides that bind one PRD 
(target) but not the others (competitors). In the latter case, bind-
ing to multiple PRDs has to be modeled. If not stated otherwise, 
it should be assumed that each discussed step is carried out for all 
PRDs being considered.

 1. Download experimental structures of target and competitor 
PRDs from the Protein Data Bank (PDB), if they are available. 
The following preferences apply if multiple structures are avail-
able for a given PRD (in the order of priority): (a) an X-ray 
structure is preferred over an NMR structure, (b) a peptide-
bound structure is preferred over an apo structure, and (c) a 
higher-resolution X-ray structure is preferred over a lower res-
olution one. If a given PRD has no experimental structures, 
use homology modeling (e.g., via the SWISS-MODEL server 
[24] or MODELLER [25]) to create a predicted structure. 
The template used in homology modeling should be a peptide-
bound structure and otherwise as close in sequence to the rel-
evant PRD as possible (see Note 1). If either an NMR structure 
or a homology model is used for a PRD, particular attention 
should be paid to the results in step 5.

 2. Subject any homology models to continuous minimization in 
the presence of a known binding peptide. Because the back-
bone will be held fixed when sampling the bound state (see 
below), this step is recommended to make the PRD model 
resemble a peptide-bound state as much as possible. To this 
end, first align the homology model to the template by opti-
mally superimposing the backbone of binding-site residues, 
and then copy the peptide backbone from the template to the 
PRD model. In PyRosetta [23], assign peptide side-chain 
identities according to a known ligand peptide (a ligand of a 
closely homologous PRD may be used if no ligand for the tar-
get is known) and repack all side chains in the model. Follow 
by applying full-atom minimization via the “dfpmin” algo-
rithm in PyRosetta, with a tolerance of 0.01, allowing both 

Protein-Peptide Binding Design



252

backbone torsion angles and side chain χ-angles to move. Note 
this assumes that the template used in homology modeling is 
close enough to the PRD of interest to have similar binding 
geometry and sequence preferences.

 3. Collect a set of experimental PRD–peptide complex structures 
for use in seeding multiple simulation trajectories when 
 modeling new PRD–peptide pairs. For example, for PDZ 
domains, we collected 51 unique complexes with peptides of at 
least six residues (Table 1). For each available complex, align 
its binding site onto that of the PRD of interest, and copy the 
peptide backbone from the complex onto the PRD (as in step 
2). To automate the procedure of identifying binding sites in 
all experimental complexes, we recommend manually defining 
binding-site residues only in the PRD of interest and then 
using our substructure search engine MASTER [26] to auto-
matically find corresponding residues in all complexes. We 
found the generation of diverse starting conformations to seed 
multiple sampling trajectories to be critical in modeling PDZ–
peptide binding, presumably due to the considerable flexibility 
of the peptide in the binding site [19].

 4. Given a peptide/PRD combination to be evaluated, run the 
Rosetta FlexPepDock ab initio protocol [27] for each of the 
starting conformations generated in step 3. We recommend 
asking each simulation to generate at least 500 structural models 
(from 500 independent Monte Carlo simulations). Therefore, 
in the PDZ example, for each peptide/PRD pair, 
500 × 51 = 25,500 structural models would be generated. 
Rosetta FlexPepDock documentation is available at https://
www.rosettacommons.org/docs/latest/application_documen-
tation/docking/flex-pep-dock. Evaluate each model using the 
talaris2013 Rosetta scoring function; in our experience, omit-
ting backbone statistical energy terms “rama” and “omega” 
increases performance (see Note 2). The lowest score among all 
generated models should be used as the final predicted binding 
score for the given peptide/domain combination.

 5. Use an experimental dataset as a benchmark to assess the accu-
racy of the structure-based simulation and the appropriateness 
of structural models used. Ideally, experimental data for the 
relevant PRDs should be used, but if such data are unavailable, 
results for highly homologous domains in the PRD family 
(those believed to share close binding preferences) may be 
used. Use the experimental data to build the benchmark data-
set: sets of high-confidence binding peptides and weak/non-
binding peptides for each PRD (see Note 3). Run the procedure 
in step 4 to score each peptide/domain combination in the 
benchmark dataset. Use the Receiver Operating Characteristic 
(ROC) analysis to measure the ability of the simulation to sep-
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Table 1 
A set of experimental PDZ–peptide complex structures used to generate starting conformations for 
multiple simulation trajectories

PDB-ID Chain-ID (domain) Domain residue number range Chain-ID (peptide)

1B8Q A 11–90 B

1D5G A 8–90 B

1KWA A 3–82 B

1L6O A 3–88 D

1N7F A 5–84 C

1N7T A 12–98 B

1OBY B 2–74 Q

1Q3P A 8–95 C

1RGR A 4–88 B

1RZX A 5–95 B

1TP3 A 13–91 B

1TP5 A 13–91 B

1U3B A 4–88 A

1VJ6 A 8–90 B

1X8S A 5–95 B

1YBO A 88–160 C

1ZUB A 23–107 B

2AIN A 7–89 B

2EJY A 3–81 B

2FNE B 11–93 A

2HE2 A 7–85 B

2I04 B 3–83 D

2I0I A 4–81 D

2I0L A 2–83 C

2I1N A 6–90 B

2IWP A 3–83 B

2JIL A 7–89 B

2JOA A 5–88 B

2 K20 A 9–99 B

2KA9 A 5–89 B

(continued)
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arate true binders from weak/non-binders, using Area Under 
the Curve (AUC) for quantification [28]. AUC values above 
~0.7 would indicate a reasonable structural model and simula-
tion approach.

 6. Define amino acids allowed at each position of the peptide—
i.e., the design alphabet. We strongly recommend constraining 
the alphabet based on any known information about the PRD 
family in general and the specific targeted domain(s). This 
keeps the sequence space from being unnecessarily large, limit-
ing computational complexity. Further, patterning of allowed 
amino acids based on strong experimentally observed prefer-
ences limits the effect of error present in any modeling 

Table 1
(continued)

PDB-ID Chain-ID (domain) Domain residue number range Chain-ID (peptide)

2KBS A 4–83 B

2KPL A 17–97 B

2KQF A 8–91 B

2KYL A 8–91 B

2L4T A 17–110 B

2OPG B 5–87 A

2OQS A 2–86 B

2OS6 A 11–83 B

2PZD A 1–85 B

2QBW A 2–97 B

2UZC B 3–81 A

2 V90 E 6–85 C

2VRF B 7–87 A

3B76 B 11–94 A

3CBX B 7–88 A

3CBY B 4–86 A

3CC0 C 4–88 A

3CH8 A 2–95 P

3DIW B 7–100 D

3GGE A 9–88 B

3LNY A 8–90 B

This table was created by filtering search results from extended PDZ domain database (http://bcz102.ust.hk/
pdzex/) [31]
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approach. In our PDZ-targeting study, we were able to design 
highly selective binders by computationally considering a 
sequence space of only 8400 peptides [19].

 7. Given the computationally complex modeling procedure 
described in step 4, it will likely be prohibitively expensive to 
enumerate even moderately large peptide sequence spaces 
(e.g., the procedure takes over 400 CPU hours per peptide in 
our PDZ example). On the other hand, given a specific PRD, 
the final score of the simulation depends only on the peptide 
sequence. Thus, the next step is to derive an analytical map-
ping from peptide sequence to predicted binding score, for 
each PRD of interest. We previously described a method for 
finding such a mapping, called cluster expansion (CE) [20]. In 
short, CE expresses the result of a structure-based computa-
tional procedure as a series expansion in contributions from 
amino-acid clusters of increasing size—we call these cluster 
functions or CFs. For example, if E

s( )  represents the binding 
score from the procedure in step 4, for a peptide sequence 

s  
and a given domain, the CE expression states
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where L is peptide length, 


r  is a reference sequence, and σi 
and ρi are the amino acids in the i-th position of 

s  and 


r , 
respectively. The significance of the reference sequence is that 
the summations in the expression extend only over combina-
tions of positions (clusters) occupied by amino acids differing 
from the corresponding ones in 



r . Thus, C represents the 
binding score for 



r  (i.e., the reference CF), whereas the 
remaining terms capture the additional contributions of amino 
acids in 

s  that differ from 


r  (i.e., higher-order CFs). The first 
summation considers point CFs, with fi(σi) representing the 
effective contribution of amino acid σi at position i. Similarly, 
the second summation considers pair CFs, with fij(σi, σj) rep-
resenting the additional pairwise contribution due to having σi 
at position i and σj at position j simultaneously. To be exact, 
the expansion must consider all higher-order contributions, up 
to L-tuples, but in most cases this is impractical. Instead, one 
can choose to preserve only lower- order CFs (e.g., including 
only up to pairwise contributions), and use a training set of 
sequences with pre-computed scores to deduce CF values that 
optimize the accuracy of the truncated expansion [20].
Based on our PDZ study, a CE with up to pair CFs should 
represent peptide–PRD interactions reasonably well [19], 
though higher-order terms can still be added if needed [20]. 
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Point CFs at all positions should be included. To reduce com-
putational complexity, pair CFs can be restricted to position 
pairs likely to host side chains that interact either directly or 
through a common site on the PRD. For example, when build-
ing CEs for PDZ–peptide interactions, we omitted pair CFs 
between adjacent peptide positions, as these alternate in point-
ing either into or away from the binding interface, making 
coupling between them less likely [19]. Once a cluster is 
included in a CE (e.g., a pair cluster), every  combination of 
non-reference amino acids at the corresponding positions pro-
duces a unique CF. Thus, the number of CFs to be considered 
is related to the size of design alphabet. For example, in our 
PDZ study, allowing 2–8 amino acids at six peptide positions 
resulted in 77 CFs (the reference CF, 24 point CFs, and 52 
pair CFs) [19].

 8. Generate sequences for CE training by randomly drawing from 
the design alphabet. The number of sequences should be at 
least twice the number of CFs to be considered (determined in 
steps 6 and 7). These sequences will be subjected to structure- 
based simulations, so choosing a design alphabet to be only as 
large as necessary (step 6) helps keep training time manage-
able. Figure 1 uses the PDZ example to show how the com-
plexity of CE training increases with increasing number of 
amino acids allowed at each position. The random sequence 
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Fig. 1 The computational complexity of generating the CE training set increases 
with the number of amino acids allowed at each position. The clusters allowed in 
our PDZ study [19] are used in this estimation. The number of training sequences 
(left-axis) is estimated as twice the number of candidate cluster functions (CFs); 
time is estimated by assuming that a 1000-core compute cluster is available and 
that the simulations for one peptide take 400 wall-clock hours when run in serial 
(see step 4)

Fan Zheng and Gevorg Grigoryan



257

generation can be biased toward any known binding sequence 
preferences in order to concentrate the sampling (and ulti-
mately CE accuracy) toward more relevant sequence spaces. 
No matter how the random set is generated, we recommend 
checking it for reasonable coverage of all CFs to be considered 
(e.g., at least three examples of each CF should be present). 
For any underrepresented CFs, sequences that contain them 
(but are otherwise random) should be added to balance the 
training set.

 9. Run the simulation protocol in step 4 for all sequences in the 
training set with all PRDs of interest, extracting the final bind-
ing score for each.

 10. Train a CE model for each PRD by deriving optimal CF 
weights. In a linear algebra engine (e.g., MATLAB or Octave), 
create an m × n model matrix M, where m is the number of 
training sequences and n is the number of cluster functions 
considered (m > n). M(i, j) should contain the number of times 
the j-th CF occurs in the i-th sequence. Typically, this will be 
either 1 or 0 (when the i-th sequence either does or does not 
involve the j-th CF, respectively), but can also be a larger inte-
ger in cases with structural symmetry, where a CF may occur 
multiple times within a sequence (e.g., with coiled coils; see 
Ref. [20]). Create also an m × 1 vector E, whose i-th element is 
the structure-based binding score of the i-th sequence calcu-
lated in step 9. Optimal CF weights can then be obtained by 
finding the m × 1 vector b that minimizes the mean squared 
difference between E Mb



=  (CE- predicted scores) and E, with 
the j-th element of b representing the weight of the j-th 
CF. The least-square solution can be easily found using the 
method of pseudo-inverse as M M M ET T( )-1 . In MATLAB or 
Octave, this corresponds to the expression:

 
b M’ M M’ E= *( ) -( ) * *



1
 

Note that matrix M has to be rank n, meaning that CFs have to 
represent orthogonal information and may not be linear com-
binations of each other (if M is not rank n, it often means an 
error was made either in encoding the model matrix or in 
defining CFs). Rather than including all candidate CFs into M 
at once and obtaining the best-fitting b, we recommend using 
our previously described strategy to prevent overtraining. The 
quality of a CE model (with a specific subset of CFs included) 
can be conveniently estimated as the average error with which 
the score of each sequence is predicted when that sequence is 
left out of the training set—the cross-validation root-mean-
square error (CV-RMS). This value can be computed in closed 
form as
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where Mi · represents the i-th row of matrix M. In MATLAB or 
Octave, this can be computed via the expression:
sqrt(sum(((E-M*b)./(1-sum(M.*(M*((M'*M)^(-1))’), 
2))).^2)/length(E))

Thus, first train a CE model including all CFs (constant, point, 
and pair)—the all-inclusive model. Next, train another CE 
model with only constant and point CFs—the current model. 
Then, consider pair CFs, in decreasing order of their weights 
in the all- inclusive model, for addition to the current model. 
Each time a pair CF is considered for addition, train a new CE 
model that includes all CFs in the current model and the can-
didate pair CF, and evaluate the resulting CV-RMS. If it is 
lower than that of the current model, update the current model 
to include the CF; otherwise, discard the pair CF. Repeat until 
all pair CFs are considered. We have found this simple proce-
dure to work well in practice, as in our PDZ-targeting study, 
but we have also proposed a more principled and general-pur-
pose statistical method for choosing CFs to maximize CE 
accuracy [29].

 11. Randomly generate a test set containing sequences not included 
in the training set, following the same procedure as in step 8. 
The number of sequences in the test set need only be large 
enough to provide a reliable estimate of CE error. Run the 
protocol in step 4 for these sequences, and compute the root-
mean- square of the difference between the resulting binding 
scores and scores calculated by the CE model from above (test-
set RMS). This metric is a better indicator of expected CE 
error and is generally marginally higher than CV-RMS. Evaluate 
the quality of the CE model in the context of the ROC analysis 
in step 5. CE error should be lower than the score differences 
that tend to differentiate known binders from non-binders. If 
this is not the case, then the CE model is not of sufficient accu-
racy for specificity design, with several possible root causes: (1) 
important clusters were missed in step 7; (2) training set for 
CE was too small, such that important CF contributions could 
not be discerned; or (3) the structure-based score being con-
sidered is not easily expandable in terms of low-order CFs and 
may require more context for higher accuracy (e.g., triplet CFs 
may be necessary; see Ref. [20]).

 12. Identify optimal peptide sequences for experimental character-
ization. In an earlier study, we described CLASSY, a framework 
that feeds CE models into an integer linear programming (ILP) 
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framework to select sequences that make optimal trade-offs 
between affinity and selectivity [21]. Alternatively, in circum-
stances where the peptide sequence space is sufficiently small 
(i.e., £1010  sequences), given that the CE model typically takes 
less than 1 μs per peptide to evaluate, the entire sequence space 
can be simply enumerated. Either way, the goal is to find all 
peptide sequences that cannot be simultaneously improved in 
both predicted binding score and selectivity (i.e., the difference 
in binding scores between the target complex and the best- 
scoring off-target complex) [21]. These sequences lie at the 
edge of affinity/selectivity space (the so-called pareto-optimal 
front [30]) and are the only candidates worth considering, due 
to the simple fact that all other sequences can be simultane-
ously improved in both parameters. The pareto-optimal front 
is easy to visualize on a plot of affinity versus selectivity, where 
each point represents a sequence (Figure 2 shows a plot cor-
responding to one of the designs from our PDZ study [19]).

 13. The number of sequences on the pareto-optimal front is often 
small enough to allow for the manual inspection of each [19, 
21]. We recommend re-scoring each of these sequences by the 
structure- based framework in step 4 to check for the possibil-
ity of anomalous CE error (discard any candidates scoring sig-
nificantly less favorably in either affinity or selectivity by the 
structure- based framework than the CE model), manually ana-
lyzing the corresponding structural models for biophysical 
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Fig. 2 An example predicted affinity/selectivity landscape, zoomed in around 
optimal sequences. Scores are shown in Rosetta energy units (eu). Each dot 
represents a peptide sequence; X and Y coordinates indicate affinity and selec-
tivity scores, respectively (see Ref. [19]), with more negative numbers corre-
sponding to higher affinity and selectivity. Sequences on the pareto-optimal front 
(i.e., those for which affinity and selectivity cannot be improved simultaneously; 
gray points) are connected with dashed lines. Adapted from Fig. 4a in Ref. [19]
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plausibility (discard candidates with potential structural prob-
lems not properly recognized by the structural modeling 
framework), and finally choosing among remaining candidates 
based on the predicted scores. Depending on the availability of 
time and computational resources, one may also perform 
explicit-solvent molecular dynamics simulations of chosen can-
didates to build further support of at least local stability of the 
peptide in the binding site. Although relevant timescales will 
differ between systems, at least 10–100 ns of sampling is likely 
required in most situations to make any relevant observations. 
Additional issues in selecting candidate sequences are discussed 
in Note 4.

4  Notes

 1. Our analysis showed that when a homologous template for a 
PDZ domain has around 35–45 % sequence identity to the 
target sequence, the Cα RMSD between the binding pockets 
of the true structure and the homology model has a median of 
1.4 Å [19]. Also, when comparing apo and peptide-bound 
structures of PDZ domains, we noticed that PDZ binding sites 
tend to widen upon peptide binding [19]. Backbone rear-
rangements are not modeled in the Rosetta FlexPepDock, but 
it was shown that although these rearrangements are small, 
they are enough to affect the outcomes of the structural simu-
lation significantly [27]. Therefore, peptide-bound structures 
are strongly preferred as homology- modeling templates. For 
example, in our previous work, we found that a PDZ domain 
homology model based on a peptide-bound structure with 40 
% sequence identity performed much better in binding predic-
tion than one based on an apo structure with 50 % sequence 
identity (unpublished data).

 2. In our PDZ study, we conducted benchmark tests for two PDZ 
domains, NHERF-2 PDZ2 (N2P2) and MAGI-3 PDZ6 
(M3P6), with Rosetta 3.4 [22] using the scoring function 
score12. We observed that dropping the backbone statistical 
terms “rama” and “omega” significantly improved performance 
[19]. The AUCs before and after omitting these terms were 
0.57 and 0.77 for M3P6 (25 binders and 16 non-binders in the 
benchmark set; Fig. 3). In preparation of this manuscript, we 
also tested the performance of the new scoring function 
talaris2013 used in a newer version of Rosetta 
(Rosetta_2014.35.57232_bundle), and the AUCs before and 
after dropping “rama” and “omega” were 0.71 and 0.76 for 
M3P6. This omission also marginally improves the performance 
on N2P2 (AUCs 0.86 and 0.91 before and after dropping), 
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although this domain has fewer data points in our benchmark 
set (7 binders and 8 non-binders). Importantly, as no experi-
mental structures of M3P6 were available, we used a homology 
model for simulating M3P6–peptide interactions in our study. 
Given that the improvement due to omitting “rama” and 
“omega” is larger for M3P6, it may be that the terms present 
more of an issue for homology models than crystal structures. 
Still, omitting the terms appears to improve the performance in 
general (including additional PDZ domains we have tested 
since our study; data not shown), and this may be due to the 
fact that Rosetta scoring functions are generally optimized to 
recognize/reproduce ground state-like conformations.

 3. The benchmark dataset in our PDZ domain study came from 
the work of MacBeath and coworkers, which characterized 
binding affinities for a large number of PDZ–peptide pairs [7]. 
The authors reported dissociation constants if they were below 
100 μM, or simply labeled interactions as “weak” in the oppo-
site case. Thus, we naturally chose 100 μM as the cutoff for 
separating “binders” from “non-binders” for ROC analysis 

FP/(FP+TN)

T
P
/(
T
P
+
F
N
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC

M3P6'(0.77)
M3P6(0.57)

0 0.2 0.4 0.6 0.8 1

Fig. 3 An example ROC analysis, assessing the performance on differentiating 
binders from non-binders for M3P6. Default Rosetta scoring function score12 
(gray line, labeled as M3P6) and a modified version that omits “rama” and 
“omega” (black line, labeled as M3P6′) are compared. Numbers in parenthesis 
indicate the area under curve (AUC) for each case. TP: number of true positives, 
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[19]. If quantitative affinity measurements are not available, 
SPOT-array or phage-display data can also be used to classify 
sequences into two categories. However, one should use cau-
tion with such data, as they are in general more error prone, 
especially with respect to false negatives (i.e., true binders that 
are not detected in the assay).

 4. It may be unnecessary to experimentally test all candidate 
sequences selected in steps 12 and 13. It is generally advanta-
geous to characterize sequences spanning different levels of 
selectivity, to determine whether predicted affinity/selectivity 
trade-offs are correct. When possible and applicable, choose 
sequence subsets with diverse structural strategies for reaching 
either affinity or selectivity.
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    Chapter 16   

 Computational Design of DNA-Binding Proteins                     

     Summer     Thyme      and     Yifan     Song     

  Abstract 

   Predicting the outcome of engineered and naturally occurring sequence perturbations to protein–DNA 
interfaces requires accurate computational modeling technologies. It has been well established that com-
putational design to accommodate small numbers of DNA target site substitutions is possible. This chapter 
details the basic method of design used in the Rosetta macromolecular modeling program that has been 
successfully used to modulate the specifi city of DNA-binding proteins. More recently, combining compu-
tational design and directed evolution has become a common approach for increasing the success rate of 
protein engineering projects. The power of such high-throughput screening depends on computational 
methods producing multiple potential solutions. Therefore, this chapter describes several protocols for 
increasing the diversity of designed output. Lastly, we describe an approach for building comparative mod-
els of protein–DNA complexes in order to utilize information from homologous sequences. These models 
can be used to explore how nature modulates specifi city of protein–DNA interfaces and potentially can 
even be used as starting templates for further engineering.  

  Key words     Protein–DNA interactions  ,   Computational design  ,   Rosetta  ,   Specifi city  ,   In silico predic-
tion  ,   Direct readout  ,   Homology model  

1      Introduction 

 Sequence-specifi c  protein–DNA interactions   play a key role in fun-
damental cellular processes. Alterations to gene regulatory net-
works, via changes to transcription factor binding site  affi nity  , drive 
disease progression [ 1 – 5 ] and potentially species evolution [ 6 – 10 ]. 
Being able to accurately model these interactions can enhance 
understanding of the biophysical basis behind such changes [ 1 ], 
enabling the development of tools to test predictions and modu-
late the interactions. The Rosetta program for macromolecular 
modeling and design [ 11 ], the focus of this chapter, has been used 
to redesign protein–DNA interfaces. The design algorithm in 
Rosetta searches protein sequence and rotameric [ 12 ] ( see   Note 1 ) 
space, fi nding amino acid combinations that are energetically com-
patible with the DNA sequence being targeted. Evaluation of each 
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amino acid combination with a physically based energy function 
identifi es the lowest-energy designed sequence [ 11 ,  13 ]. 

 Proteins recognize DNA partners through direct interactions 
between side chains and bases, water-mediated contacts, and indi-
rect readout, the sequence-dependent shape, and conformation of 
the DNA [ 14 ,  15 ]. High specifi city positions in the binding sites of 
many DNA-interacting proteins, where one nucleotide is much 
preferred over others, are often characterized by strong direct con-
tacts that are disrupted when the favored base is replaced [ 14 ,  16 , 
 17 ]. Computational protein–DNA  interface design   has mainly 
been successful at altering these direct interactions to shift binding 
specifi city for small numbers of nucleotide substitutions [ 18 – 22 ]. 
The main drivers of  direct readout   are hydrogen bonding and 
hydrophobic packing, both crucial components of computational 
design algorithms that are actively being improved upon [ 23 – 25 ]. 
Water-mediated interactions are generally captured through 
 implicit solvent   models [ 26 ,  27 ], although explicit water molecules 
have recently been incorporated into computational design algo-
rithms [ 28 ]. Modeling indirect readout is arguably the current big-
gest challenge for computational protein–DNA design. All previous 
redesign successes maintained the DNA backbone conformation 
from the starting crystal structure, although it is clear from crystal 
structures of computational designs [ 22 ] and evolved interfaces 
that extensive movements of the DNA can occur [ 29 – 31 ]. There is 
some knowledge of how DNA bending preferences infl uence tar-
get site specifi city [ 14 ,  15 ], but these energetic components are 
just beginning to be incorporated into the Rosetta program [ 27 ] 
( see   Note 2 ). 

 One way to go beyond limits in state-of-the-art computational 
models, while simultaneously gathering experimental data to 
improve them, is to combine design with  directed evolution  . 
Computational design results can be used for low-activity starting 
points for  directed evolution   [ 32 – 35 ] or can guide initial library 
design.  Directed evolution   is itself limited in how many amino 
acids can be simultaneously randomized, and computational design 
can enable many more positions to be concurrently explored by 
suggesting the inclusion of only certain amino acid types at each 
position in a protein library [ 36 – 39 ]. There are a number of 
approaches for  directed evolution   of  protein–DNA interactions   
[ 29 ,  36 ,  40 – 43 ] that can be used in conjunction with computa-
tional design to increase the likelihood of engineering success and 
potentially feedback to the models to improve future outcomes. 

 Utilizing all available information about a particular protein 
sequence is important for  success   in protein engineering, particularly 
if the information can be merged with a high-throughput screening 
method. In this chapter we describe several protocols to diversify 
computational design results over the standard fi xed- backbone 
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approach: using libraries of native-like interactions (called motifs) to 
guide  rotamer   sampling [ 13 ,  36 ,  44 ,  45 ], explicit design for specifi c-
ity using a genetic algorithm [ 20 ,  22 ], and  fl exibility   of the protein 
backbone [ 22 ]. In addition to these methods for increased design 
diversity, sequence information from protein homologues can 
increase our understanding of how the specifi cities of a protein of 
interest are modulated by natural evolution [ 46 – 48 ]. One way to 
incorporate this information into the design process is by building 
high-resolution homology models of protein–DNA complexes and 
predicting specifi cities of homologues from the models [ 27 ,  47 ]. 
Here we describe protein–DNA homology modeling and target site 
prediction with Rosetta. Homology models can be used in conjunc-
tion with  directed evolution   in engineering pipelines [ 49 ] and can 
potentially even be used as starting templates for computational 
design.  

2     Materials 

     1.    The Rosetta software suite. The release version of Rosetta 
(Rosetta 2015.19 as of May, 2015) is free of charge for aca-
demics and nonprofi t users and is available from   https://www.
rosettacommons.org/software/license-and-download    . While 
the majority of the protocols described in this chapter can be 
completed with this release version, some advanced design 
modes, such as using motifs [ 13 ,  36 ,  44 ,  45 ], require the 
developer’s version of Rosetta. Access to the developer’s repos-
itory can be obtained through a sponsor from or collaboration 
with a lab that is a member of RosettaCommons ( see   Note 3 ), 
and protocols that require these extended capabilities are noted 
throughout.   

   2.    Python (version ≥ 2.4 and <3.0) to compile the Rosetta code. 
A local version of the compiling software SCons comes pack-
aged with Rosetta and is run via the scons.py script that is also 
included with the Rosetta download ( see   Note 4 ).   

   3.    A Unix or Linux server or  cluster   for running Rosetta jobs ( see  
 Note 5 ). The Rosetta software can run on multiple platforms 
( see   Note 6 ), however they may not all be fully supported. The 
majority of experiments, any protocols other than the standard 
design method (Subheading  3.1 ), will require submitting 
many runs in parallel to a Unix or Linux cluster to achieve 
adequate results with reasonable calculation times.   

   4.    A high-resolution (preferably <3.0 Å) structure of a protein–
DNA complex. Alternatively, a homology model can be used if 
a protein–DNA complex of a related protein is available to use 
as a template.   
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   5.    The homology modeling protocol (Subheading  3.4 ) currently 
requires several in-house scripts ( see   Note 7 ) and the following 
databases: NCBI NR ( see   Note 8 ) and HH-suite ( see   Note 9 ).      

3    Methods 

            1.     Open a  terminal   window ( see   Note 5 ).   
   2.    Enter the Rosetta source directory that contains the scons.py 

fi le. Compile a version of the code that can be ported to a dif-
ferent computer system and operating platform by typing 
“scons bin mode=release extras=static” ( see   Notes 10  and  11 ).   

   3.    Make a directory where the code will be run and the output 
collected by typing “mkdir nameofdirectory” ( see   Notes 12  
and  13 ).   

   4.    Make a fi le that contains the arguments read by Rosetta (Fig.  1 ) 
with your favorite text editor. The text editor Vi ( see   Note 14 ) 
is likely present in your Linux/Unix system. To make the argu-
ments fi le using Vi by typing “vi nameofargsfi le”, entering 
insertion mode by typing “i”, and then typing the desired fl ags 
using Fig.  1  as a guide.

       5.    Make an XML script fi le ( see   Note 15 ) that contains protocol 
instructions given to the program  through   RosettaScripts 
[ 51 ], using Fig.  2  as a guide for the content.

       6.    The amino acid positions in the protein–DNA interfaces that 
will be designed are automatically calculated based on the 
“dna_defs” and “z_cutoff” fl ags that are part of the operations 
(TASKOPERATIONS) included in the XML fi le (Fig.  2 ). If 
the user would instead prefer to only allow a subset of amino 
acid types and designed positions, a resfi le (Fig.  3 ) can be used. 
The resfi le will override automatic detection of interface resi-
dues by the addition of the line “-resfi le nameoffi le” to the args 
fi le (Fig.  1 ). The XML script should also be modifi ed to add 
the task operation “<ReadResfi le name=RRF/>” and replace 
the use of AUTOprot with RRF in the mover. The “dna_def” 
option in the DnaInt operation is no longer necessary because 
the target base is specifi ed in the resfi le.

       7.    Choose an energy function that is optimized for  protein–DNA 
interactions   ( see   Note 16 ), and make a fi le containing the nec-
essary weights for energy function components (Fig.  4 ). The 
name of the weights fi le is the input for the fl ag “-score::weights 
nameoffi le” (Fig.  1 ).

       8.    If necessary, modify the Rosetta database to go with the energy 
function shown in Fig.  4 . Previously used optimized energy 
functions [ 13 ] have required database changes ( see   Note 17 ).   

3.1  Standard 
Protein–DNA Interface 
Design
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   9.    Run code by submitting to whatever computer cluster you are 
using or by typing “rosettaDNA.static.linuxgccrelease @
nameofargsfi le” ( see   Notes 18  and  19 ).       

   Calculations of specifi city and binding energy are used to identify 
designed sequences with properties of interest ( see   Note 20 ). 
These methods can also be used to predict the binding sites for 
proteins with unknown target preferences. 

   The simplest method of specifi city prediction [ 1 ,  16 ] is the addi-
tion of the two lines to the XML fi le. This method is not suitable 
for protocols that involve any backbone movement because the 
backbone is optimized for the base-pair originally designed for and 
the energy would be biased for this base-pair.

3.2  Assessment 
of Designs Using 
Specifi city 
and Binding Energy 
Calculations

3.2.1  Automatic 
Specifi city and Binding 
Energy Prediction 
Following Fixed- 
Backbone Design

-in:ignore_unrecognized_res # ignore anything in the pdb structure that is
not recognizable
-  2QOJ.pdb # input structure
-mute all 
and include for large-scale runs
-unmute protocols.dna # unmute a subset of the output if desired
-score::weights rosetta_database/scoring/weights/optimizedenergyfxn.wts
# energy function for evaluating structures (see Fig. 5)
-score:output_residue_energies # include information in the pdb about the
interaction energies of residues in the design
-run:output_hbond_info # include information in the pdb about the
hydrogen bonding of residues in the design
-database rosetta_database # required Rosetta database, see Note 17 for
useful changes to the database
-ex1 # extra rotamer sampling around chi angle 1
-ex2 # extra rotamer sampling around chi angle 2
-ex1aro::level 6 # even more extra rotamer sampling for aromatic residues

can have large repulsion scores if the rotamer is not in the optimal position.
-ex2aro::level 6 # even more extra rotamer sampling for aromatic residues
around chi angle  2
-exdna::level 4 # use DNA rotamers and include extra sampling (inclusion

-jd2:dd_parser # use the parser protocols
-parser:protocol # XML script (see Fig. 3)
-overwrite # if a pdb with the same name already exists in the directory
where the design occurring, then overwrite the old pdb
-  design_ 

  Fig. 1    Example arguments fi le. This fi le controls the parameters of the design run or specifi city calculation. All 
writing after the # mark is a comment that is not read in by the Rosetta program. This fi gure is reproduced with 
publisher’s permission from Ref. [ 50 ]       
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    1.    Follow instructions in Subheading  3.1  with the following 
described variations to the XML script (Fig.  2 ) and arguments 
fi les (Fig.  1 ).   

   2.    Replace  line a  with  line b  in the XML fi le (Fig.  2 ) and run the 
protocol exactly as described in Subheading  3.1 , but with this 
new XML fi le instead of the original. 
  line a : <DnaInterfacePacker name=DnaPack scorefxn=DNA 
task_operations=IFC,IC,AUTOprot,DnaInt/> 

  line b : <DnaInterfacePacker name=DnaPack scorefxn=DNA 
task_operations=IFC,IC,AUTOprot,DnaInt binding=1 probe_
specifi city=3/>   

   3.    The number following the added options refers to the number 
of “repacks,” the lowest energy of which is used in the calcula-
tions. A repack is a search similar to the design procedure 
except that only rotameric state is varied while amino acid 
types are fi xed. The recommended number of repacks is at least 
three, to reduce noise in the resulting energies.   

   4.    The calculation results are located inside the output pdb fi le 
for each design. Open the fi le with a text-editing program to 
view the data. If multiple fi les need to be analyzed, a script may 
be necessary to parse the information.    

<dock_design>
  <TASKOPERATIONS>
    <InitializeFromCommandline name=IFC/> # use the information in the args
    <IncludeCurrent name=IC/> # includes the rotamers in the input structure (may not want to use)
    <RestrictDesignToProteinDNAInterface name=DnaInt base_only=1 z_cutoff=6.0 dna_defs=Z.409.GUA/> #
make the target site substitution of interest (chainID.crystalposition.type) and designate the sphere of residues
surrounding it that are designable and packable
    <OperateOnCertainResidues name=AUTOprot> # works with the DnaInt operation to enable residues to be
chosen for design and packing if they are marked as AUTO
      <AddBehaviorRLT behavior=AUTO/>
      <ResidueHasProperty property=PROTEIN/>
    </OperateOnCertainResidues>
  </TASKOPERATIONS>
  <SCOREFXNS>
    <DNA weights=optimizedenergyfxn/> 
directory (ie, rosetta_database/scoring/weights/optimizedenergyfxn.wts)
  </SCOREFXNS>
  <FILTERS>
    <FalseFilter name= /> # RosettaScripts has the ability to only output designs that pass a designated

  </FILTERS>
  <MOVERS>
    <DnaInterfacePacker name=DnaPack scorefxn=DNA task_operations=IFC,IC,AUTOprot,DnaInt/>
  </MOVERS>
  <PROTOCOLS>
    <Add mover_name=DnaPack/>
  </PROTOCOLS>
</dock_design>

  Fig. 2    Example RosettaScripts XML fi le. This fi le can be used to set up and modify Rosetta protocols with. All 
writing after the # mark is a comment that is not read in by the Rosetta program. This fi gure is reproduced with 
publisher’s permission from Ref. [ 50 ]       
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     The main goal of a specifi city calculation is to fi nd and compare the 
energy of a set of given sequences by exploring rotameric and 
potentially backbone space. The computational program used to 
generate a design is not always the best choice for the specifi city 
prediction. For example, a crystal structure backbone may have an 
energetic bias for the native base-pair and a fl exible backbone 
 specifi city calculation can overcome this bias by enabling the pro-
tein backbone to be optimized for each base.

3.2.2  Protocol 
for Specifi city Calculation 
that Is Suitable 
Following Any Design 
Procedure

AUTO # all protein positions not
explicitly noted are to be marked as
AUTO, the same as using the
AUTOprot operation
start
28 A PIKAA L # forces amino acid L
at position 28 on chain A
83 A PIKAA R
-12 C NATRO # g
rotamer
-11 C NATRO #   c
-10 C NATRO #   a
-9 C NATRO # g
-8 C NATRO #   a
-7 C NATAA 
residue type, but allows different
rotamers
-6 C TARGET GUA #   c, target
base, same as using the dna_def
option, but DNA is required to be
explicit in the 
-5 C NATAA # g
-4 C NATRO # t
-3 C NATRO #   c
-2 C NATRO # g
-1 C NATRO # t
1 D NATRO #   a
2 D NATRO #   c
3 D NATRO # g
4 D NATRO #   a
5 D NATAA #   c
6 D TARGET CYT # g
7 D NATAA # t
8 D NATRO # t
9 D NATRO #   c
10 D NATRO # t
11 D NATRO # g
12 D NATRO #   c

  Fig. 3    Example resfi le. This fi le is used if specifi c protein positions or amino acid 
types need to be forced in the design run. It is an alternative to allowing the loca-
tion of the target substitution to control the designable protein positions. All writ-
ing after the # mark is a comment that is not read in by the Rosetta program. This 
fi gure is reproduced with publisher’s permission from Ref. [ 50 ]       
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    1.    Modify the XML script to fi x the protein sequence of the struc-
ture being analyzed. In the TASKOPERATIONS section of 
the XML fi le, the operation to fi x the protein sequence is added 
with the following four lines:

   <OperateOnCertainResidues name=ProtNoDes>  
  <RestrictToRepackingRLT/>  
  <ResidueHasProperty property=PROTEIN/>  
  </OperateOnCertainResidues>    
  To use this operation, the DnaInterfacePacker mover must 
be changed to the following:  
 <DnaInterfacePacker name=DnaPack scorefxn=DNA task_
operations=IFC,IC,AUTOprot,ProtNoDes,DnaInt/>   

   2.    If desired, modify the arguments fi le to increase the number of 
 rotamers   ( see   Note 21 ). The addition of the fl ags “-ex3” and 
“-ex4” is a reasonable increase. Further increases can be 
enabled by using the “::level #” addition to any of the -ex fl ags. 
The available levels are 1–7 ( see   Note 22 ).   

METHOD_WEIGHTS ref  -0.3 -0.7 -0.75 -0.51 0.95 -0.2 0.8
-0.7 -1.1 -0.65 -0.9 -0.8 -0.5 -0.6 -0.45 -0.9 -1.0 -0.7 2.3 1.1 #
reference weights that are for each amino acid type

fa_atr 0.95 # attractive forces between residues
fa_rep 0.44 # repulsive forces between residues
fa_intra_rep 0.004 # repulsion within a sidechain
fa_sol 0.65 # one component of desolvation
lk_ball 0.325 # newer orientation-dependent desolvation
lk_ball_iso -0.325 # newer orientation-dependent desolvation
hack_elec 0.5 # coulombic electrostatics
fa_dun 0.56 # probability for each approximated rotamer
ref 1 # weight for the reference energies
hbond_lr_bb 1.17 # hydrogen bonding
hbond_sr_bb 1.17 # hydrogen bonding
hbond_bb_sc 1.17 # hydrogen bonding
hbond_sc 1.17 # hydrogen bonding
p_aa_pp 0.64 # probability of amino acid type given
backbone
dslf_ss_dst 0.5 # disulphides
dslf_cs_ang 2 # disulphides
dslf_ss_dih 5 # disulphides
dslf_ca_dih 5 # disulphides
pro_close 1.0 # proline ring closure

  Fig. 4    Example energy function fi le. This energy function was optimized to produce 
high sequence recovery of protein–DNA interactions over a benchmark set of pro-
teins [ 13 ]. All writing after the # mark is a comment that is not read in by the Rosetta 
program. This fi gure is reproduced with publisher’s permission from Ref. [ 50 ]       
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   3.    Set up four runs, one for each base type (or more if the target 
has multiple base-pair substitutions, do runs for whichever 
competing states are to be compared).   

   4.    Complete a minimum of 10 runs per base type for a fi xed- 
backbone approach and at least 50 (×4 or more) for any 
approach involving fl exible backbone ( see  Subheading  3.3.3 ).   

   5.    Collect the total_score value from inside of each pdb ( see   Note 
23 ). The specifi city can be calculated from the lowest-energy 
structure or from the mean or median of the energies of all 
structures. A comparison of all these three specifi city calcula-
tions is most informative ( see   Notes 24  and  25 ).       

   Using computation to guide  directed evolution   libraries depends 
on having multiple designs to combine in the selection process. 
The standard fi xed-backbone approach yields a single or very lim-
ited number of design solutions with a given energy function. This 
most energetically favorable computational model is not always the 
optimal experimental solution, yet it can contain individual high- 
quality interactions. Incorporating information from multiple low- 
energy solutions by using  directed evolution   is one way to more 
fully take advantage of the information available from modeling. 

   Design procedures are computationally limited in how many rota-
mers can be included in the design search. This reliance of design 
on the  rotamer   approximation means that sometimes energetically 
favorable interactions will be missed. One way to get around this 
limit is to increase  rotamer   sampling in regions likely to form favor-
able interactions by using motifs [ 13 ,  36 ,  44 ,  45 ], libraries of inter-
actions seen in crystal structures. In one type of motif-based 
protocol a vastly expanded  rotamer   set is compared to the motif 
library, and those  rotamers   that can form one of these native-like 
interactions with a target base-pair are identifi ed. The design pro-
cedure can then be biased with these favorable rotamers by adding 
them to the standard  rotamer   set and giving them an energetic 
bonus, overcoming  rotamer   sampling limitations and also poten-
tial inaccuracies in the energy function. Expanded instructions for 
running this protocol are available in Ref. [ 13 ].

    1.    Acquire access to the developer’s version of the code ( see  
Subheading  2 ).   

   2.    Compile the dna_motif_collector application in order to build 
a library of protein–DNA motifs.   

   3.    Download all crystallized protein–DNA complexes under 
some resolution cutoff (<2.8 is reasonable).   

   4.    Run the following command (or a slight variation of it): /rosetta/
bin/dna_motifs_collector.linuxgccrelease - motif_output_direc-
tory < directory name> - ignore_unrecognized_res  - adducts  dna_

3.3  Rosetta Modes 
for Increasing 
Diversity of Designed 
Sequences

3.3.1  Motifs
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major_groove_water - database  <rosetta database> - l  <name of 
output motif list>   

   5.    Compile the motif_dna_packer_design app.   
   6.    Add the line “special_rot 1.0” to the energy function (Fig.  4 ).   
   7.    Add the line “-patch_selectors SPECIAL_ROT” to the args 

fi le (Fig.  1 ).   
   8.    Add fl ags to the args fi le (Fig.  1 ) to load in the motif library, set 

up cutoffs for acceptance of a motif  rotamer  , pick a rotamer 
level for the expanded motif  rotamer   library, and pick the ener-
getic bonuses to try for these added  rotamers  . An example 
command line is shown in the following step. All command 
line options are explored in extensive detail in the supplemen-
tal methods of Ref. [ 13 ].   

   9.    /rosetta/bin/motif_dna_packer_design.linuxgccrelease - run_
motifs  - dtest  2.0 - z1  0.97 - z2  0.97 - r1  1.0 - r2  1.0 - dna::design::z_
cutoff  6.0 - motifs::rotlevel  8 - motifs::list_motifs  <name of output 
motif list> - motifs::output_fi le  <output fi le for motifs> - s  <PDB 
fi le being designed> - score::weights  <energy function fi le> 
- ignore_unrecognized_res  - database  <rosetta database> - ex1  
- ex2  - ex1aro::level  6 - ex2aro::level  6 - extrachi_cutoff  0 - 
 dna::design::dna_defs  <position being designed with motifs, 
e.g. X.409.CYT> - special_rotweight  <weight for motif rotam-
ers, e.g. -1.25> - num_repacks  4    

     Multistate design relies on a genetic algorithm method to explicitly 
design for one state and against others [ 52 – 54 ]. In protein–DNA 
design, those states are the targeted bases and the alternative pos-
sible bases [ 20 ,  22 ].

    1.    Follow instructions in Subheading  3.1  with the following vari-
ations to the XML script (Fig.  2 ).   

   2.    Modify the XML fi le by replacing the standard DNA design 
mover with the following mover for doing multistate: 

 <DnaInterfaceMultiStateDesign name=msd scorefxn=
DNA task_operations=IFC,IC,AUTOprot,DnaInt pop_
size=20 num_packs=1 numresults=0 boltz_temp=2 
anchor_offset=15 mutate_rate=0.8 generations=5/>   

   3.    Additionally, the line “<Add mover_name=DnaPack/>” must 
be replaced with the line: 

 <Add mover_name=msd/>   

   4.    All of the parameters of the genetic algorithm can be varied, 
and the ones in the above line are parameters to test the proce-
dure, rather than do a complete run. Refer to cited literature 
[ 20 ,  22 ,  52 ] to identify reasonable starting parameters.    

3.3.2  Multistate Design
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          1.     Follow  instructions   in Subheading  3.1  with the following 
described variations to the XML script (Fig.  2 ) and arguments 
fi les (Fig.  1 ).   

   2.    Modify the XML fi le to include a second mover before the 
standard design mover (DnaInterfacePacker). The line to add 
is: 

   <DesignProteinBackboneAroundDNA name=bb scorefxn=
DNA task_operations=IFC,IC,AUTOprot,DnaInt type=ccd 
gapspan=4 spread=3 cycles_outer=3 cycles_inner=1 
temp_initial=2 temp_fi nal=0.6/>   

   3.    Additionally, the following line must be added after the line 
“<Add mover_name=DnaPack/>”: 

     <Add mover_name=bb/>   

   4.    The DesignProteinBackboneAroundDNA enables the ccd 
backbone movement [ 55 ,  56 ]. An advanced user of  Rosetta 
and   RosettaScripts format could explore protein backbone 
space with alternative protocols [ 57 – 61 ] and then use those 
structures as input for standard design ( see   Note 26 ).   

   5.    Many more design runs, at least 50 for a single base-pair sub-
stitutions, are required to explore the range of design possibili-
ties when using fl exible backbone simulation, as the diversity of 
results will be signifi cantly increased.       

   The High-Temp packer approach increases the temperature that 
the simulated annealing algorithm driving the design process con-
verges to. Using this approach increases the chance of producing a 
design that is low-energy, but not the absolute lowest energy. The 
supplemental methods of Ref. [ 13 ] describes the two code changes 
required to use this method. These changes can be made to any 
version of Rosetta and then the code must be recompiled.   

    The current protocol of protein–DNA complex homology mod-
eling is based on a modifi ed version of RosettaCM [ 62 ]. It  mod-
els   proteins structures in the same way as RosettaCM and treats 
the DNA as a rigid body. The interactions between protein and 
DNA are optimized during the RosettaCM protein structure 
modeling. This procedure requires that there is a homologue of 
the protein of interest that has been crystallized bound to 
DNA. In this example, we use the structure of I-OnuI (PDB 
code: 3QQY).

    1.    Set up standard homology modeling input fi les by running 
“setup_cm.pl sequence_fi le” ( see   Note 7 ).   

   2.    Choose a template structure of which the DNA structure 
(example, 3qqy) will be used for modeling.   

3.3.3  Protein Flexibility

3.3.4  High-Temp Packer

3.4  Design Starting 
from Homology 
Models of Protein–
DNA Complexes
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   3.    Superimpose all input templates for the protein homology 
modeling onto the template structure with the DNA, using 
 pymol   or superposition scripts.   

   4.    Thread the new DNA sequence onto the structure with DNA 
“change_base.py --inpdb 3QQY.pdb --dna_seq ACGT --out-
pdb out.pdb --chain B” (chain B is the DNA chain grafted 
from 3QQY, dna_seq gives the DNA sequence input being 
threaded to chain B of 3QQY.pdb).   

   5.    Copy and paste DNA coordinates from 3QQY to all the super-
imposed template structures in a text editor.   

   6.    If any protein segments in template structures clashes with 
DNA (this can be visually identifi ed in  pymol  ), remove the 
coordinates of the clashed segments in a text editor.   

   7.    A rosetta_scripts xml input is created in  step 1 . Edit the xml 
input and add “add_hetatm=1” to the <Hybridize …> line, so 
that DNA structure from the templates is added for 
modeling.   

   8.    Run RosettaCM using the fl ags set up by  step 1 . (rosetta_
scripts.xxx @fl ags_common @fl ags0_C1 -nstruct 100 (generat-
ing 100 models)   

   9.    Using the energy output (score.sc) to identify 20 lowest- 
energy models.   

   10.    Using the ∆∆G protocol ( see  rosetta scripts documentation) to 
calculate the interaction between protein and DNA of the 20 
low-energy models (Fig.  5 ), select the model with the stron-
gest interaction.

4            Notes 

     1.    A rotamer is a low-energy conformation of an amino acid [ 12 ]. 
The protocol to identify the lowest-energy design is based in a 
simulated annealing algorithm [ 11 ].   

   2.    The DNA movement protocols in Rosetta are currently experi-
mental and undergoing development. Contact Philip Bradley 
at pbradley@fhcrc.org for information on the most up-to-date 
methods for designing with DNA  fl exibility  .   

   3.    See   https://www.rosettacommons.org/about     for a compre-
hensive list of all members of RosettaCommons available for 
collaborations.   

   4.    Other compilation software, such as CMake, can be used but 
are not as well supported. Further details on building Rosetta 
can be found here:   https://www.rosettacommons.org/docs/
latest/Build-Documentation.html    .   
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   5.    Running Rosetta requires a basic understanding of Linux/
Unix commands. There are many available resources, and one 
tutorial for a beginner user is located at the following web 
address:   http://www.ee.surrey.ac.uk/Teaching/Unix/    .   

   6.    A partial list of the supported platforms is available at the fol-
lowing web address:   https://www.rosettacommons.org/docs/
latest/platforms.html    .   

   7.    Contact Yifan Song at Cyrus Biotechnology, Inc. (yifan@cyrus-
bio.com).   

   8.    This database can be downloaded at the following web address: 
  ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz    .   

   9.    More information on the program and a download of the data-
base is available at the following web address:   http://toolkit.
tuebingen.mpg.de/    .   

   10.    The mode=release command builds the release version, and it 
is at least 10 times faster of an executable than the default 
debug version. The only reason to leave out the “mode=release” 
command is if you are developing code that will need to be 
debugged. The “extras=static” command enables porting of 
the complied code to other platforms because static linking of 
shared libraries is completed. The only downside to the static 
complication is that the executable size is large. The command 
“-j #” can be used to parallelize the build into multiple threads 
if you are compiling on a multiprocessor machine (ie, -j 20 for 
splitting compilation over 20 machines).   

   11.    If the code is going to be run on a different computer system than 
it was compiled, the rosettaDNA executable and entire rosetta_

  Fig. 5    Example prediction of target site preferences for a homology model. A pro-
tein–DNA complex was modeled for the homing endonuclease homologue Gin027, 
and the interface binding energy (∆∆G) was calculated for the model with 34 
possible target site orientations [ 47 ]. The predicted target site for this endonucle-
ase is highlighted with a  magenta bar  and corroborated by experimental charac-
terization [ 47 ]. The reverse complement of this target, a binding mode that cannot 
be ruled out without a crystal structure, is shown with a  gray dashed line        
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database folder be moved to that system by typing “scp ./bin/
rosettaDNA.static.linuxgccrelease computerwhereitwillberun” 
and “scp -r ../rosetta_database/ computerwhereitwillberun”.   

   12.    If the user plans on running parallel multiple trajectories of the 
same code, the output of these trajectories needs to go into 
different directories so that the output fi les do not overwrite 
each other. One strategy is to create directories labeled job0- 
job55 (if 55 trajectories are being completed) by using the 
Unix command “mkdir job {0..55}”. A second, but much less 
time-effective, option is to run jobs sequentially by using com-
mands in the arguments fi le or by using capabilities  within   
RosettaScripts [ 51 ]. This approach is not recommended if the 
job is long, such as for multiple base-pair designs in which 
many interface positions must be designed simultaneously.   

   13.    If you are running on a multiprocessor system that does not 
have a job submission system, the program GNU parallel [ 63 ] 
is a highly recommended way to run parallelized jobs. The 
website explaining the program is   http://www.gnu.org/soft-
ware/parallel/    . The following example command will use 
GNU parallel to submit jobs 5 and have the results go into 
separate job# directories: nice -19 ./bin/parallel -j 5 'cd {.}ƒ; 
./bin/rosettaDNA.static.linuxgccrelease @../args > log;cd 
../' ::: job* &.   

   14.    Many beginner Vi tutorials are available online (i.e.,   http://
www.infobound.com/vi.html    ).   

   15.    The XML fi les are a part  of   RosettaScripts [ 51 ]. This system 
for protocol development provides a fl exible environment in 
which movers and operations can be recombined into different 
algorithms without having to recompile Rosetta.   

   16.    The energy function used in modeling makes a substantial dif-
ference in the design outcome. Energy functions optimized 
specifi cally for  protein–DNA interactions   should be used in 
protein–DNA design calculations for best results [ 13 ]. There 
have been recent advancements in the Rosetta program, such 
as the development of a new way to capture hydrogen- bonding 
interactions [ 23 ], however the energy function must go 
through an optimization process [ 13 ,  64 ] for the problem of 
interest before using new functionality.   

   17.    Change the 5 th  and 7 th  columns of the following fi ve lines in 
the atom_properties.txt fi le (./rosetta_database/chemical/
atom_type_sets/fa_standard/atom_properties.txt) to the val-
ues shown here:

   Phos P 2.1500 0.5850 -4.1000 3.5000 14.7000  
  Narg N 1.7500 0.2384 -10.0000 6.0000 11.2000 
DONOR ORBITALS  
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  NH2O N 1.7500 0.2384 -7.8000 3.5000 11.2000 
DONOR ORBITALS  
  Nlys N 1.7500 0.2384 -16.0000 6.0000 11.2000 DONOR  
  ONH2 O 1.5500 0.1591 -5.8500 3.5000 10.8000 
ACCEPTOR SP2_HYBRID ORBITALS    
 Also change the fi fth column of the three HC atoms in the 
LYS.params fi le to the value 0.48 from 0.33 to increase 
the positive charge of lysine. The LYS.params fi le is found 
here: 
 “./rosetta_database/chemical/residue_type_sets/fa_
standard/residue_types/l-caa/LYS.params”.   

   18.    If running many jobs on a multiprocessor system, always sub-
mit a single test run to confi rm that all paths are correct and 
that all necessary fi les are included.   

   19.    The number of runs that should be completed depends on how 
many base pairs are being mutated in the target site. The num-
ber of base pairs controls the number of interface positions that 
are designed (unless a resfi le is used,  see  Fig.  4 ). As a starting 
point, a minimum of 10 runs should be completed for a fi xed-
backbone standard design for a one base-pair substitution. At 
least 50 runs should be completed for a single base- pair pocket 
with  fl exibility   (either protein or DNA). A triple base-pair 
pocket with backbone  fl exibility   needs several hundred runs 
(300–500) to assess the full range of low-energy solutions.   

   20.    DNA-interacting proteins can have either or both high activity 
and specifi city [ 16 ]. Even without explicit design for specifi c-
ity, computational design procedures are biased to generate 
high specifi city designs if it is possible because they optimize 
for direct base-pair interactions. Nonspecifi c proteins, such as 
DNA polymerase, often use DNA backbone contacts to gain 
binding energy.   

   21.    The discreteness of  rotamers   is an approximation that is neces-
sary because of computational limits when all amino acids are 
being considered. Increasing the number of rotamers can 
improve design results [ 13 ]. When the amino acid sequence is 
fi xed the number of  rotamers   included in the calculation can 
be greatly increased and any negative effect of the approxima-
tion is lessened.   

   22.    An advanced Rosetta XML user can add the extra rotamers 
through the ExtraRotamersGeneric operation and complete 
this specifi city calculation directly after design in one run.   

   23.    The simplest way to access these values without writing a script 
is to execute the command “grep total_score *pdb” in the direc-
tory that contains the pdbs you are interested in analyzing.   
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   24.    For specifi city predictions, it is recommended that either the 
mean or median value of the total_energy over many structures 
be used, rather than the score of the lowest-energy structure. 
This recommendation is especially true for protocols involving 
any amount of backbone  fl exibility  , as design protocols can 
generate outlier structures with energies much lower than the 
majority and these outliers are not likely to represent that 
actual energetic and structural state of the complex.   

   25.    The calculation of specifi city is based on the Boltzmann distri-
bution. The value of k B T can be changed, but a value of 1 is 
reasonable. The equation for calculating specifi city for a gua-
nine base-pair is (2.718^0) / (2.718^0 + 2.178^(-ΔE G-A ) + 
2.178^(-ΔE G-C ) + 2.178^(-ΔE G-T )).   

   26.    Only the DesignProteinBackboneAroundDNA mover will 
limit protein backbone movement to around the target base- 
pair. Other methods of protein backbone movement will 
require another way of designating the regions that should be 
fl exible.         
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    Chapter 17   

 Motif-Driven Design of Protein–Protein Interfaces                     

     Daniel-Adriano     Silva    ,     Bruno     E.     Correia     , and     Erik     Procko      

  Abstract 

   Protein–protein interfaces regulate many critical processes for cellular function. The ability to accurately 
control and regulate these molecular interactions is of major interest for biomedical and synthetic biology 
applications, as well as to address fundamental biological questions. In recent years, computational protein 
design has emerged as a tool for designing novel protein–protein interactions with functional relevance. 
Although attractive, these computational tools carry a steep learning curve. In order to make some of these 
methods more accessible, we present detailed descriptions and examples of ROSETTA computational 
protocols for the design of functional protein binders using seeded protein interface design. In these pro-
tocols, a motif of known structure that interacts with the target site is grafted into a scaffold protein, fol-
lowed by design of the surrounding interaction surface.  

  Key words     Computational protein design  ,   Protein–protein interaction  ,   ROSETTA  ,   Motif grafting  , 
  Interface design  

1       Introduction 

 Computational design of  protein–protein interactions   has steadily 
progressed in recent years, including the creation of inhibitors that 
block enzymatic sites [ 1 ], small proteins that prevent viral entry 
[ 2 ], and antitumor agents that sequester oncogenic factors [ 3 ]. 
The ability to design in silico new functional binding proteins from 
minimal starting components opens tremendous possibilities for 
engineering innovative therapeutics and may eventually challenge 
antibody technology as the premiere method for generating pro-
tein-based drugs. However, designing a truly de novo protein–
protein interface is a challenging problem that remains largely 
unsolved. This is due to several factors, most importantly the inac-
curacies in energy functions used to evaluate protein designs and 
the intrinsic diffi culties in effi ciently sampling docked protein con-
fi gurations that allow the design of side chains for favorable inter-
actions. Therefore, to overcome these limitations, protein designers 
often use a “seeded  interface design  ” approach, in which a small 
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motif of known structure that binds to the target site is used to 
initiate the design process. This motif is then grafted (i.e., embed-
ded) into a larger protein scaffold that in turn is designed to achieve 
optimal packing and interactions with the target protein. This 
approach solves two problems: (1) by beginning with a motif that 
is known to bind the target, the design immediately starts with 
some favorable interactions, and (2) the scaffold orientation against 
the target surface is guided by the motif itself. By using this infor-
mation, the design is biased toward sampling only a small number 
of permissible docked confi gurations. Seeded protein–protein 
 interface design   strategies are indeed extremely powerful for creat-
ing novel protein binders, but the methods are also daunting for 
newcomers. 

 In this chapter, we describe a step-by-step workfl ow for the 
design of new protein binders based on  motif grafting   and “seeded” 
 interface design  . The majority of the protocols described can easily 
be run on a single personal computer, though large clusters and 
supercomputers will increase sampling and help fi nd better 
solutions.  

2     Materials (Required Software) 

  ROSETTA . The ROSETTA software suite includes algorithms for 
protein modeling and design [ 4 ]. ROSETTA is free for academic 
users and can be downloaded from:   https://www.rosettacom-
mons.org/software    . 

 In the examples given here, ROSETTA was compiled and exe-
cuted on a MacBook Pro with a 2.5 GHz quad-core Intel i7 pro-
cessor. Basic knowledge of UNIX-style terminal commands is 
necessary. 

 For any design or structure prediction problem within 
ROSETTA, the potential energy is calculated using ROSETTA’s 
energy function, which includes terms for attributes such as  rota-
mer   energies, van der Waals interactions, and hydrogen bonding, 
among others [ 5 ]; the process of applying the energy function to a 
 given   protein conformation is simply referred to as “scoring.” As 
with free energy, a conformation or sequence with a lower energy 
in ROSETTA is more favorable. During protein structure predic-
tion, the conformation of lowest energy is determined for a given 
amino acid sequence. During protein–protein  interface design  , the 
problem is reversed. Since the basic docked confi guration of the 
binding partners is now known, the aim is to design the lowest 
energy sequence to stabilize the bound state of the two proteins. 

   ROSETTA and     RosettaScripts . ROSETTA protocols are writ-
ten in an XML-script format. The script is interpreted using the 
RosettaScripts parser, which is packaged within the ROSETTA 
suite [ 6 ]. Using a simple analogy, RosettaScripts protocols are like 
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cooking recipes; they fi rst defi ne the ingredients (energy functions, 
task operations, fi lters, and movers) and then outline the protocol 
by which these are  combined. RosettaScripts is easy to use, even for 
novices with minimal programming experience. Wiki-style docu-
mentation can be accessed at:   https://www.rosettacommons.org/
docs/latest/scripting_documentation/RosettaScripts/
RosettaScripts    . 

 This website provides an index of available operations and is an 
excellent resource when creating or modifying scripts. 

  Important : For the examples presented here, command lines 
contain the environment variable  ${Rosetta} , which means the 
directory path in which ROSETTA is installed on the user’s 
computer. 

  Molecular Visualization . A molecular graphics-viewing pro-
gram is required. PyMol (Schrödinger, LLC) is recommended, as 
it has excellent and easy-to-use features for visualization, simple 
structural alignments, and even allows modifying proteins. A lim-
ited educational version (precompiled for several platforms) is 
available for free from:   https://www.pymol.org/    . 

 A full-featured open-source branch from SourceForge 
(Slashdot Media, requires compilation) is available at:   http://
sourceforge.net/projects/pymol/    .  

3     Methods 

 The workfl ow (Fig.  1 ) for computational  interface design   using 
 motif grafting   is comprised of the following steps:

     1.    Defi nition of the binding motif for seeded interface design.   
   2.    Preparing a scaffold database.   
   3.    Matching for putative scaffolds (i.e., motif grafting).   
   4.    Sequence design.   
   5.    Selection and improvement of designs.    

    To guide readers through each of these steps, we present the exam-
ple of designing a protein binder for the estrogen  receptor   (ERα) 
based on a known peptide interaction. The crystal structure of 
ERα has been solved with a bound helical peptide from a transcrip-
tional coactivator (PDB ID 1GWQ; Fig.  2 ) [ 7 ]. This natural pro-
tein–peptide complex provides an initial structural motif for seeded 
 interface design  . The bound peptide provides the core of the inter-
face, and the design process involves transplanting/grafting the 
motif into alternative protein scaffolds, followed by design of 
neighboring residues close to the target protein surface, creating 
an extended interface for improved  affi nity   and specifi city.

3.1  Defi nition 
of the Binding Motif 
for Seeded  Interface 
Design  
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   ERα is a steroid hormone-activated transcription factor that 
recruits coactivators to a target gene [ 8 ]. The ERα-coactivator 
interaction is established through a helical motif that bears the sig-
nature sequence LXXLL (where L is leucine and X is any amino 
acid), with the leucine residues (hot spots) binding a hydrophobic 
cleft on the ERα surface (Fig.  2b ) [ 7 ]. In the following sections, 
we show how to graft the helical motif into a new protein scaffold. 
The assumptions guiding this design strategy are: (1) stabilization 
of the bound conformation of the LXXLL motif by embedding it 
within a stable scaffold reduces the entropic penalty of binding a 
fl exible peptide, and (2) expanding the interfacial contact area can 
create new favorable interactions with the target. If successful, a 
design that combines these two factors can achieve an interaction 
with enhanced  affi nity   and specifi city. 

 First, the PDB of the protein–peptide complex is formatted for 
compatibility with ROSETTA and the structure is minimized ( see  

  Fig. 1    Workfl ow for seeded interface design. In the  inset panels , the target pro-
tein surface is colored in  green , the motif to be grafted in  orange , and scaffolds 
are shown in  grey        
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 Note 1  at the end for a detailed description on preparing input 
PDB fi les). Next, the structure is divided into two new PDB fi les, 
referred to as the “context” and “motif.” The “context” fi le con-
tains the target structure (i.e., ERα; only chain A of PDB ID 
1GWQ), while the “motif” fi le contains the LXXLL peptide (chain 
C of PDB ID 1GWQ). In different scenarios, the motif could also 
be a small segment of a much larger protein, for example, an inter-
acting loop extracted from an antibody–antigen structure.  

   To prepare an inclusive scaffold database that can be searched for a 
variety of structural motifs, we downloaded 1519 structures from the 
PDB (  www.rcsb.org    ) based on the following four criteria: (1) crystal 
structures with high-resolution x-ray diffraction data (<2.5 Å), (2) 
the proteins had been reported to be expressable in  E. coli  (this sim-
plifi es later experimental characterization), (3) a single protein chain 
in the asymmetric unit (MotifGraft only works with monomeric scaf-
folds as grafting targets), and (4) no bound ligands or modifi ed resi-
dues. The scaffold PDB fi les were formatted for ROSETTA and 
subjected to an energy minimization step ( see   Note 2 ). 

 In some circumstances, a focused scaffold library may produce 
more useful matches. For our particular example, the peptide that 
seeds  interface design   has an α-helical conformation. Therefore, 
we also prepared a small focused scaffold library of 28 helical 
proteins.  

3.2  Preparing 
a Scaffold Database

  Fig. 2    The ERα-LXXLL peptide complex. ( a ) The crystal structure of the ligand-binding domain of ERα (a dimer; 
two chains are shown in  light  and  dark green ) bound to the aroylbenzothiophene core of raloxifene ( grey 
spheres ) and a peptide ( orange ) spanning the helical LXXLL motif from the transcriptional coactivator TIF2 
(PDB 1GWQ). PDB fi les of the motif (chain C) and target (chain A) are prepared. ( b ) The three conserved leu-
cines of the LXXLL motif interact with a hydrophobic cavity on the ERα surface, while glu-542 of ERα caps the 
peptide’s N-terminus       
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 The scaffold library is computationally scanned for possible graft 
sites. If the motif and scaffold backbones superimpose with very 
low root mean squared deviation (RMSD < 0.5 A), then only hot 
spot side chains need be transplanted from the motif to the corre-
sponding positions in the matching site of the scaffold [ 9 ,  10 ]. 
This is known as “side chain grafting.” Subsequently, surrounding 
residues on the scaffold surface that are in contact with the target 
are designed for favorable interactions [ 3 ]. We suggest that side 
chain grafting should be attempted fi rst, as it makes the minimal 
number of changes to the scaffold, increasing the chances of 
obtaining correctly folded designs during experimental validation. 
However, often side chain grafting is not possible because the 
motif and scaffold structures are too dissimilar. In these cases, even 
though the motif and scaffold may have very different structures, 
it is still possible to use an alternative method known as “backbone 
grafting” [ 11 ,  12 ]. 

 During backbone grafting, the algorithm looks for segments of 
the scaffold backbone that align closely to the termini of the motif 
(both N- and C-terminal sides), and then the scaffold segment 
between these alignment points is replaced by the motif. This tech-
nique is extremely versatile, for example, a loop in the scaffold 
might be replaced by a peptide motif with different secondary 
structure, or even with a different amino acid length. Since the 
changes to the scaffold structure following backbone grafting can 
disrupt the overall fold, it is important to design the hydrophobic 
core to support the new backbone structure of the scaffold, fol-
lowed by design of the protein–protein interface. The backbone 
grafting procedure often introduces many mutations to the scaf-
fold, requiring careful fi ltering of designs to select those that pres-
ent quality interfaces and high stability of the new scaffold. 

 The fl ow chart in Fig.  1  details the steps involved for both 
design strategies. We begin by describing side chain grafting, fol-
lowed by backbone grafting.  

  

   Motif matching and  interface design   are  distinct   conceptual steps, 
but due to the  fl exibility   of the RosettaScripts framework, both can 
be included in a single computational step. First, a list is generated 
containing all PDB fi les within the scaffold database: 
  #> ls -1 scaffolds_directory/*.pdb > scaffolds.list  

 Then  RosettaScript  s is executed using the following 
command: 
  #> ${Rosetta}/main/src/bin/rosetta_scripts -database 
${Rosetta}/main/database/ -l scaffolds.list -use_input_
sc -ex1 -ex2 -nstruct 1 -parser:protocol MotifGraft_
sc.xml  

3.3   Matching 
for Putative 
Scaffolds

3.4   Sequence Design

3.4.1   Side Chain Grafting 
with RosettaScripts

D. Silva et al.
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 The command line includes several important options. First, 
the location of the ROSETTA database must be specifi ed using 
 -database . Option  -l scaffolds.list  specifi es the input list 
of scaffold PDB fi les. (Option  -s scaffold.pdb  would specify 
a single PDB fi le.) The options  -ex1  and  -ex2  allow ROSETTA 
to explore additional side chain rotamers, and  -use_input_sc  
means that  rotamers   in the input structure are included in the rota-
mer library. Finally, option  -nstruct 1  means that the design 
script will be launched once per input scaffold. This can be increased 
if the user wishes to fi lter through more designs, but requires usage 
of the MultiplePoseMover in the XML script (for further informa-
tion see RosettaScripts documentation). 

 In the case of grafting by side chain replacement, it took less 
than an hour to scan through the focused scaffold library of 28 
helical proteins on a laptop computer and generate 23 designs. 
(Since several steps in the design process are stochastic, the num-
ber of results that pass the fi lters might vary if the protocol is re-
executed.). The XML fi le MotifGraft_sc.xml reads as follows: 
  <ROSETTASCRIPTS>  
  <TASKOPERATIONS>  
    <ProteinInterfaceDesign name=pido repack_chain1=1 
repack_chain2=1 design_chain1=0 design_chain2=1 
interface_distance_cutoff=8.0/>  

   <OperateOnCertainResidues name="hotspot_repack">  
    <RestrictToRepackingRLT/>  
    <ResiduePDBInfoHasLabel property="HOTSPOT"/>  
   </OperateOnCertainResidues>  
  </TASKOPERATIONS>  
  <SCOREFXNS>  
  </SCOREFXNS>  
  <FILTERS>  
   <Ddg name=ddg confi dence=0/>  
   <BuriedUnsatHbonds name=unsat confi dence=0/>  
   <ShapeComplementarity name=Sc confi dence=0/>  
  </FILTERS>  
  <MOVERS>  
    <MotifGraft name="motif_grafting" context_structure=
"context.pdb" motif_structure="motif.pdb" RMSD_toler-
ance="0.3" NC_points_RMSD_tolerance="0.5" clash_score_
cutoff="5" clash_test_residue="GLY" hotspots="3:7" 
combinatory_fragment_size_delta="2:2" full_motif_bb_
alignment="1"graft_only_hotspots_by_replacement="1" 
revert_graft_to_native_sequence="1"/>  

    <build_Ala_pose name=ala_pose partner1=0 partner2=1 
i n t e r f a c e _ c u t o f f _ d i s t a n c e = 8 . 0 
task_operations=hotspot_repack/>  

    <Prepack name=ppk jump_number=0/>  
    <PackRotamersMover name=design task_operations=
hotspot_repack,pido/>  

   <MinMover name=rb_min bb=0 chi=1 jump=1/>  
  </MOVERS>  

Design of Protein-Protein Binding 
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  <PROTOCOLS>  
   <Add mover_name=motif_grafting/>  
   <Add mover_name=ala_pose/>  
   <Add mover_name=ppk/>  
   <Add mover_name=design/>  
   <Add mover_name=rb_min/>  
   <Add mover_name=design/>  
   <Add fi lter_name=unsat/>  
   <Add fi lter_name=ddg/>  
   <Add fi lter_name=Sc/>  
  </PROTOCOLS>  
  </ROSETTASCRIPTS>  

 Within the XML fi le, the user may fi rst specify which score/
energy function to use from the ROSETTA database or reweight 
specifi c score terms; if no score function is defi ned, the default is 
used (currently “talaris2013,” but this will likely change in future 
ROSETTA releases). Next, task operations defi ne which residues 
can be altered. The ProteinInterfaceDesign task operation restricts 
design to residues of chain 2 (the scaffold) within 8 Å of the inter-
face, while target residues within 8 Å of the interface may repack to 
alternative low- energy rotamers. By default, the design of nonna-
tive prolines, glycines, and cysteines (which can have important 
structural consequences) is forbidden. The second task operation, 
RestrictToRepackingRLT, prevents the two grafted hot spot leu-
cines from being mutated in later design steps, though they can 
repack to alternative  rotamers  . (For polar hot spot residues, alter-
native rotamers would disrupt hydrogen-bonding networks, and 
we would advise using the more restrictive task operation 
PreventRepackingRLT, which prevents both design and repack-
ing.) The MotifGraft mover (described below) keeps track of which 
residues correspond to the target, scaffold, or motif and which 
critical side chains are grafted. These are labeled CONTEXT, 
SCAFFOLD, MOTIF, and HOTSPOT, respectively. These resi-
due classes are then available for task operations, as used here. The 
details for these task operations are given on the wiki website: 
  https://www.rosettacommons.org/docs/latest/scripting_docu-
mentation/RosettaScripts/TaskOperations/taskoperations_
pages/OperateOnCertainResiduesOperation    . 

 Movers dictate how the protein complex is manipulated, such 
as sequence design, side chain and backbone minimization, or 
rigid- body docking. The protocol begins with the MotifGraft 
mover, which searches for alignments between the scaffold and 
motif that do not produce steric clashes with the target structure. 
The MotifGraft mover has many options. First, the names of the 
PDB fi les for the target ( context_structure ) and motif ( motif_
structure ) must be specifi ed. The option  RMSD_tolerance  sets 
the maximum RMSD allowed between the motif and scaffold 
alignment. For side chain grafting, the motif should closely match 
the scaffold segment it is aligned with, so that the backbones are 
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virtually superimposable. In this XML script, the RMSD tolerance 
was set to 0.3 Å (maximum recommended is ~0.5 Å). The option 
NC_points_RMSD_tolerance sets the maximum RMSD allowed 
between the N-/C-termini of the motif and scaffold graft site (rec-
ommended 0.5 Å). Once the scaffold has been aligned, the con-
fi guration of the system must be checked for clashes. After it is 
grafted, the motif cannot clash with other parts of the scaffold (this 
is not an issue for side chain grafting when the motif closely matches 
a native structural region within the scaffold, but is of serious con-
cern when performing backbone grafting). 

 In addition, the orientation of the scaffold when aligned with 
the motif cannot clash with the target surface. Since residues can 
be designed to smaller amino acids in later steps, clashes are 
checked after fi rst mutating the motif to small amino acids, such as 
alanine or glycine (using option  clash_test_residue="GLY"  in 
this XML script). All the atomic clashes are computed, and if the 
score is above the clash_score_cutoff, the graft fails and an alterna-
tive alignment in the scaffold is attempted (it is recommended to 
set the clash_score_cutoff at ≤ 5). The options  full_motif_bb_
alignment="1"  and  graft_only_hotspots_by_replace-
ment="1"  indicate that side chain grafting is being performed. 
Option  hotspots="3:7"  defi nes which positions in the motif PDB 
correspond to the two leucine hot spots of the LXXLL peptide. 
Additional hot spots are each separated by colons. Option  combi-
natory_fragment_size_delta="2:2"  indicates by how many 
amino acids the motif may be shortened at each terminus 
(N-terminus:C-terminus), i.e., whether the full motif must align 
(“0:0”) or only a partial fragment. Here, the algorithm will attempt 
to match the full-length motif, as well as each motif fragment 
shorter by up to two residues at one or both termini. The fi nal 
option,  revert_graft_to_native_sequence="1" , means that 
after the motif has been placed into the scaffold, all residues except 
for the hot spots are reverted back to their native identities. 
Therefore, only the two hot spot amino acids are effectively trans-
ferred as changes to the scaffold sequence. 

 After side chain grafting, the protocol continues by replacing 
scaffold side chains within 8 Å of the target with alanine using the 
build_Ala_pose mover. Task operations prevent the hot spots 
from changing. Side chains are now repacked with the Prepack 
mover. During this step, target  protein   residues that sterically 
clash with the scaffold have the opportunity to fi nd alternative, 
non-clashing  rotamers  . Next, the interface surrounding the 
grafted hot spots is designed using the PackRotamersMover. Task 
operations ensure that hot spot and target residues can only 
change rotamer conformations, whereas scaffold residues within 
8 Å of the target surface are available for design. Side chains and 
rigid-body orientations of the designed complex are then mini-
mized with MinMover, followed by a second round of design. 

Design of Protein-Protein Binding 
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Multiple rounds of minimization and design are recommended as 
they may improve results. Further details about movers can be 
found at:   https://www.rosettacommons.org/docs/latest/
s c r i p t i n g _ d o c u m e n t a t i o n / R o s e t t a S c r i p t s / M o v e r s /
Movers-RosettaScripts    . 

 Finally, three fi lters are used to assess the designs’ structural 
features: binding energy (ΔΔG), interface shape complementarity, 
and buried unsatisfi ed hydrogen-bonding atoms at the interface. 
In this example XML script, each fi lter is assigned a confi dence of 
0, such that all designs will pass. Rather than acting to terminate 
design calculations, these fi lters are instead being used to report 
interface quality. Based on these reported values, the user can 
determine which are the best designs of the pool. A full list of avail-
able fi lters can be found at:   https://www.rosettacommons.org/
docs/latest/scripting_documentation/RosettaScripts/Filters/
Filters-RosettaScripts    . 

 Some examples of the designs generated by the aforemen-
tioned script are shown in Fig.  3 . XML scripting is amenable to 
rapid protocol modifi cations, and users are encouraged to attempt 
their own variations of the protocols. The  RosettaScripts o  nline 
documentation is an excellent resource to understand the func-
tionality that different options provide.

      Using the same motif and target PDB fi les described above, we 
present an example XML script that scans scaffolds for potential 
backbone graft sites and subsequent design. The script can be exe-
cuted as follows: 
  #> ${Rosetta}/main/source/bin/rosetta_scripts.macosclang-
release -database ${Rosetta}/main/database/ -l scaf-
folds.list -use_input_sc -nstruct 1 -parser:protocol 
MotifGraft_bb.xml  

 The XML script reads: 
  <ROSETTASCRIPTS>  
  <TASKOPERATIONS>  
    <ProteinInterfaceDesign name=pido_far interface_distance
_cutoff=15.0/>  

    <ProteinInterfaceDesign name=pido_med interface_distance_
cutoff=12.0/>  

    <ProteinInterfaceDesign name=pido_near interface_distance_
cutoff=8.0/>  

    <OperateOnCertainResidues name="hotspot_repack">  
     <RestrictToRepackingRLT/>  
     <ResiduePDBInfoHasLabel property="HOTSPOT"/>  
    </OperateOnCertainResidues>  
    <SelectBySASA name=core mode="sc" state="bound" probe_
radius=2.2 core_asa=0 surface_asa=30 core=1 bound-
ary=0 surface=0/>  

    <SelectBySASA name=core_and_boundary mode="sc" state=
"bound" probe_radius=2.2 core_asa=0 surface_asa=30 
core=1 boundary=1 surface=0/>  

  </TASKOPERATIONS>  

3.4.2  Backbone Grafting 
with RosettaScripts
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  Fig. 3    Examples of designs generated by side chain grafting. ( a ) The crystal structure (PDB 1GWQ) of a LXXLL 
coactivator motif ( orange ) bound to ERα ( green ). Only chains A (ERα; the target) and C (LXXLL motif) are con-
sidered. The structure was energy minimized with ROSETTA and the interface was scored. ( b – f ) Five different 
designs generated by side chain grafting using the XML script described here. The scaffolds ( grey ; PDB codes 
indicated in the fi gure) are all helical bundle proteins. The grafted leucine hot spot residues (L690 and L694 in 
Fig.  2 ) are colored in  orange . ( g ) The interface of the design in panel ( b ) is shown in greater detail. Designed 
interactions around the hot spots include hydrophobic contacts from L45, aromatic stacking between designed 
residue Y42 and target residue H373, and a saltbridge from E15 to K362       

  <FILTERS>  
    <Ddg name=ddg confi dence=0/>  
    <BuriedUnsatHbonds name=unsat confi dence=0/>  
    <ShapeComplementarity name=Sc confi dence=0/>  
  </FILTERS>  
  <MOVERS>  
    <MotifGraft name="motif_grafting" context_structure=
"context.pdb" motif_structure="motif.pdb" RMSD_toler-
ance="1.0" NC_points_RMSD_tolerance="1.0" clash_
score_cutoff="5" clash_test_residue="GLY" hotspots=
"3:7"combinatory_fragment_size_delta="2:2" max_frag-
ment_replacement_size_delta="-8:8" full_motif_bb_align-
ment="0" graft_only_hotspots_by_replacement="0"/>  
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    <build_Ala_pose name=ala_pose partner1=0 partner2=1 
interface_cutoff_distance=8.0 task_operations=hotspot_
repack/>  

    <Prepack name=ppk jump_number=0/>  
    <PackRotamersMover name=design_core task_operations=
hotspot_repack,pido_far,core/>  

    <PackRotamersMover name=design_boundary task_operations=
hotspot_repack,pido_med,core_and_boundary/>  

    <PackRotamersMover name=design_interface task_operations=
hotspot_repack,pido_near/>  

    <MinMover name=sc_min bb=0 chi=1 jump=0/>  
  </MOVERS>  
  <PROTOCOLS>  
    <Add mover_name=motif_grafting/>  
   <Add mover_name=ala_pose/>  
   <Add mover_name=ppk/>  
   <Add mover_name=design_core/>  
   <Add mover_name=design_boundary/>  
   <Add mover_name=design_interface/>  
   <Add mover_name=sc_min/>  
   <Add fi lter_name=unsat/>  
   <Add fi lter_name=ddg/>  
   <Add fi lter_name=Sc/>  
  </PROTOCOLS>  
  </ROSETTASCRIPTS>  

 The fi rst mover called in the protocols section of the XML 
script is MotifGraft. As with side chain grafting, options  context_
structure  and  motif_structure  specify the target and motif 
PDB fi les, respectively. The  RMSD_tolerance  and  NC_points_
RMSD_tolerance  are both set at 1.0 Å (the maximum recom-
mended is 1.5 Å); during backbone grafting, these options set the 
maximum allowed RMSD between the motif termini and the back-
bone graft sites in the scaffold. A lower RMSD tolerance will 
enforce a better match between the motif termini and scaffold 
backbone, giving better results, though at the expense of more 
solutions. The options for  clash_test_residue ,  clash_score_
cutoff ,  hotspots  and  combinatory_fragment_size_delta  are 
set the same as for side chain grafting. However, for backbone 
grafting options  full_motif_bb_alignment  and  graft_only_
hotspots_by_replacement  are both turned off (i.e., set to “0”). 
A new option is now used;  max_fragment_replacement_size_
delta="-8:8"  sets the minimum and maximum sizes of the scaf-
fold segment that can be replaced by the motif (i.e., the resulting 
scaffold can vary from eight residues shorter up to eight residues 
longer than the original scaffold). 

 The protocol continues by calling a mover to mutate scaffold 
residues at the interface to alanine. Next,  rotamers   are minimized 
with the Prepack mover, followed by three design steps using 
PackRotamersMover. The fi rst design step is restricted to scaffold 
residues within the hydrophobic core up to 15 Å away from the 
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interface. Since the grafted motif is potentially very different from 
the scaffold segment it replaced, design of the core is necessary to 
stabilize the new structure. Two task operations defi ne which resi-
dues can be designed: (1) the ProteinInterfaceDesign task opera-
tion permits design to chain 2 (the scaffold) within a distance 
threshold of the interface, and (2) the SelectBySASA task opera-
tion defi nes core, boundary, and surface residues based on solvent-
accessible surface area and turns their design on or off. The second 
design step is restricted to 12 Å from the interface but now allows 
the design of core and “boundary” (i.e., partially buried) amino 
acids. Again, task operations defi ne the residues for design. The 
third design step is now focused on optimizing all scaffold residues 
8 Å from the target surface. A task operation prevents the grafted 
hot spot leucine residues from mutating at any stage. The fi nal 
mover is a side chain minimization. 

 The protocol fi nishes with three fi lters to report on interface 
quality: the calculated binding energy, number of buried unsatis-
fi ed hydrogen-bonding atoms, and shape complementarity. Within 
3 h on a laptop computer, over 200 scaffolds in the library were 
scanned for potential graft sites, and nearly as many designs were 
generated. In many of the designed proteins, helical segments of 
the scaffolds were swapped with the helical motif. However, in 
other designs, a non-helical scaffold segment was replaced; some 
examples are shown in Fig.  4 .

  Fig. 4    Examples of designs generated by backbone grafting. ( a – d ) In the  upper  images, the target ERα is 
shown in  green , the scaffold in  grey , and the grafted motif in  orange . The scaffold PDB is labeled. In the  lower  
images, the designed proteins (scaffold and motif regions are in  grey  and  orange , respectively) are superim-
posed with the original scaffold PDBs in  magenta . Notice that scaffold loops of very different lengths and 
conformations were replaced with the helical motif       
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       To date, no computational method has been developed that can 
predict with perfect accuracy which designs will be functional when 
challenged experimentally [ 13 ]. Therefore, it is wise to proceed 
with designed sequences that present good metrics by multiple cri-
teria. Designs are initially fi ltered based on calculated  metrics   for 
interface quality, including a favorable binding energy (ΔΔG < 0 
ROSETTA energy units, ideally the energy should be lower than 
the native interface from which the motif was taken), high shape 
complementarity (Sc > 0.65), and a low number of buried unsatis-
fi ed hydrogen- bonding atoms. In the XML scripts above, these 
fi lters report to a score fi le and will also be appended at the end of 
any ROSETTA output PDBs. 

 Once a set of designs have been selected based on the calcu-
lated metrics, it is important to perform human-guided inspection 
of the designed structures. There are many qualities of interfaces 
that are apparent to structural biologists that are not captured in 
standard  metrics  . Two common defects in ROSETTA-designed 
structures that are very important to avoid are buried charged 
residues and under-packed interfaces dominated by alanine resi-
dues (Fig.  5 ).

3.5  Selection 
of Designs 
and Optimization

  Fig. 5    Common defects in ROSETTA-designed protein binders. ( a ) After backbone 
grafting, the hydrophobic core of scaffold 1A0P ( grey ) was designed to support 
the motif. Polar and charged residues ( labeled ) were designed within the core; 
however, native proteins nearly always have hydrophobic cores. ( b ) Scaffold 
(PDB 2B29) is shown in  grey , while the grafted leucines are in  orange  and the 
target ERα is  green . The majority of designed scaffold residues at the interface 
( grey sticks ) are alanines. Interfaces dominated by alanine can achieve low ener-
gies; alanine is a small hydrophobic residue that will not clash with the target 
surface and is therefore the “default” residue when specifi c interactions cannot 
be designed. These interfaces lack hydrogen-bonding networks and are gener-
ally under-packed       
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     It is also important to consider whether the designed scaffold will 
fold to its intended structure; having a spectacular interface on a 
computational model is irrelevant if the protein cannot fold in an 
experimental setting. This is particularly problematic for designed 
interfaces that have a large surface area dominated by hydrophobic 
residues. It is generally assumed that the probability of a designed 
sequence properly folding is inversely correlated with the number 
of mutations imposed on the scaffold during the design process. 
Therefore, it is benefi cial to be conservative and make as few muta-
tions as possible by reverting residues back to their native identities 
in a post-design stage. The ROSETTA application “revert_design_
to_native” [ 2 ] can be used for this task; it goes through each 
mutated position in the scaffold, reverts to the native amino acid, 
and computes the change in binding energy. If the native residue 
scores similarly to the designed residue, then it may be safer to 
revert back to the native amino acid. The revert_design_to_native 
application requires two input PDBs: the designed PDB (contain-
ing the target (chain A) bound to the designed scaffold (chain B)) 
and a reference PDB that contains the target together with the 
native scaffold. To determine which residues have been mutated, 
the application sequentially compares each amino acid between the 
design and reference PDBs; this means the application can only be 
applied to designs from side chain grafting in which the two PDB 
fi les have the same number of residues. The reference PDB is easily 
generated by concatenating the target (context.pdb) with the scaf-
fold PDB using the cat command: 
  #> cat context.pdb scaffold.pdb >nativecplx.pdb  

 Revert_design_to_native is run with the following command: 
  #> ${Rosetta}/main/source/bin/revert_design_to_native.
macosclangrelease -revert_app:wt nativecplx.pdb 
-revert_app:design design.pdb -ex1 -ex2 -use_input_sc 
-database ${Rosetta}/main/database/   

   If necessary, the designed structures may be subjected to human- 
guided optimization. The user may wish to correct a number of 
frequent problematic features in ROSETTA designs, such as 
hydrophobic residues at the water-exposed interface edge, revert 
designed residues back to their native identities, mutate buried 
charged residues to hydrophobics, etc. There are no hard rules for 
manually improving designs; it is simply a matter of the designer’s 
preference and experience. FoldIt is an excellent computational 
tool to perform this human-guided optimization [ 14 ]. It combines 
a graphic front end with molecular visualization together with 
many basic tools such as sequence design,  rotamer   repacking, and 
minimization (though often with creative names like “Shake” and 
“Wiggle”). FoldIt was developed as a protein folding and design 
game, bringing the advantages of crowdsourcing to solve struc-
tural biology problems [ 14 ]. The stand-alone version of FoldIt 

3.5.1  Reverting Designed 
Mutations Back to Native

3.5.2   Manually Adjusting 
Designs 
Using FoldIt
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gives immediate visual and ROSETTA energy feedback, helping 
the user decide if any further mutations to the designed protein are 
warranted. The license for FoldIt Standalone is available from 
  http://c4c.uwc4c.com/express_license_technologies/foldit    , and 
directions will then be provided for downloading the software.  

  
 Designs from backbone grafting require extra attention, as the 
 en  gineering of a protein core to support the grafted motif can be 
challenging. Many designed sequences will not fold correctly when 
experimentally tested. We have found structure prediction to be a 
powerful fi lter; the designed amino acid sequences when subjected 
to structure prediction calculations should yield similar structures 
to the designed models [ 3 ]. If structure prediction returns an alter-
native conformation, or fails to converge on an energy minimum in 
a conformational landscape, then it is unlikely that the designed 
sequence will correctly fold. However, structure prediction is com-
putationally expensive and not accessible on a large scale to most 
biochemists. Further, this evaluation method is only useful if the 
original scaffold sequence correctly returns the native structure; 
for many natural proteins, structure prediction methods are not yet 
able to accurately predict the known structure. Instead, designs 
can be relaxed with ROSETTA to determine if the designed con-
formation is “stable.” If the designed structural model drifts, it is 
unlikely to occupy a low-energy conformation at the bottom of an 
energy funnel, and the design should either be rejected or improved 
using information derived from the relaxed ensemble, from which 
one can identify cavities and alternative conformations that should 
be eliminated by additional design steps. To apply this fi lter, fi rst 
extract chain B (the designed protein) from the PDB fi les of the 
designed complexes: 
  #> for i in *.pdb; do grep " B " $i >$i.chainB; done  
  #> ls -1 *.chainB >monomers.list  

 Next, the designed monomers are relaxed and the RMSD to 
the starting structure is determined: 
  #> ${Rosetta}/main/source/bin/rosetta_scripts.macosclan-
grelease -database ${Rosetta}/main/database/ -l mono-
mers.list -use_input_sc -nstruct 1 -parser:protocol 
fastrelax.xml  
  <ROSETTASCRIPTS>  
  <MOVERS>  
   <FastRelax name=fstrlx repeats=4/>  
  </MOVERS>  
  <FILTERS>  
    <Geometry name=omega omega=150 cart_bonded=100 
confi dence=0/>  

    <CavityVolume name=cav_vol confi dence=0/>  
    <Rmsd name=rmsd confi dence=0 superimpose=1/>  
  </FILTERS>  
  <PROTOCOLS>  

3.5.3   Filtering Designs 
Based on Folding 
Probability
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   <Add fi lter_name=omega/>  
   <Add fi lter_name=cav_vol/>  
   <Add mover_name=fstrlx/>  
   <Add fi lter_name=rmsd/>  
  </PROTOCOLS>  
  </ROSETTASCRIPTS>  

 The RMSD will be low if the designed protein conformation 
is stable (typically ≤ 1 Å). This XML script also reports two other 
useful  metrics   prior to relaxation. The Geometry fi lter checks 
that backbone omega angles are above a defi ned cutoff (except 
for  cis - prolines, omega angles should be close to 180°) and that 
Cartesian space bond angles and lengths are close to ideal 
(decrease the cart_bonded penalty score for a more stringent 
fi lter). The geometry at the junction points where the motif is 
grafted can be particularly poor, and in such cases the cart_
bonded penalty score will be fl agged as high and the omega 
angle as too low in the log report. The CavityVolume fi lter mea-
sures the total cavity volume in Å 3 . This will be higher for bigger 
proteins and therefore should not be used as a hard fi lter, but 
any outliers with exceptionally high values likely have under-
packed cores.   

   Despite notable advances, computational  protein desig  n has only 
modest success rates at the stage of experimental characterization. 
Hence, it is essential to have a robust and rapid experimental assay 
for evaluating designs. Library display methods are ideally suited to 
screening many designs individually or simultaneously within a 
mixed pool [ 3 ], and as the cost of DNA synthesis has plummeted, 
it is possible to screen hundreds to thousands of designs within a 
reasonable budget. Often initial computational designs present 
low affi nities to the desired targets and must be optimized by tar-
geted  mutagenesis   or  directed evolution   [ 1 – 3 ,  12 ,  15 ]. 
Experimental methods should be carefully considered before 
embarking on any  protein   design project.  

   Computational design of  protein–protein interactions   is poised to 
make spectacular advancements. Fast computers, affordable DNA 
synthesis, and the development of tools like ROSETTA have 
coalesced in the past few years, such that computational design 
methodologies are now accessible to a wider community without 
requiring supercomputers or advanced programming skills. Here, 
we have outlined general methods for seeded  interface design   and 
encouraged readers to create new protocols tailored to their prob-
lems. Proteins made to order, once deemed science fi ction, are 
rapidly becoming a reality.   

3.6  Experimental 
Validation

3.7  Concluding 
Remarks
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4     Notes 

     1.     Formatting PDB fi les . PDB fi les must be correctly formatted 
for compatibility with ROSETTA. All heteroatoms, including 
water molecules, should be removed. In ROSETTA “TER” 
statements designate different proteins in a complex, and 
therefore any “TER” statements within a single protein chain 
must be removed, such as those that are used to mark regions 
of missing density. While these modifi cations can be made in a 
text editor, a large number of PDB fi les can easily be prepared 
with the following UNIX command: 
  #> for i in *.pdb; do grep "ATOM " $i >$i.atoms; done  

 This will go through all PDB fi les within the directory, 
search for all lines containing the string “ATOM”, and print 
these lines to a new fi le with suffi x atoms.   

   2.     ROSETTA energy minimization of crystallographic structures . 
It may be advantageous to perform energy minimization of the 
structures within the ROSETTA energy function prior to 
matching and design. Structures from experimental data often 
have residues with high (i.e., energetically unfavorable) energy 
due to minor clashes or “imperfections,” and these may be 
inappropriately designed by ROSETTA to alternative amino 
acids. This is especially problematic for backbone grafting and 
may lead to unnecessary sequence design of residues that 
should remain unchanged. Energy minimization of input 
PDBs generally resolves this issue. However, it is important 
that structures do not drift too far during the minimization 
protocol; after all, the original PDB fi les are determined from 
real experimental data, whereas a minimized structure will only 
be as real as the energy function is accurate. To perform this 
step, we suggest two computational protocols. First, structures 
can be minimized using the constrained fast relaxation proto-
col. To minimize a single PDB fi le, use option -s fi le.pdb in the 
command line. To relax all PDB fi les within a directory, create 
a list fi rst: 
  #> ls -1 *.pdb >pdb_fi les.list  
  #> ${Rosetta}/main/source/bin/relax.macosclangrelease 
-database ${Rosetta}/main/database/ -ignore_unrecog-
nized_res -relax:constrain_relax_to_start_coords -ex1 
-ex2 -use_input_sc -l pdb_fi les.list  

 Alternatively, structures can be minimized using 
RosettaScripts. A command line and example XML script are: 
  #> ${Rosetta}/main/source/bin/rosetta_scripts.maco-
sclangrelease -database ${Rosetta}/main/database/ -l 
pdb_fi les.list -use_input_sc -ex1 -ex2 -parser:protocol 
ppk_min.xml  
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 Contents of ppk_min.xml: 

  <ROSETTASCRIPTS>  
  <FILTERS>  
   <Rmsd name=rmsd threshold=1.5 superimpose=1/>  
  </FILTERS>  
  <MOVERS>  
   <Prepack name=ppk jump_number=0/>  
   <MinMover name=sc_bb_min bb=1 chi=1/>  
  </MOVERS>  
  <PROTOCOLS>  
   <Add mover_name=ppk/>  
   <Add mover_name=sc_bb_min/>  
   <Add mover_name=ppk/>  
   <Add mover_name=sc_bb_min/>  
   <Add fi lter_name=rmsd/>  
  </PROTOCOLS>  

 In this XML script, there are two rounds of  rotamer repacking   and 
side chain/backbone minimization using the movers Prepack 
and MinMover. The “Rmsd” fi lter superimposes the minimized 
structure with the input PDB fi le; if the two differ by over 1.5 
Å, then the structure is rejected and ROSETTA proceeds to the 
next scaffold in the list. The reasons why a structure is “unsta-
ble” during energy minimization and rejected may include 
inaccuracies in the ROSETTA energy function or regions of 
poor quality in the crystallographic models. For instance, in our 
initial scaffold library, we found that from 1519  prot  ein struc-
tures, only 1419 fulfi lled the fi ltering criteria and were included 
in the library to perform the modeling examples described in 
this manuscript.         
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    Chapter 18   

 Computational Reprogramming of T Cell Antigen Receptor 
Binding Properties                     

     Timothy     P.     Riley    ,     Nishant     K.     Singh    ,     Brian     G.     Pierce    ,     Brian     M.     Baker     , 
and     Zhiping     Weng     

  Abstract 

   T-cell receptor (TCR) binding to peptide/MHC is key to antigen-specifi c cellular immunity, and there has 
been considerable interest in modulating TCR affi nity and specifi city for the development of therapeutics 
and imaging reagents. While in vitro engineering efforts using molecular evolution have yielded remark-
able improvements in TCR affi nity, such approaches do not offer structural control and can adversely affect 
receptor specifi city, particularly if the attraction towards the MHC is enhanced independently of the pep-
tide. Here we describe an approach to computational design that begins with structural information and 
offers the potential for more controlled manipulation of binding properties. Our design process models 
point mutations in selected regions of the TCR and ranks the resulting change in binding energy. 
Consideration is given to designing optimized scoring functions tuned to particular TCR-peptide/MHC 
interfaces. Validation of highly ranked predictions can be used to refi ne the modeling methodology and 
scoring functions, improving the design process. Our approach results in a strong correlation between 
predicted and measured changes in binding energy, as well as good agreement between modeled and 
experimental structures.  

  Key words     T cell receptor  ,   Structure-guided design  ,   Rosetta  ,   Binding  

1       Introduction 

  The  αβ   T cell receptor (TCR) is a membrane- bound   heterodimer 
on the surface of helper or killer T cells that recognizes peptide 
antigens bound and displayed  by   major histocompatibility complex 
(MHC) proteins (Fig.  1 ). TCR recognition of peptide/MHC ini-
tiates T cell signaling and defi nes specifi city in cellular immunity. 
   TCR affi nity for a target peptide/MHC generally correlates with 
in vivo potency [ 1 ,  2 ], which has led to the generation of many 
 high   affi nity TCR variants using molecular evolution techniques 
such as yeast or phage display (e.g., refs.  3 – 6 ). While these meth-
ods can lead to spectacular gains in TCR affi nity, there is potential 
to negatively impact specifi city, leading to enhanced 
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cross-reactivity [ 7 ]. As potential uses for engineered TCRs include 
constructing genetically engineered T cells or soluble reagents to 
treat cancer and infectious disease [ 6 ,  8 ,  9 ], enhanced cross-reac-
tivity could lead to dangerous autoimmunity. Further, accumulat-
ing evidence suggests that very large enhancements in affi nity may 
lead to diminished T cell potency [ 2 ].

   By incorporating structural information into the design pro-
cess, computational design offers the potential to more carefully 
control specifi city than molecular evolution. Also, computational 
design can permit more controlled enhancements in binding. 

  Fig. 1    Structural overview of the complex formed between a TCR ( blue / gold  ) and 
peptide/MHC complex ( green / purple / orange  ). The structure of the DMF5 TCR 
bound to the human class I MHC HLA-A2 in complex with the MART-1 ELA pep-
tide was used for this fi gure [ 16 ]       

 

T.P. Riley et al.



307

Computational design has been used to engineer a small number 
of TCRs [ 10 – 13 ]. While different approaches have been used, all 
benefi t from the ability to rationalize effects on specifi city  and 
  affi nity through the  examination of crystallographic structures and 
target specifi c regions of the interface. This latter point is crucial, 
as the recognition of a composite surface formed from two distinct 
components (the peptide and MHC protein) sets TCR recognition 
of pMHC apart from almost all  other   protein–protein interactions 
and requires special consideration when considering the origins  of 
   binding   affi nity  and   specifi city and how they might be manipulated 
in productive ways [ 14 ]. 

 Here we describe an approach  to   TCR computational design 
that recognizes the unique nature of TCR-pMHC binding and 
builds off our recent work with TCRs specifi c for viral and tumor 
antigens [ 11 ,  13 ]. Our approach uses the powerful Rosetta suite 
[ 15 ]. The design process models point mutations in selected 
regions of the TCR and ranks the resulting change in binding 
energy through the use of scoring functions which describe van der 
Waals interactions, solvation energies, hydrogen bonds, etc. As 
both structural modeling and energetic scoring involves trade-offs, 
assumptions, and known limitations, it is important to validate and 
if needed iteratively refi ne the design process with biophysical 
binding and structural work. For example, with the  DMF5   TCR 
binding the MART-1 ELA and AAG peptides presented by  the 
  class I MHC protein HLA-A2 [ 16 ], we observed close agreement 
between predicted and measured changes in binding energy, as 
well as predicted and crystallographic X-ray structures, but multi-
ple approaches for structural modeling and scoring were consid-
ered [ 13 ]. 

 One important caveat is that in some circumstances, TCR 
structural properties have been shown to be surprisingly sensitive 
to changes in the TCR–pMHC interface (e.g., refs.  16 – 20 ). While 
our method attempts to accommodate some structural alterations, 
large conformational changes or  global   TCR repositioning are 
unlikely to be captured by the approach described here. While 
improvements are therefore possible, this approach can nonethe-
less serve as the foundation for efforts in engineering TCRs with 
novel binding properties.  

2     Materials 

     1.    A personal computer or high performance computing facility 
enabled with the latest Python and PyRosetta installations 
(  https://www.rosettacommons.org/    ). The IPython com-
mand shell (  http://ipython.org/    ) is recommended as it sup-
ports tab- completion and is useful in accessing PyRosetta 
functions.   
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   2.    3 GB of available RAM and one processor core is required for 
each PyRosetta job. Multiple cores with accompanying RAM 
are required for large modeling projects ( see   Note 1  for com-
ments on calculation speeds).   

   3.    Structural coordinates of the target TCR/pMHC complex; 
when publicly available downloadable from the Protein Data 
Bank (  http://www.rcsb.org/pdb/home/home.do    ).   

   4.    Applied mathematics software with multiple linear regression 
functionality, such as MATLAB (  http://www.mathworks.
com/products/matlab    ).      

3     Methods 

     The Rosetta package includes tools for computational modeling 
and structure analysis and was originally designed for de novo 
structure prediction [ 15 ]. Rosetta is typically used to investigate 
research applications such as protein folding  or   protein design, and 
has been used to predict interaction energies between proteins 
(e.g., refs.  11 ,  13 ,  21 ). PyRosetta is a Python toolkit which pack-
ages the powerful Rosetta algorithms into the easily learned Python 
scripting language [ 22 ]. PyRosetta can be used via scripts or inter-
actively by command line. The sections below describe a complete 
script which inserts, structurally adjusts, and scores point muta-
tions at TCR–pMHC interfaces ( see   Note 2  for a list and descrip-
tions of variables used and  Note 3  for comments about syntax).

    1.    Initiate PyRosetta with the command-line fl ag to include addi-
tional amino acid rotamers in the design process. The  addi-
tional   rotamers increase sidechain sampling which may allow 
for lower observed energy states during design. 
 #Initialize Rosetta with additional options 
 from rosetta import* 
 init(extra_options = ‘-extrachi_cutoff 1 -ex1 -ex2 -ex3’)   

   2.    Declare the score function to be used in the design process for 
scoring interactions. The default Talaris2013 [ 23 ] score func-
tion may be suffi cient for initial design work, although other 
score functions such as the Rosetta ‘interface’ or ‘ddg’ func-
tions can be examined. As highlighted below, customized score 
functions trained to the experimental system can lead to 
improved results [ 13 ]. 
 #Initialize the score function 
 scorefxn = create_score_function('talaris2013')   

   3.    Import the TCR/pMHC complex for design and store as a 
pose object. The structural coordinates may be stored locally 
or downloaded directly from the Protein Data Bank (the 

3.1  Structure- Guided 
Improvement of T Cell 
Receptor Binding
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example below uses the complex for the DMF5 TCR bound to 
the MART-1 ELA peptide presented by HLA-A2, available as 
the PDB entry 3QDG [ 16 ]). 
 #Download the DMF5 TCR/MHC complex from the PDB and 
store as ‘pose’ 
 from toolbox import pose_from_rcsb 
 pose = pose_from_rcsb(‘3QDG’)   

   4.    Score the complex, then isolate and score the TCR and pMHC 
separately. To calculate a binding energy, subtract  the   TCR and 
pMHC scores from the complex (e.g.,: Binding 
Score WT  = Score WTcomplex - Score WT-TCR -Score pMHC ;  see  ref.  21 ) ( see  
 Note 4  for comments on chain IDs and  Note 5  for comments 
on scoring). 
 #score the DMF5 TCR 
 scorefxn(pose) 
 import rosetta.protocols.grafting 
 #delete chains D and E of the complex and store 
remaining coordinates as ‘HLA’ 
 HLA = Pose() 
 protocols.grafting.delete_region(HLA.assign(pose), 
pose.pdb_info().pdb2pose('D',1), pose.total_residue()) 
 #delete chains A, B, and C of the complex and store 
the remaining coordinates as ‘TCR’ 
 TCR = Pose() 
 protocols.grafting.delete_region(TCR.assign(pose), 
pose.pdb_info().pdb2pose('A',1), pose.pdb_info().
pdb2pose('D',1)-1) 
 #calculate binding score 
 BindingScore = scorefxn(pose) – scorefxn(HLA) – 
scorefxn(TCR)   

   5.    Using protein modeling software such  as   PyMOL (The 
PyMOL Molecular Graphics System, Version 1.7.4 
Schrödinger, LLC.) or commands within Rosetta, scan the 
complex for TCR residues that are near atoms of the target 
peptide presented by the MHC molecule. Choosing residues 
close to (or contacting) the peptide is one means to help ensure 
peptide specifi city is retained. A less restrictive approach is 
likely to favor improved interactions between the TCR and 
MHC, which could lead to undesirable enhancements  in   TCR 
cross-reactivity. When incorporated into a script, the com-
mands below iteratively scan a TCR–pMHC interface and 
identify TCR residues in proximity to the peptide ( see   Note 6  
for comments on cut-off distances). 
 #measure distance between the center of mass of two 
residues at positions i of the TCR and j of the 
peptide. 
 list_of_residue_positions = [] 
 distance_cutoff = 15 

Design of T-cell Antigen Binding
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 for i in range(pose.pdb_info().pdb2pose('D',1), 
pose.total_residue()): 
  for j in range (pose.pdb_info().pdb2pose('C', 1), 
 pose.pdb_info().pdb2pose('D', 1)): 
 distance = pose.residue(j).nbr_atom_xyz().
distance(pose.residue(i).nbr_atom_xyz()) 
 if distance.norm < distance_cutoff: 
  list_of_residue_positions.append(i)   

   6.    Using the mutate_residue() command, computationally intro-
duce the desired amino acids into each position selected in 
 step 5 . 
 #mutate residue i of the pose to an alanine and store 
as mutant pose 
 from toolbox import mutate_residue 
 residue_list = [‘A’,‘C’,‘D’,‘E’,‘F’,‘G’,‘H’,‘I’,‘K’,
‘L’,‘M’,‘N’,‘P’,‘Q’,‘R’,‘S’,‘T’,‘V’,‘W’,‘Y’] 
 for i in range(1, len(list_of_residue_positions)): 
  for j in range(1, len(residue_list)): 
    mutant = mutate_residue(pose, i, str(residue_

list[j])) 
   #At this point, a design could be considered com-
plete. Either dump the pose to pdb (dump_
pdb(mutant,‘mutation_name.pdb’) or continue 
repacking/refi nement in subsequent steps within 
this loop.   

   7.    For a simple design, the protein backbone is kept rigid and 
only the mutant amino acid is repacked. The results of 16 
DMF5 point mutations modeled using this method are shown 
in Fig.  2a . While this approach is computationally inexpensive, 
it has potential to result in clashes and unrealistic rotamers. To 

  Fig. 2    Correlations between experimental values and Rosetta score of point mutations in the DMF5–ELA/HLA-
A2 interface [ 13 ]. ( a ) Results when modeled with a rigid backbone and the ‘interface’ score function. ( b ) 
Results when modeled with the LoopMover_Refi ne () mover and the score function shown in Table  3        
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optimize the local environment around the mutated residue to 
minimize clashes and unfavorable interactions, residues near 
the mutated residue may also be repacked ( see   Note 7 ).
   #repack the sidechain of the mutated residue to min-
imize the score from the defi ned score function 
 task = standard_packer_task(mutant) 
 task.or_include_current(True) 
 task.restrict_to_repacking() 
 task.temporarily_fi x_everything() 
 task.temporarily_set_pack_residue(list_of_residue_
positions(i),True) 
 pack_mover = PackRotamersMover(scorefxn, task) 
 pack_mover.apply(mutant)   

   8.    Designs can be further improved by refi ning the backbone of 
the TCR complementarity determining region (CDR) loops 
through a combination of cyclic coordinate descent (CCD) 
 and   Monte Carlo algorithms. Although the IMGT immunoin-
formatics database (  www.imgt.org    ) [ 24 ] can be used to  defi ne 
  TCR CDR loops, loops can also be defi ned by examining the 
structure. This may be preferable, as sequence-based defi ni-
tions of loops often exclude amino acids which contact the 
peptide/MHC. For example, a CDR loop may be defi ned as 
occurring between residues 26 and 31 on chain ‘D’. 
 #Defi ne loop positions 
 start = mutant.pdb_info().pdb2pose(‘D’,26) 
 cutpoint = mutant.pdb_info().pdb2pose(‘D’,28) 
 end = mutant.pdb_info().pdb2pose(‘D’,31)   

      Table 3  

  New score function after stepwise multiple linear regression, removing all terms with  p  values >0.05   

 Term  Estimate  Standard error   t  statistic   p  value 

 fa_atr  0.33  0.07  4.52  5.83E−05 

 fa_elec  0.45  0.16  2.72  0.01 

 fa_rep  0.18  0.06  2.94  0.01 

 fa_sol  0.46  0.11  4.13  1.95E−4 

 Number of observations  42 

 Root mean squared error  0.84 

 R-squared  0.43 

 Adjusted R-squared  0.38 
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   9.    A foldtree defi ning the fl exible regions is required when manip-
ulating the backbone. The foldtree should encompass the CDR 
loop and two additional residues on either side to act as 
“anchors.” 
 #Set up a foldtree encompassing CDR1 alpha 
 ft = FoldTree() 
 ft.add_edge(1, start-2,-1) 
 ft.add_edge(start-2,cutpoint,-1) 
 ft.add_edge(start-2,end + 2,1) 
 ft.add_edge(end + 2,cutpoint + 1,-1) 
 ft.add_edge(end + 2,mutant.total_residue(),-1) 
 mutant.fold_tree(ft)   

   10.    The LoopMover protocol in Rosetta uses a random number 
seed to iteratively and stochastically perturb the backbone and 
repack all affected sidechains. For this reason, designs vary 
slightly depending on the seed chosen by the LoopMover. It is 
suggested to perform multiple refi nements and average the 
resulting scores to account for this variability [ 25 ]. Multiple 
loops may be refi ned at once as long as the foldtree includes the 
additional loops ( see   Note 8 ). 
 #Defi ne loop and refi ne with cyclic coordinate descent 
(CCD) 
 CDRloop = loop(start, end, cutpoint) 
 loops = Loops() 
 loops.add(CDRloop) 
 loop_refi ne = LoopMover_Refi ne_CCD(loops, scorefxn) 
 loop_refi ne.max_inner_cycles(10) 
 loop_refi ne.apply(mutant)   

   11.    Refi ning the CDR loops multiple times increases the computa-
tional time required. The job distributor is a useful tool that can 
take advantage of multiple cores running the same script to 
generate designs/decoys in parallel. A more detailed descrip-
tion on the job distributor can be found in  Note 9 . 
 #create job_distributor; defi ne number of decoys and 
score function 
 jd = PyJobDistributor('DMF5refi ne' + str(list_of_resi-
due_positions[i])+‘A’, 3, scorefxn) 
 while not jd.job_complete: 
  jdpose.assign(mutant) 
  loop_refi ne.apply(jdpose) 
  jd.output(jdpose)   

   12.    Calculate the Binding Score for the designed complexes as 
described in  step 4 . Subtraction of the WT score results in a 
difference in energy roughly correlating to ∆∆G in kcal/mol. 
Negative values suggest favorable designs and possible candi-
dates for follow-up experimental investigation.    
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      After many point mutations have been predicted and binding ener-
gies experimentally determined, a tailored score function may be 
generated to improve future predictions. An iterative approach 
(design, score, measure, repeat…) can optimize the “rules” for 
mutations in a specifi c interface to better predict the impacts  on 
  affi nity and specifi city.

    1.    For each mutation to be used in developing a score function, 
collect the values for each term available in Rosetta. This can 
be observed with the scorefxn.show(pose) command or within 
a  .fasc fi le. The terms used in the latest release of Rosetta along 
with the default weights are shown in Table  1 . Other terms 
(e.g., the Atomic Contact Energy term used in ZAFFI [ 13 ]) 
can be added to the score function in an attempt to improve 
correlation with experimental binding free energies.

       2.    Calculate the unweighted binding energies as described in 
Subheading  3.1  for all scoring terms.   

   3.    Perform a multiple linear regression fi tting all terms simultane-
ously to the experimental ΔΔG values. Some may be insignifi -
cant to the regression and may be removed with minimal effect. 
The results may be informative in understanding the biophysics 

3.2  Score Function 
Refi nement 
Following Comparison 
With Experimental 
Binding Data

   Table 1  

  Score function terms and weights of the Talaris2013 score function [ 23 ]   

 Score function term  Talaris2013 weights 

 fa_atr  0.8 

 fa_rep  0.44 

 fa_sol  0.75 

 fa_intra_rep  0.004 

 fa_elec  0.7 

 pro_close  1 

 hbond_sr_bb  1.17 

 hbond_lr_bb  1.17 

 hbond_bb_sc  1.17 

 hbond_sc  1.1 

 dslf_fa13  1 

 rama  0.2 

 omega  0.5 

 fa_dun  0.56 

 p_aa_pp  0.32 

 ref  1 
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within a specifi c TCR–pMHC interface. MATLAB’s fi tlm tool 
fi ts and reports weights for terms and their signifi cance to the 
model (Table  2 ). The removeTerms tool allows a user to 
sequentially remove terms with a high  p  value and reweight the 
remaining terms to fi t the model as shown in Table  3 . It is 
important to remove terms with highest  p -values fi rst as some 
terms may become more signifi cant as other terms are removed 
(e.g., fa_rep in Table  3 ).
    ddg = [Experimental_ddg_values]; 
 predictors = [array_of_predictor_values]; 

   Table 2  

  Multiple linear regression results on ΔΔG data from 42 point mutations in the A6-Tax/HLA-A2 and 
DMF5-AAG/HLA-A2 interface with all Rosetta terms   

 Term  Estimate  Standard error   t  statistic   p  value 

 dslf_fa  0  0  –  – 

 fa_atr  0.32  0.15  2.11  0.044 

 fa_dun  0.29  0.31  0.92  0.37 

 fa_elec  0.22  0.30  0.72  0.48 

 fa_intra_rep  −2.34  4.01  −0.58  0.56 

 fa_rep  0.03  0.13  0.26  0.80 

 fa_sol  0.38  0.17  2.26  0.03 

 hbond_bb_sc  −0.27  0.55  −0.49  0.63 

 hbond_lr_bb  1.38  2.06  0.67  0.51 

 hbond_sc  0.16  0.33  0.49  0.63 

 hbond_sr_bb  0.69  2.10  0.33  0.74 

 omega  0  0  –  – 

 p_aa_pp  0.27  0.61  0.44  0.66 

 pro_close  0.09  1.21  0.08  0.94 

 rama  0.69  0.89  0.78  0.44 

 ref  −0.02  0.37  −0.05  0.96 

 Number of observations  42 

 Root mean squared error  0.91 

 R-squared  0.50 

 Adjusted R-squared  0.26 

   See  ref.  23  for a description of terms  
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 %Perform a stepwise multiple linear regression where 
all terms in the fi nal %output have a p value < 0.05 
 mdl = fi tlm(predictors,ddg,‘Intercept’ false);   

   4.    To evaluate the predictive power of the regression model, con-
sider a cross-validation approach by excluding a portion of the 
data (e.g., 5 %) from the training procedure. For the demon-
stration used here, the score function was trained to 42 data 
points from the A6 and DMF5 TCRs (Table  3 ) and 16 DMF5 
data points were excluded. Once the regression model has 
been trained, use the resulting model to evaluate the remain-
ing data in order to estimate the applicability of the model with 
future predictions. An example can be seen in Fig.  2b . The 
revised function eliminates a large “outlier” in the DMF5 test 
set that is seen with the ‘interface’ function, resulting in an 
improved fi t as judged by the correlation and distribution of 
points around the fi tted line. Without this outlier, the two 
functions behave similarly; however, the revised function high-
lights the importance of critically examining outliers and dem-
onstrates that their exclusion may not always be appropriate.    

  Related to this,  N -fold (e.g., fi vefold) cross-validation is a 
commonly used method to assess predictive performance. To apply 
this method, the data are divided into  N  equally sized subsets, and 
for each subset a model is trained (e.g., by multilinear regression) 
using the points outside that set. Thus, a correlation can be pro-
duced using all points, without any training set overlapping with a 
test set. If the sample size is low (<100 measurements) and as much 
data as possible must be used in the regression model, Leave One 
Out Cross Validation may be used to gauge overfi tting the data 
(see   https://en.wikipedia.org/wiki/Cross-validation_(statistics)    ).   

4     Notes 

     1.    Rosetta performance speeds are dependent on the processing 
speed of the CPU core in use. Most jobs where design is lim-
ited to residue repacking can be completed in a few seconds. 
The LoopMovers perform complex backbone moves and cal-
culations, and can take minutes for a single trajectory to 
complete.   

   2.    Python variables in order of appearance are as follows: 
 scorefxn #holds the score function for design and 
scoring 
 pose #holds coordinates of the full TCR/pMHC complex 
 HLA #holds the coordinates of the pMHC 
 TCR #holds the coordinates of the TCR 
 bindingScore #holds the binding score of the complex 
 list_of_residue_positions #holds a list of TCR posi-
tions as candidates for mutation 
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 distance_cutoff #holds the specifi ed cutoff distance 
from the peptide 
 distance #holds distance between the center of mass 
of two residues 
 residue_list #holds the single letter code of all 20 
amino acids 
 mutant #holds a copy of the complex to perform 
mutations. 
 task #holds the side chain packing settings 
 pack_mover #holds the mover to repack sidechains 
 start #holds the fi rst position in the loop 
 cutpoint #holds the loop cutpoint 
 end #holds the end position of the loop 
 ft #holds the foldtree 
 CDRloop #holds the loop object 
 loops #holds all of the defi ned loops 
 loop_refi ne #holds the LoopMover_Refi ne_CCD mover 
 jd #holds the job distributor 
 jdpose #holds the pose for manipulation within the 
job distributor   

   3.    The commands written in Subheading  3.1  are written in 
Python and include the necessary variables and syntax to 
develop a complete script for modeling point mutations in 
TCRs. Commands written in Python/Pyrosetta use the # sym-
bol to denote commented lines. Commands in Subheading  3.2  
are example MATLAB commands and use the % symbol to 
denote commented lines.   

   4.    The scripts assume the following chain PDB IDs: MHC heavy 
chain as A; β 2 -microglobulin as B; peptide as C; TCR α chain 
as D; and TCR β chain as E.   

   5.    The Rosetta energy unit is an arbitrary unit that loosely corre-
lates with thermodynamic measurements. Because of this, 
experimental measurements may correlate best with the sug-
gested method for calculating binding energy. Alternative 
approaches include scoring the entire complex.   

   6.    A judicious cut-off distance between TCR-peptide may be use-
ful here. We most commonly use 15 Å, although structural 
details and concerns about specifi city and cross-reactivity may 
dictate smaller values.   

   7.    Similar to the cut-off distance between TCR and peptide, we 
commonly repack residues within a sphere of 8 Å around the 
mutation. The size of the sphere may be dictated by design 
needs and is not necessary when using a LoopMover to refi ne 
the backbone.   

   8.    The syntax for a foldtree encompassing multiple loops is shown 
below. The value of −1 indicates edges. Positive integers 
describe jumps where backbone regions may be manipulated 
without propagating throughout the rest of the structure. 
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 ft = FoldTree() 
 ft.add_edge(1, 376-2,-1) 
 ft.add_edge(376-2,380,-1) 
 ft.add_edge(376-2,384 + 2,1) 
 ft.add_edge(384 + 2,380 + 1,-1) 
 ft.add_edge(384 + 2,408-2,-1) 
 ft.add_edge(408-2,411,-1) 
 ft.add_edge(408-2,414 + 2,2) #increment the positive 
integer by one for each jump 
 ft.add_edge(414 + 2,411 + 1,-1) 
 ft.add_edge(414 + 2,mutant.total_residue(),-1)   

   9.    Each core running a job distributor script and calculating a 
decoy will output a numeric .in_progress fi le. When the decoy 
fi nishes, a numbered .pdb fi le is created and score function 
information added to the .fasc fi le. The .in_progress fi le is then 
deleted, and the core moves on to the next trajectory that does 
not have a .pdb or .in_progress fi le in the directory .         
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    Chapter 19   

 Computational Modeling of T Cell Receptor Complexes                     

     Timothy     P.     Riley    ,     Nishant     K.     Singh    ,     Brian     G.     Pierce    ,     Zhiping     Weng    , 
and     Brian     M.     Baker      

  Abstract 

   T-cell receptor (TCR) binding to peptide/MHC determines specifi city and initiates signaling in antigen- 
specifi c cellular immune responses. Structures of TCR–pMHC complexes have provided enormous insight 
to cellular immune functions, permitted a rational understanding of processes such as pathogen escape, 
and led to the development of novel approaches for the design of vaccines and other therapeutics. As pro-
duction, crystallization, and structure determination of TCR–pMHC complexes can be challenging, there 
is considerable interest in modeling new complexes. Here we describe a rapid approach to TCR–pMHC 
modeling that takes advantage of structural features conserved in known complexes, such as the restricted 
TCR binding site and the generally conserved diagonal docking mode. The approach relies on the power-
ful Rosetta suite and is implemented using the PyRosetta scripting environment. We show how the 
approach can recapitulate changes in TCR binding angles and other structural details, and highlight areas 
where careful evaluation of parameters is needed and alternative choices might be made. As TCRs are 
highly sensitive to subtle structural perturbations, there is room for improvement. Our method nonethe-
less generates high-quality models that can be foundational for structure-based hypotheses regarding TCR 
recognition.  

  Key words     T cell receptor  ,   Peptide/MHC  ,   Structure  ,   Rosetta  ,   Loop modeling  ,   Docking  

1       Introduction 

  Clonally distributed αβ T cell receptors (TCRs) recognize  anti-
genic   peptides bound and “presented” by class I or class II major 
histocompatibility complex proteins (pMHC; Fig.  1 ). TCR recog-
nition of a pMHC initiates T cell signaling and is responsible for 
the specifi city of T cell mediated immunity. Since initial crystallo-
graphic work in the 1990s [ 1 ,  2 ], dozens of new and variant TCR–
pMHC structures have been reported. This structural work has 
signifi cantly enriched our understanding of the principles of T cell 
recognition, lending insight into T cell immunobiology as well as 
the biophysics that underlie the remarkable binding properties of 
TCRs. Knowledge of TCR–pMHC structures has helped us under-
stand the TCR’s unusual dichotomy of specifi city and 
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cross-reactivity; the structural basis for molecular mimicry and its 
potential role in autoimmunity; the principles  underlying T cell 
recognition of tumor antigens; the basis for immune responses to 
pathogens and the function of “escape” mutations; vaccine design; 
and the mechanisms of T cell signaling (see, for example, refs. 
 3 – 8 ).

   In addition to fundamental biophysical and immunological 
insights, knowledge of TCR–pMHC structures has spurred devel-
opments of novel immunologically based therapeutics. This 
includes T cells genetically engineered to express unique TCRs as 
well as soluble TCR–CD3 antibody fusions [ 9 ,  10 ]. These 
approaches redirect T cells to targets of specifi c interest, such as 

  Fig. 1    Structural overview of the complex formed between a TCR ( blue / gold  ) and 
peptide/MHC complex ( green / purple / orange  ). The structure of the DMF5 TCR 
bound to the human class I MHC HLA-A2 in complex with the MART-1 ELA pep-
tide was used for this fi gure       
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tumor or virally infected cells, and for both there is increasing 
interest in  engineering   TCR variants with enhanced recognition 
properties. Structural knowledge can be of obvious benefi t here, 
permitting structure-guided computational design or helping to 
pinpoint which regions and amino acids should be subject to 
molecular evolution. 

 While structural information for TCR–pMHC complexes can 
therefore be of clear benefi t for basic and applied immunology, 
recombinant TCRs are diffi cult to generate and can be challenging 
to crystallize (although helpful descriptions of successful, system-
atic approaches are available [ 11 ,  12 ]). While these challenges can 
often be surmounted, many TCR–pMHC complexes form with 
very weak affi nities in solution [ 13 ,  14 ], which can further hinder 
crystallization. For this reason, there has been growing interest in 
developing procedures for modeling TCR–pMHC complexes. We 
recently described TCRFlexDock, a template-independent proce-
dure which led to near- native predictions for multiple TCR–pMHC 
complexes, in addition to TCR recognition of CD1–lipid and 
MR1–metabolite complexes [ 15 ,  16 ]. In addition to these studies, 
TCR–pMHC structural models have been generated by other 
groups to investigate specifi c hypotheses or facilitate structural sur-
veys (e.g., refs.  17 – 21 ). Klausen and colleagues recently described 
a publicly available web server that models TCRs [ 22 ], yet this 
does not build a TCR–pMHC complex. 

 Here we outline a strategy for modeling TCR–pMHC com-
plexes which builds on previous efforts. The procedure is designed 
for rapid and easy implementation and is readily extensible. Unlike 
TCRFlexDock, which uses unbound TCR and pMHC structures 
set to an average docking orientation for docking input [ 15 ,  16 ], 
this method uses a known TCR–pMHC complex as a template, 
utilizing the restricted pMHC binding site and the generally con-
served diagonal TCR docking mode to help make predictions. As 
with all docking and modeling procedures, there are known cave-
ats and areas of needed improvement, particularly given the high 
sensitivity of TCRs for subtle structural perturbations [ 23 ]. 
Nonetheless, this method is rapid and can be considered a “launch-
ing point” for generating high- quality models that permit the 
development of testable, structure- based hypotheses for exploring 
TCR–pMHC complexes.  

2     Materials 

     1.    Access to a high performance computing facility enabled with 
the latest Python (  https://www.python.org/    ) and PyRosetta 
installations (  https://www.rosettacommons.org/    ).   

   2.    Access to the NCBI BLAST tool (  http://blast.ncbi.nlm.nih.
gov/Blast.cgi    ).   

Design of T-cell Receptor Complexes
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   3.    3 GB of available RAM and one processor core is required for 
each PyRosetta job. Multiple cores with accompanying RAM 
are required for large modeling projects. A minimum of 20 
cores is recommended for projects requiring thousands of 
decoys.   

   4.    Sequence information of the target TCR–pMHC complex to 
be modeled.   

   5.    Structural coordinates of one or more template TCR–pMHC 
complexes, when publicly available downloadable from the 
Protein Data Bank (  http://www.rcsb.org/pdb/home/home.
do    ).      

3     Methods 

 TCR–pMHC complexes share a high level of structural homology 
which can be taken advantage of when modeling complexes for 
which there is no structural information. The procedure below 
assumes a “new” TCR recognizing a “new” peptide presented by 
the same class I MHC protein ( see   Note 1  for comments on mod-
eling new peptides). For demonstration, we describe modeling the 
complex between the antiviral TCR A6 and the Tax peptide pre-
sented by HLA-A2, using the structure of the complex between 
the DMF5 TCR and the melanoma-associated MART-1 AAG pep-
tide presented by HLA-A2 [ 24 ]. Although considerable structural 
information is available for the A6–Tax/HLA-A2 complex, includ-
ing structures for the free TCR and free pMHC [ 1 ,  3 ,  23 ,  25 – 29 ], 
this structural information is not utilized in the modeling proce-
dure. Modeling the A6–Tax/HLA-A2 complex using the DMF5–
AAG/HLA-A2 complex as a template is a reasonably challenging 
modeling task, as the two TCRs bind pMHC with different inci-
dent angles (Fig.  2 ). Results are also shown for modeling the 
DMF5–ELA/HLA-A2 and DMF5–AAG/HLA- A2 complexes 
using the complexes with the unrelated DMF4 TCR as templates. 
The latter two are also challenging modeling tasks, as the DMF4 
TCR binds AAG/HLA-A2 and ELA/HLA-A2 with different 
docking angles [ 24 ].

     To begin, we fi rst describe mapping the sequence of a  target   TCR 
onto the coordinates of the TCR in a TCR–pMHC template struc-
ture through the use of Basic Local Alignment Search Technique 
(BLAST). Special consideration should be given to sequence simi-
larity and loop length when selecting the template. The most pre-
ferred template shares at least one TCR chain with the target. 
However, if loop sizes vary considerably (>4 residues) between tar-
get and template TCR, an alternative template might be consid-
ered. Templates with properties such as unusual docking or 

3.1  Selection 
of Template and TCR 
Sequence Alignment
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  Fig. 2    TCR–pMHC complexes modeled and comparison with known X-ray structures. ( a ) Modeling of the A6–
Tax/HLA-A2 complex using the DMF5–ELA/HLA-A2 complex as a template. Using the known X-ray structures, 
the  left panel  shows the position of the template DMF5 TCR ( green ) relative to the target A6 TCR ( blue ) when 
bound to pMHC, generated by superimposing the HLA-A2 heavy chain. Only the TCR variable domains and the 
peptide binding domain are shown.  Horizontal dashed lines  represent the TCR docking angle relative to pMHC 
and  vertical dashed lines  the incident angle. The  middle panel  compares the fi nal model of the A6 complex 
( yellow ) to the known structure of the target complex. The  right panel  compares the peptides from the modeled 
and known complexes, as well as the centers of mass of the TCRs over the MHC. ( b ) Modeling of the DMF5–
AAG/HLA-A2 complex using the DMF4–AAG/HLA-A2 complex as a template. Panels and colors are the same 
as in ( a ). ( c ) Modeling of the DMF5–ELA/HLA-A2 complex using the DMF4-ELA/HLA-A2 complex as a template. 
Panels and colors are the same as in ( a )       
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incident angles might also be avoided. Depending on circum-
stances, multiple templates might be used and the results examined 
for convergence on similar structural properties.

    1.    Align  the   protein sequences of the target and template TCR 
chains with the protein BLAST tool from NCBI, using default 
options. The example alignment in Fig.  3a  is between the tar-
get TCR A6 α chain (Query) and template DMF5 α chain 
(Sbjct) sequences [ 30 ,  31 ].

       2.    The alignments in Fig.  3b  demonstrates for the α chain that 
most of the sequence variability is at the hypervariable CDR3α 
loop, which is one residue longer in the A6 structure. The β 
chain sequences are more different, but the alignment is able 
to determine where the insertions should be made.    

      The Rosetta package includes tools for computational modeling 
and structural analysis and was originally designed for de novo 
structure prediction [ 32 ]. Rosetta is typically used in applications 
such as protein folding  or   protein design, and is an ideal tool here. 
PyRosetta is a Python toolkit which packages the powerful Rosetta 
algorithms into the easily learned Python scripting language [ 33 ]. 
PyRosetta can be used via scripts or interactively by command line. 
The commands used below demonstrate how PyRosetta can be 
used to generate an initial model of the new TCR–pMHC com-
plex, whereby the target, “new” TCR is mapped onto the template 
and the peptide is altered ( see   Note 2  for initiating Rosetta and 
 Note 3  for a list of variables used in the code below).

    1.    Load the template PDB structure (3QDJ) into PyRosetta and 
adjust the loops according to alignment in the previous steps. 
Adjusting the loop sizes can be performed manually in the pdb 
or using the grafting tool within Rosetta as shown below ( see  
 Note 4  for comments on insertions). For amino acid inser-
tions, glycines are used initially and backbone coordinates cop-
ied from the preceding amino acid. Insertions that are not 
glycine will be mutated to the appropriate amino acid in the 
next step. After the loops have been adjusted, backbone breaks 
need to be closed. This can be accomplished with the 
CcdLoopClosureMover, which solves the chain break through 
cyclic coordinate descent ( see   Note 5  for loop defi nitions for 
closing breaks). 
 #Download the template from the PDB database and 
defi ne the last insertion site. 
 template_pose = pose_from_rcsb(‘3QDJ’) 
 b e t a _ i n s e r t i o n _ s i t e  =  p o s e . p d b _ i n f o ( ) .
pdb2pose('E',101)) 
 #create a Glycine to insert into loop with backbone 
coordinates 
 identical to residue 101 of chain ‘E’. Insert the 
Glycine(s) and close the resulting chain breaks. 

3.2  Using Rosetta 
to Map the  Target   TCR 
Sequence 
onto the Structural 
Template and Modify 
the Peptide

T.P. Riley et al.
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  Fig. 3    BLAST alignment of TCR α and β chains. ( a ) BLAST web interface for performing a protein–protein 
alignment, with sequences for the A6 and DMF5 α chains entered. ( b ) BLAST alignments for the A6 and DMF5 
α and β chains. Residues in bold indicate locations requiring insertions or deletions       
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 Gly = pose_from_sequence(‘G’) 
 Gly.residue(1).set_xyz(‘N’, template_pose.residue
(beta_insertion_site).xyz(‘N’)) 
 Gly.residue(1).set_xyz(‘C’,  template_pose.residue(beta_
insertion_site).xyz(‘C’)) 
 Gly.residue(1).set_xyz(‘CA’, template_pose.residue
(beta_insertion_site).xyz(‘CA’)) 
 Gly.residue(1).set_xyz(‘O’, template_pose.residue(beta_
insertion_site).xyz(‘O’)) 
 template_pose = protocols.grafting.insert_pose_into_
pose(template_pose, Gly, beta_insertion_site) 
 #close the resulting chain breaks on either end of 
the insertion 
 loopclose = Loop(beta_insertion_site-2,beta_inser-
tion_site + 2, beta_insertion_site) 
 movemap = MoveMap() 
 movemap.set_bb_true_range(beta_insertion_site-2, 
beta_insertion_site + 2) 
 set_single_loop_fold_tree(template_pose,loopclose) 
 add_single_cutpoint_variant(template_pose, 
loopclose) 
 ccd = CcdLoopClosureMover(loopclose, movemap) 
 ccd.apply(complex) 
 loopclose = Loop(beta_insertion_site-2,beta_inser-
tion_site + 2, beta_insertion_site + 1) 
 set_single_loop_fold_tree(template_pose,loopclose) 
 add_single_cutpoint_variant(template_pose, 
loopclose) 
 ccd = CcdLoopClosureMover(loopclose, movemap) 
 ccd.apply(template_pose)   

   2.    Working backwards ( see   Note 4 ), complete the necessary loop 
adjustments for each backbone manipulation of the template 
TCR. For mapping A6 onto DMF5, these adjustments occur 
at residue 96 of chain ‘E’ and 92 of chain ‘D.’   

   3.    Once the template has been aligned and resized to match the 
target sequence, ‘for’ loops for the peptide, α chain, and β 
chains can be set up to mutate all template residues to the tar-
get sequence. For example, a ‘for’ loop demonstrating the 
conversion of the DMF5 α chain sequence to A6 α chain is 
shown below. 
 matched_sequence = Pose() 
 matched_sequence.assign(template_pose) 
 a l p h a  =  ( ' K E V E Q N S G P L S V P E G A I A S L N C T Y S D R G 
S Q S F F W Y R Q Y S G K S P E L I M S I Y S N G D K E D G R F T A
Q L N K A S Q Y V S L L I R D S Q P S D S A T Y L C A V T T D S W G K L Q
FGAGTQVVVTPDIQNP') 
 # mutate the alpha chain 
 for i in range(0,len(alpha)): 
   matched_sequence = mutate_residue(template_pose, 
alpha_start_site + i, alpha[i])   

T.P. Riley et al.
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   4.    Repeat  step 3  to map the β chain and peptide sequences onto 
the matched_sequence pose.   

   5.    Build a packer task and pack_mover to repack all residues in 
the target structure. 
 scorefxn_high = get_fa_scorefxn() 
 t a s k  =  T a s k F a c t o r y . c r e a t e _ p a c k e r _ t a s k
(matched_sequence) 
 task.or_include_current(True) 
 task.restrict_to_repacking() 
 pack_mover = PackRotamersMover(scorefxn_high, task) 
 pack_mover.apply(matched_sequence)   

   6.    The job distributor is a useful tool that can take advantage of 
multiple cores running the same script to generate designs/
decoys in parallel. Before further docking  or   loop modeling, 
set up a job distributor to repack all residues in the target 
structure and minimize the loop backbones ( see   Note 6  for 
comments on the job distributor;  Note 7  for recommended 
trials; and  Note 8  for loop defi nitions and a full FoldTree). 
 #add all CDR loops + peptide to be refi ned simultane-
ously. Create a FoldTree to include all loops. 
 peploop = Loop(376,384,380) 
 acdr1 = Loop(408,414,411) 
 acdr2 = Loop(433,439,435) 
 acdr3 = Loop(475,482,479) 
 bcdr1 = Loop(607,612,610) 
 bcdr2 = Loop(631, 637,635) 
 bcdr3 = Loop(675,687,680) 
 ft = FoldTree() 
 #build a complete FoldTree here. 
 loops = Loops() 
 loops.add_loop(peploop) 
 loops.add_loop(acdr1) 
 loops.add_loop(acdr2) 
 loops.add_loop(acdr3) 
 loops.add_loop(bcdr1) 
 loops.add_loop(bcdr2) 
 loops.add_loop(bcdr3) 
 loop_refine = LoopMover_Refine_CCD(loops, 
scorefxn_high) 
 jd = PyJobDistributor('ready_for_docking',100, 
scorefxn_high) 
 while not jd.job_complete: 
  p = Pose() 
  p.assign(matched_sequence) 
  p.fold_tree(ft) 
  pack_mover.apply(p) 
  loop_refi ne.apply(p) 
  jd.output_decoy(p)   

   7.    Save the lowest scoring .pdb fi le from the job distributor for 
the subsequent steps.    

Design of T-cell Receptor Complexes
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  Fig. 4    Rosetta scores of the fi rst 1000 low resolution docking decoys plotted vs. 
RMSD of the backbone of the decay to the template. The decoy with the lowest 
RMSD is selected for continued refi nement, and is usually included among the 
lowest 20 scoring structures       

       
 The sections above result in an initial model of the new TCR 
bound to the new pMHC complex, in this case the  A6   TCR bound 
to Tax/HLA-A2. However, although TCRs generally bind with a 
diagonal docking angle, there is variation in this angle, as well as 
the incident angle with which the TCR engages [ 34 ,  35 ]. Such 
variation is exemplifi ed by the A6–Tax/HLA-A2 and DMF5–
AAG/HLA-A2 complexes, as shown in Fig.  2 . 

 To adjust the docking angle of the template TCR over the 
pMHC, the Rosetta Docking protocols are utilized [ 36 ]. The 
Docking movers perform rigid body translations to bring two mol-
ecules into contact and minimize scores. We use a low resolution 
centroid model to perform a global docking maneuver where the 
TCR may bind the pMHC in any orientation. Restrictions may be 
set in place to limit the randomization of the docking partners, but 
a full randomization helps remove bias and is not computationally 
prohibitive when low resolution centroid models are used. 

 The Docking protocol requires many different decoys to be 
generated, and many incorrect decoys may have scores similar to 
the true solution. To account for this, we take advantage of the 
diagonal docking angle found across TCR–pMHC complexes. As 
shown in Fig.  4 , the decoy with the lowest RMSD to the template 
is selected for future refi nement. This ensures selection of a model 
which retains a TCR-like binding mode, as Rosetta score alone 

3.3  Low Resolution 
Docking
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cannot be used. Although selecting a model with the lowest RMSD 
to the template could potentially introduce some bias, in our expe-
rience low resolution docking is suffi ciently imprecise and the vari-
ation in TCR–pMHC docking modes suffi ciently small to reduce 
these concerns (note also that further manipulation of the docking 
mode is performed later by a high resolution docking maneuver). 
If there is still concern about template bias at this step, another 
TCR–pMHC complex can be used to determine RMSD values and 
select a model to move forward with, or multiple models gener-
ated with different templates.

     1.    The centroid mode within Rosetta converts amino acid side-
chains into low resolution centroids. This mode is useful for 
sampling conformations quickly. Because the centroid is not 
representative of a full atom structure, there is a difference 
between centroid and full atom score functions, which infl u-
ences how residues are repacked and manipulated. Before con-
version to a centroid model, save the sidechains of the existing 
template to assist in repacking in subsequent steps. 
 scorefxn_low = create_score_function('interchain_cen') 
 recover_sidechains = protocols.simple_moves.
ReturnSidechainMover(ready_for_docking) 
 censwitch = SwitchResidueTypeSetMover('centroid') 
 centroid_complex = Pose() 
 centroid_complex.assign(ready_for_docking) 
 censwitch.apply(centroid_complex)   

   2.    The docking mover requires a FoldTree that defi nes the TCR 
and pMHC as separate chains to translate independently. 
 #The jump defi nes where the movers are allowed to 
separate the pose. “ABC_DE” is synonymous to the 
complex chains ( see   Note 9  for information on chain 
identifi ers). 
 jump = Vector([1]) 
 setup_foldtree(centroid_complex, "ABC_DE",jump)   

   3.    The following steps involve randomizing the orientation of the 
TCR relative to the pMHC to escape local score minima. This 
is followed by sliding the two proteins into contact and a rigid 
body score minimization. Because of the randomization, we 
suggest performing the following steps within the job distribu-
tor for at least 10,000 trials. 
 jd = PyJobDistributor('docking_lowres',10000, 
scorefxn_high) 
 jd.native_pose = full_atom_pose 
 while not jd.job_complete: 
  p = Pose() 
  p.assign(centroid_complex) 
  #randomize the two partners before docking 
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   randomize1 = rigid_moves.RigidBodyRandomizeMover
(p, 1, rigid_moves.partner_upstream) 

   randomize2 = rigid_moves.RigidBodyRandomizeMover(p, 
1, rigid_moves.partner_downstream) 

  randomize1.apply(p) 
  randomize2.apply(p) 
   #translate the two molecules towards each other 
until they come into contact 

   slide = DockingSlideIntoContact(jump) 
   slide.apply(p) 
  #perform rigid body score minimization 
  dock_lowres = DockingLowRes(scorefxn_low, 1) 
  dock_lowres.apply(p) 
  #return to full atom mode 
  fa_switch.apply(p) 
  recover_sidechains.apply(p) 
  pack_mover.apply(p) 
  jd.output_decoy(p)   

   4.    As mentioned earlier, the decoy with the lowest backbone 
RMSD to the original template is chosen for further 
refi nement.    

       We have modifi ed the  general   docking protocol described by Gray 
et al. to include a loop modeling stage between the low and high 
resolution docking stages [ 37 ]. Modeling the TCR loops may be 
accomplished through Kinematic Loop Closure (KIC) or Cyclic 
Coordinate Descent (CCD) methodologies. CCD solves a chain 
break by fi nding the shortest solution to bring two termini 
together while KIC uses an analytical calculation to minimize the 
score between three pivot residues. While it is possible to model 
all loops simultaneously, the large number of possible loop con-
formations may result in discarding favorable loop conformations 
paired with unfavorable overall models. We prefer to model each 
loop consecutively to avoid this situation ( see   Note 10  for com-
ments on de  novo   loop modeling). Loops are modeled in low 
resolution through  a   Monte Carlo algorithm with the Metropolis 
criterion [ 38 ], and decoys are chosen based off of a steepest 
descent design.

    1.    The method outlined in Mandell et al. [ 38 ] is a well-character-
ized method for building loops de novo with KIC and is con-
veniently implemented into Rosetta as two movers for the low 
and high resolution stages. 
 #use the low resolution mover for one loop, and the 
high resolution refi nement protocol on all loops. 
 model_loop = Loops() 
 model_loop.add(aCDR1) 
 kic_perturb = rosetta.protocols.loops.loop_mover. 
LoopMover_Perturb_KIC(model_loop) 

3.4   Loop Modeling
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 kic_refine = rosetta.protocols.loops.loop_mover.
refi ne.LoopMover_Refi ne_KIC(loops)   

   2.    Set up a job distributor to model at least 1000 decoys for the 
current loop. 
 j d  =  P y J o b D i s t r i b u t o r ( ' l o o p m o d e l ' , 1 0 0 0 , 
scorefxn_high) 
 while not jd.job_complete: 
  p = Pose() 
  p.assign(current_model) 
  p.fold_tree(ft) 
  censwitch.apply(p) 
  perturb_KIC(p) 
  faswitch.apply(p) 
  recover_sidechains.apply(p) 
  #since backbone moved, repack sidechains 
  pack.apply(p) 
  kic_refi ne.apply(p) 
  jd.output_decoy(p)   

   3.    After the all of the decoys have completed, choose the lowest 
scoring structure and repeat  the   loop modeling procedure for 
the peptide (if modeled) and each CDR loop. Since loop con-
formations may be dependent on each other, continue model-
ing each loop until lower scores are no longer achieved ( see  
 Note 10 ).    

     The high resolution docking procedure is similar to the low resolu-
tion procedure, but adds in full atom side chain repacking in addi-
tion to the rigid body minimization performed in Subheading  3.3 . 
Sidechain packing allows for higher resolution discrimination of 
repulsive forces and charged interactions. In addition, a small per-
turbation is utilized to further refi ne the docking mode [ 37 ]. With 
TCRFlexDock, we used a 3 Å, 8° perturbation [ 16 ]. Since the 
method here incorporates a full randomization of the docking 
partners in low resolution docking (Subheading  3.3 ), a smaller 
perturbation could be used in the high resolution phase, although 
alternate values can be used to explore convergence.

    1.    Set up the job distributor similar to Subheading  3.2 , but use 
the full atom movers. 
 jd = PyJobDistributor('highresdock',10000, 
scorefxn_high) 
 jd.native_pose = loopmodel 
 while not jd.job_complete: 
  p = Pose() 
  p.assign(loopmodel) 
  setup_foldtree(p, "ABC_DE",jump) 
   #defi ne the degree of perturbation between the TCR 
and pMHC (8 degree, 3 Angstrom). 

   pert_mover = rigid_moves.RigidBodyPerturbMover(1, 
8, 3) 

3.5  High Resolution 
Docking
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  pert_mover.apply(p) 
  pert_mover.apply(p) 
  fa_slide = FaDockingSlideIntoContact(1) 
  fa_slide.apply(p) 
  dock_highres = DockMCMProtocol() 
  dock_highres.set_partners("ABC_DE") 
  dock_highres.set_scorefxn(scorefxn_high) 
  dock_highres.apply(p) 
  jd.output_decoy(p)   

   2.    Similar to the low resolution docking stage, the structure with 
the lowest RMSD to the structure used in the docking proto-
col (Subheading  3.4 ,  step 4 ) is our criteria for selection. We 
have found the default scores do not correlate with accurate 
docking (Fig.  4 ). Therefore, we use the template as a guide (as 
all TCRs bind with similar orientations) and depend on the 
Rosetta docking movers to modify the angle to resolve clashes.   

   3.    If the docking angle or score changed signifi cantly (RMS > 0.2 
or abs(score) >10), additional rounds  of   loop modeling and 
docking as described in Subheadings  3.3  and  3.4  may be nec-
essary to further refi ne the structure.    

     The example above shows the modeling of the A6–Tax/HLA-A2 
complex using the DMF5–AAG/HLA-A2 complex as a template. 
As noted earlier, this modeling task was chosen as A6 and DMF5 
bind pMHC with different incident angles (Fig.  2a ). We also used 
the above procedure to model the DMF5–ELA/HLA-A2 and 
DMF5–AAG/HLA-A2 complexes using the unrelated DMF4–
ELA/HLA-A2 and DMF4–AAG/HLA-A2 complexes as tem-
plates. These latter two are also challenging tasks as the DMF4 
TCR binds AAG/HLA-A2 and ELA/HLA-A2 with different 
docking angles (Fig.  2b, c ) [ 24 ]. The scores and RMSDs to the 
target complex for each example through the course of the model-
ing procedure are shown in Fig.  5 . This analysis demonstrates the 
overall level of performance (note that the RMSD to target infor-
mation was not used during any stages in the modeling proce-
dures). It also highlights a complexity observed with the 
DMF5–ELA/HLA- A2 complex: unlike the other complexes, the 
Rosetta score increased after high resolution docking, prompting 
additional rounds of loop refi nement. Comparison with the RMSD 
data showed only small downward movement throughout the pro-
cess, suggesting that this model may have become locked into a 
local energy well early in the process, possibly in  the   loop modeling 
stage. Nonetheless, the fi nal full atom RMSD to the target com-
plex was close at 2.4 Å (1.6 Å for only the α carbons of the TCR).

   The performance for all three modeling examples are shown 
visually in Fig.  2 . In each case, the docking/incident angles are 
shifted towards the correct model, yielding a good alignment as 

3.6  Analysis 
of Example Projects
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discernible from the ribbon diagrams. The shift in docking modes 
is also apparent by examining the centers of mass of the template/
model/known TCRs over the pMHC. In the case of the A6–Tax/
HLA-A2 complex, which also involved modeling the Tax peptide 
from the MART-1 AAG peptide (sequences LLFGYPVYV and 
AAGIILTV), the peptide backbone is captured, as are the positions 
of key peptide side chains. 

 Modeling performance is quantifi ed in Table  1 . In each case, 
the RMSD for the backbone of the  modeled   TCR relative to that 
of the known structure is less than 2 Å, and reduced from that 
obtained by comparing the template to the target structures. The 
quality of the modeled DMF5–AAG/HLA-A2 structure seems 
particularly good, given that the starting model differed from the 
known structure by a TCR Cα RMSD of >3 Å. Details within the 
three TCR–pMHC interfaces are shown in Fig.  6 , comparing the 

  Fig. 5    Rosetta Score and all atom RMSD values of the model to the known X-ray structures as modeling pro-
gresses for ( a ) the A6–Tax/HLA-A2 complex, ( b ) the DMF5–AAG/HLA-A2 complex, and ( c ) the DMF5–ELA/
HLA-A2 complex. For the DMF5–ELA/HLA-A2 complex, a second high resolution docking stage followed by 
further loop modeling was performed when the fi rst stage of loop modeling failed to reduce the Rosetta score       
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   Table 1  

  Quantitative comparison of template, X-ray structure, and modeled complexes   

 Template 

 Target 
(modeled 
complex) 

 Starting 
model to 
structure 
Cα RMSD 
(full 
complex) 
[Å] 

 Final model to 
structure Cα 
RMSD (full 
complex) [Å] 

 Final model 
to structure 
all atom 
RMSD (full 
complex) [Å] 

 Starting 
model to 
structure 
Cα RMSD 
(TCR only) 
[Å] 

 Final model 
to structure 
Cα RMSD 
(TCR only) 
[Å] 

 Final 
model to 
structure 
all atom 
RMSD 
(peptide 
only) [Å] 

 DMF5–
AAG/
HLA-A2 
(3QDJ) 

 A6–Tax/
HLA-A2 
(1QRN) 

 2.85  1.42  1.89  1.73  1.64  1.67 

 DMF4–
ELA/
HLA-A2 
(3QDM) 

 DMF5–
ELA/
HLA-A2 
(3QDG) 

 3.16  1.96  2.37  2.02  1.64   N/A 

 DMF4–
AAG/
HLA-A2 
(3QEQ) 

 DMF5–
AAG/
HLA-A2 
(3QDJ) 

 3.38  1.76  2.23  3.09  1.49   N/A 

  Fig. 6    Comparison of the positioning of select side chains in the known ( blue  ) and modeled ( yellow  ) TCR–
pMHC interfaces       

positions of key side chains in the models and X-ray structures. 
Although there is clear room for improvement in the positioning 
of some of the side chains, the three models demonstrate the capac-
ity to capture interfacial features as well as general docking modes.
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4          Notes 

     1.    Modeling projects which also involve a new peptide necessitate 
modeling the peptide in  the   MHC protein, a challenging 
problem in itself which continues to receive considerable atten-
tion (e.g., refs.  39 – 42 ). These or other approaches could be 
used alongside, or integrated into, the procedures described 
here.   

   2.    This project was developed with the use of multiple scripts, 
each with a new instance of PyRosetta and new variable decla-
rations which may not be constant depending on the actions 
taken to manipulate the template (e.g., insertions change the 
template pdb numbering and require all new variables to be 
named). The following should be the header of each PyRosetta 
script to import all tools used in this chapter: 
 from rosetta import* 
 init(extra_options = "-extrachi_cutoff 12 -ex1 -ex2 -ex3") 
 from toolbox import mutate_residue 
 import rosetta.protocols.grafting 
 from rosetta.core.pack.dunbrack import* 
 from toolbox import pose_from_rcsb 
 import rosetta.protocols.rigid as rigid_moves 
 from rosetta.protocols.loops.loop_mover.refi ne import * 
 from rosetta.protocols.loops.loop_closure.ccd import *   

   3.    Variables used in order of appearance: 
 template_pose #holds the template pose for loop 
manipulation 
 beta_insertion_site #holds the location to perform 
an insertion 
 Gly #holds the pose for a single glycine for 
insertion 
 loopclose #holds the loop for closing chain breaks 
 movemap #defi nes the fl exible backbone regions of the 
pose 
 ccd #holds the CCD mover for closing chain breaks 
 matched_sequence #holds the pose for mapping the 
target sequence onto template 
 alpha #holds a string of the alpha sequence 
 alpha_start_site #holds the pose numbering of the 
1 st  residue of the alpha chain 
 scorefxn_high #holds the high resolution score 
function 
 task #holds the sidechain packing settings 
 pack_mover #holds the mover to repack the sidechains 
 peploop #holds the loop object containing the peptide 
 acdr1 #holds the loop object containing the αCDR1 
 acdr2 #holds the loop object containing the αCDR2 
 acdr3 #holds the loop object containing the αCDR3 
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 bcdr1 #holds the loop object containing the βCDR1 
 bcdr2 #holds the loop object containing the βCDR2 
 bcdr3 #holds the loop object containing the βCDR3 
 ft #holds the foldtree of the pose 
 loops #holds all of the defi ned loops 
 loop_refi ne #holds the CCD loop refi ne mover 
 jd #holds the job distributor 
 p #holds the pose used for TCR modeling within the 
job distributor 
 scorefxn_low #holds the low resolution score function 
 ready_for_docking #holds the pose with adjusted 
loops and matched sequence 
 recover_sidechains #holds the mover to restore the 
amino acid sidechains of the pose before conversion 
to low resolution 
 censwitch #holds the mover for switching poses to 
centroid mode 
 centroid_complex #holds the low resolution pose 
 jump #holds the jump number to identify where to per-
form the docking maneuvers 
 docking_lowres #holds the low resolution docked 
structure 
 randomize1 #holds the mover to randomize the TCR 
docking coordinates 
 randomize2 #holds the mover randomize the pMHC dock-
ing coordinates 
 pert_mover #holds the mover performing slight 
perturbations 
 slide #holds the mover to bring two objects into 
contact 
 dock_lowres #holds the mover to perform low resolu-
tion docking 
 fa_switch #holds the mover to convert a low resolu-
tion pose to high resolution 
 model_loop #holds the loop for investigating loop 
conformations 
 kic_perturb #holds the mover to perturb a low reso-
lution loop using KIC 
 kic_refi ne #holds the mover to refi ne a high resolu-
tion loop using KIC 
 loopmodel #holds the pose used for loop modeling 
 fa_slide #holds the mover to slide two full atom 
objects into contact 
 dock_highres #holds the mover to perform high reso-
lution docking 
 highresdock #holds the high resolution docked complex   

   4.    protocols.grafting.insert_pose_into_pose inserts a pose imme-
diately after the named residue of the template. After an inser-
tion, residue numbering in the pdb reverts to the sequential 
pose numbering (e.g., residue 92 of chain D becomes residue 
477). Because of this, make insertions and deletions starting 

T.P. Riley et al.



337

from the C termini of the beta chain and work backwards. 
Also, if the peptides are of different sizes, perform the same 
procedure on the peptide chain. However, as peptides of dif-
ferent lengths can take signifi cantly different paths in  the   MHC 
binding groove [ 43 ] and peptide modeling remains challeng-
ing as noted above, consider using a template with a matched 
peptide length.   

   5.    To limit the backbone perturbation of the insertion, set up the 
CcdLoopMover loops to include the insertion site −2 residues 
and the length of the insertion +1 residue.   

   6.    Each core running a job distributor script and calculating a 
decoy will output a numeric .in_progress fi le. When the decoy 
fi nishes, a numbered .pdb fi le is created and score function 
information added to the .fasc/.sc fi le. The .in_progress fi le is 
then deleted, and the core moves on to the next trajectory that 
does not have a .pdb or .in_progress fi le in the directory.   

   7.    The number of trials needed for each job distributor depends 
on the moves applied and the variability introduced to the 
template structure. For example, a full atom backbone refi ne-
ment may sample all local conformations in 100 trials,  a   loop 
modeling protocol with backbone randomization may need 
1000  trials, and full docking protocols will need to generate 
upwards of 10,000 decoys.   

   8.    Loops may be defi ned using the IMGT database (  http://
www.imgt.org    ) [ 44 ] or preferably by visually inspecting the 
CDR loops in the template and comparing with  the   sequenc-
ing alignment. A loop in Rosetta is defi ned by two residues on 
either end and a ‘cutpoint’ to allow fl exible motion without 
propagating through the rest of the structure. FoldTrees defi ne 
independent regions of a pose and are set up to include each 
loop and two residues on either side to act as anchors. The 
syntax for a FoldTree encompassing multiple loops is shown 
below. The value of −1 indicates edges. Positive integers 
describe jumps where backbone regions may be manipulated 
without propagating throughout the rest of the structure. 
 ft.add_edge(1, 376-2,-1) 
 ft.add_edge(376-2,380,-1) 
 ft.add_edge(376-2,384 + 2,1) 
 ft.add_edge(384 + 2,380 + 1,-1) 
 ft.add_edge(384 + 2,408-2,-1) 
 ft.add_edge(408-2,411,-1) 
 ft.add_edge(408-2,414 + 2,2) #jumps increment by +1 
 ft.add_edge(414 + 2,411 + 1,-1) 
 ft.add_edge(414 + 2,433-2,-1) 
 ft.add_edge(433-2,435,-1) 
 ft.add_edge(433-2,439 + 2,3) 
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 ft.add_edge(439 + 2,435 + 1,-1) 
 ft.add_edge(439 + 2,475-2,-1) 
 ft.add_edge(475-2,479,-1) 
 ft.add_edge(475-2,482 + 2,4) 
 ft.add_edge(482 + 2,479 + 1,-1) 
 ft.add_edge(482 + 2,607-2,-1) 
 ft.add_edge(607-2,610,-1) 
 ft.add_edge(607-2,612 + 2,5) 
 ft.add_edge(612 + 2,610 + 1,-1) 
 ft.add_edge(612 + 2,631-2,-1) 
 ft.add_edge(631-2,635,-1) 
 ft.add_edge(631-2,637 + 2,6) 
 ft.add_edge(637 + 2,635 + 1,-1) 
 ft.add_edge(637 + 2,675-2,-1) 
 ft.add_edge(675-2,680,-1) 
 ft.add_edge(675-2,685 + 2,7) 
 ft.add_edge(687 + 2,680 + 1,-1) 
 f t . a d d _ e d g e ( 6 8 7  +  2 , m a t c h e d _ s e q u e n c e .
total_residue(),-1)   

   9.    The scripts assume the following chain PDB IDs: For a class  I 
  MHC protein, heavy chain as A; β 2 -microglobulin as B; pep-
tide as C (for a class II MHC protein, the α chain would be A 
and the β chain would be B); TCR α chain as D;  and   TCR β 
chain as E.   

   10.    For example, 1000 decoys of the αCDR1 loop may be remod-
eled. The lowest scoring decoy will be used to model 1000 
decoys of αCDR2, etc. After all loops have been remodeled, it 
may be necessary to repeat the cycle to account for loop depen-
dent effects. Generally, we have found three cycles (18 loop 
remodels) to be suffi cient. We have found the peptide is often 
within 2 Å of the template peptide (all atom RMSD after 
superimposing target and template peptides) after refi nement, 
and in our experience may not need to be randomized to iden-
tify a close-to-native conformation .         

  Acknowledgements  

 Computational structural immunology in the authors’ laboratories 
is supported by NIH grants R01GM103773 and R01GM067079 
and an award from the Carole and Ray Neag Comprehensive 
Cancer Center at the University of Connecticut. TPR is supported 
by a fellowship from the Indiana CTSI, funded in part by NIH 
grant UL1TR001108.  

T.P. Riley et al.



339

   References 

     1.    Garboczi DN, Ghosh P, Utz U et al (1996) 
Structure of the complex between human 
T-cell receptor, viral peptide and HLA-A2. 
Nature 384:134–141  

    2.    Garcia KC, Degano M, Stanfi eld RL et al 
(1996) An alphabeta T cell receptor structure 
at 2.5 A and its orientation in the TCR-MHC 
complex [see comments]. Science 
274:209–219  

     3.    Borbulevych OY, Piepenbrink KH, Baker BM 
(2011) Conformational melding permits a 
conserved binding geometry in TCR recogni-
tion of foreign and self molecular mimics. 
J Immunol 186:2950–2958  

   4.    Cole DK, Yuan F, Rizkallah PJ et al (2009) 
Germline-governed recognition of a cancer 
epitope by an immunodominant human T-cell 
receptor. J Biol Chem 284:27281–27289  

   5.    Macdonald WA, Chen Z, Gras S et al (2009) T 
cell allorecognition via molecular mimicry. 
Immunity 31:897–908  

   6.    Adams JJ, Narayanan S, Liu B et al (2011) T 
cell receptor signaling is limited by docking 
geometry to peptide-major histocompatibility 
complex. Immunity 35:681–693  

   7.    Bulek AM, Cole DK, Skowera A et al (2012) 
Structural basis for the killing of human beta 
cells by CD8+ T cells in type 1 diabetes. Nat 
Immunol 13:283–289  

    8.    Chen J-L, Stewart-Jones G, Bossi G et al 
(2005) Structural and kinetic basis for height-
ened immunogenicity of T cell vaccines. J Exp 
Med 201:1243–1255  

    9.    Restifo NP, Dudley ME, Rosenberg SA (2012) 
Adoptive immunotherapy for cancer: harness-
ing the T cell response. Nat Rev Immunol 
12:269–281  

    10.    Oates J, Jakobsen BK (2013) ImmTACs: novel 
bi- specifi c agents for targeted cancer therapy. 
Oncoimmunology 2:e22891  

    11.    Van Boxel GI, Stewart-Jones G, Holmes S et al 
(2009) Some lessons from the systematic pro-
duction and structural analysis of soluble αβ 
T-cell receptors. J Immunol Methods 
350:14–21  

    12.    Bulek AM, Madura F, Fuller A et al (2012) 
TCR/pMHC optimized protein crystallization 
screen. J Immunol Methods 382:203–210  

    13.    Cole DK, Pumphrey NJ, Boulter JM et al 
(2007) Human TCR-binding affi nity is gov-
erned by MHC class restriction. J Immunol 
178:5727–5734  

    14.    Davis MM, Boniface JJ, Reich Z et al (1998) 
Ligand recognition by alpha beta T cell recep-
tors. Annu Rev Immunol 16:523–544  

     15.    Pierce BG, Weng Z (2013) A fl exible docking 
approach for prediction of T cell receptor–pep-
tide–MHC complexes. Protein Sci 22:35–46  

      16.    Pierce BG, Vreven T, Weng Z (2014) Modeling 
T cell receptor recognition of CD1-lipid and 
MR1- metabolite complexes. BMC 
Bioinformatics 15:319  

    17.    Xia Z, Chen H, Kang S-G et al (2014) The 
complex and specifi c pMHC interactions with 
diverse HIV-1 TCR clonotypes reveal a struc-
tural basis for alterations in CTL function. Sci 
Rep 4:4087  

   18.    Michielin O, Luescher I, Karplus M (2000) 
Modeling of the TCR-MHC-peptide com-
plex1. J Mol Biol 300:1205–1235  

   19.    De Rosa MC, Giardina B, Bianchi C et al 
(2010) Modeling the ternary complex 
TCR-Vβ/collagenII(261–273)/HLA-DR4 
associated with rheumatoid arthritis. PLoS 
One 5:e11550  

   20.    Liu IH, Lo YS, Yang JM (2013) Genome-wide 
structural modelling of TCR-pMHC interac-
tions. BMC Genomics 14(Suppl 5):S5  

    21.    Leimgruber A, Ferber M, Irving M et al (2011) 
TCRep 3D: an automated  in silico  approach to 
study the structural properties of TCR reper-
toires. PLoS One 6:e26301  

    22.    Klausen MS, Anderson MV, Jespersen MC et al 
(2015) LYRA, a webserver for lymphocyte 
receptor structural modeling. Nucleic Acids 
Res 43:W349  

     23.    Ding YH, Baker BM, Garboczi DN et al 
(1999) Four A6-TCR/peptide/HLA-A2 
structures that generate very different T cell 
signals are nearly identical. Immunity 
11:45–56  

      24.    Borbulevych OY, Santhanagopolan SM, 
Hossain M et al (2011) TCRs used in cancer 
gene therapy cross-react with MART-1/melan-
a tumor antigens via distinct mechanisms. 
J Immunol 187:2453–2463  

    25.    Gagnon SJ, Borbulevych OY, Davis-Harrison 
RL et al (2006) T cell receptor recognition via 
cooperative conformational plasticity. J Mol 
Biol 363:228–243  

   26.    Borbulevych OY, Piepenbrink KH, Gloor BE 
et al (2009) T cell receptor cross-reactivity 
directed by antigen-dependent tuning of pep-
tide-MHC molecular fl exibility. Immunity 
31:885–896  

   27.    Piepenbrink KH, Borbulevych OY, Sommese 
RF et al (2009) Fluorine substitutions in an 
antigenic peptide selectively modulate T-cell 
receptor binding in a minimally perturbing 
manner. Biochem J 423:353–361  

Design of T-cell Receptor Complexes



340

   28.    Scott DR, Borbulevych OY, Piepenbrink KH 
et al (2011) Disparate degrees of hypervariable 
loop fl exibility control T-cell receptor cross-
reactivity, specifi city, and binding mechanism. 
J Mol Biol 414:385–400  

    29.    Khan AR, Baker BM, Ghosh P et al (2000) 
The structure and stability of an HLA-
A*0201/octameric tax peptide complex with 
an empty conserved peptide-N-terminal bind-
ing site. J Immunol 164:6398–6405  

    30.    Utz U, Banks D, Jacobson S et al (1996) 
Analysis of the T-cell receptor repertoire of 
human T-cell leukemia virus type 1 (HTLV-1) 
Tax-specifi c CD8+ cytotoxic T lymphocytes 
from patients with HTLV-1-associated disease: 
evidence for oligoclonal expansion. J Virol 
70:843–851  

    31.    Johnson LA, Heemskerk B, Powell DJ Jr et al 
(2006) Gene transfer of tumor-reactive TCR 
confers both high avidity and tumor reactivity 
to nonreactive peripheral blood mononuclear 
cells and tumor-infi ltrating lymphocytes. 
J Immunol 177:6548–6559  

    32.    Kaufmann KW, Lemmon GH, Deluca SL et al 
(2010) Practically useful: what the Rosetta 
protein modeling suite can do for you. 
Biochemistry 49:2987–2998  

    33.    Chaudhury S, Lyskov S, Gray JJ (2010) 
PyRosetta: a script-based interface for imple-
menting molecular modeling algorithms using 
Rosetta. Bioinformatics 26:689–691  

    34.    Rudolph MG, Stanfi eld RL, Wilson IA (2006) 
How TCRs bind MHCs, peptides, and core-
ceptors. Annu Rev Immunol 24:419–466  

    35.    Miles JJ, Mccluskey J, Rossjohn J et al (2015) 
Understanding the complexity and malleability 
of T-cell recognition. Immunol Cell Biol 
93:433–441  

    36.    Chaudhury S, Gray JJ (2008) Conformer 
selection and induced fi t in fl exible backbone 
protein–protein docking using computational 
and NMR ensembles. J Mol Biol 
381:1068–1087  

     37.    Gray JJ, Moughon S, Wang C et al (2003) 
Protein–protein docking with simultaneous 
optimization of rigid-body displacement and 
side-chain conformations. J Mol Biol 
331:281–299  

     38.    Mandell DJ, Coutsias EA, Kortemme T (2009) 
Sub-angstrom accuracy in protein loop recon-
struction by robotics-inspired conformational 
sampling. Nat Methods 6:551–552  

    39.    Park M-S, Park SY, Miller KR et al (2013) 
Accurate structure prediction of peptide–MHC 
complexes for identifying highly immunogenic 
antigens. Mol Immunol 56:81–90  

   40.    Schueler-Furman O, Elber R, Margalit H 
(1998) Knowledge-based structure prediction 
of MHC class I bound peptides: a study of 23 
complexes. Fold Des 3:549–564  

   41.    Fagerberg T, Cerottini J-C, Michielin O 
(2006) Structural prediction of peptides bound 
to MHC class I. J Mol Biol 356:521–546  

    42.    Yanover C, Bradley P (2011) Large-scale char-
acterization of peptide-MHC binding land-
scapes with structural simulations. Proc Natl 
Acad Sci 108:6981–6986  

    43.    Borbulevych OY, Insaidoo FK, Baxter TK et al 
(2007) Structures of MART-1(26/27-35) 
peptide/HLA-A2 complexes reveal a remark-
able disconnect between antigen structural 
homology and T cell recognition. J Mol Biol 
372:1123–1136  

    44.    Robinson J, Mistry K, Mcwilliam H et al 
(2011) The IMGT/HLA database. Nucleic 
Acids Res 39:D1171–D1176    

T.P. Riley et al.



341

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_20, © Springer Science+Business Media New York 2016

    Chapter 20   

 Computational Design of Protein Linkers                     

     Brian     Kuhlman     ,     Tim     Jacobs    , and     Tom     Linskey     

  Abstract 

   Naturally occurring proteins often consist of multiple distinct domains joined by linker regions. Similarly, 
the ability to combine globular protein domains through engineered linkers would allow the creation of a 
wide variety of complex and useful multifunctional proteins. Recent advances in computational design of 
protein structures have enabled highly accurate design of novel protein structures. In this chapter we out-
line a computational protocol for the de novo design of protein linkers, and apply this protocol to the 
design of a helical linker between two rigid protein domains.  

  Key words     Protein linkers  ,   RosettaDesign  ,   Molecular docking  

1      Introduction 

  Naturally occurring proteins often consist of multiple  distinct 
  domains joined by linker regions, which can be structured or 
unstructured. The modularity of multi-domain proteins allows 
nature to create novel functions by mixing and matching func-
tional components (domains) through evolutionary mechanisms 
such as gene duplication and homologous/nonhomologous end 
joining. Similarly, the design of linkers between existing functional 
domains allows the creation of novel, multifunctional proteins use-
ful for numerous purposes. Therapeutic single-chain antibody 
fragments, which are used extensively as therapeutics, result from 
designing fl exible linkers between protein domains [ 1 ]. Additionally, 
full-length proteins joined by fl exible linkers, such as DNA binding 
domains fused to transcriptional activators, are ubiquitous in 
molecular research. 

 Structured linkers offer even greater functional versatility than 
unstructured linkers by controlling the specifi c spatial orientation 
between two protein domains. For instance, a photoactivatable 
protein domain was covalently joined to a GTPase implicated in 
cell motility using a designed structured linker. This rigid linker 
allows the photoactivatable domain to occlude GTPase activity in 
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the absence of a light stimulus, creating a powerful optogenetic 
tool for the study of cell motility [ 2 ]. Structured linkers also enable 
the design of novel biomolecular structures. For example, naturally 
occurring homo-oligomeric proteins have been joined using a heli-
cal structured linker to form a protein nanocage [ 3 ]. 

 Design of structured linkers between protein domains requires 
consideration of both the length of the linker and its amino acid 
sequence. Experimentally, exhaustive iteration of  these   metrics 
quickly becomes intractable, even for short linkers. However, 
recent advances in computational score functions and sampling 
methods allows for highly accurate design of  specifi c   protein struc-
tures, allowing researchers  to   design a set of feasible linkers in 
silico. Therefore, computational protein design can overcome the 
experimental limitations mentioned above by rapidly generating a 
small set of feasible candidate linkers. These candidates can then be 
evaluated experimentally to determine the optimal linker for the 
intended function. 

 In this chapter, we describe a method for designing a helical 
linker between two rigid protein domains. It is important to note 
that there are many methods for  computational   protein design, 
each with its own advantages and disadvantages, and that the below 
protocol represents only one such method. Specifi cally, this proto-
col uses  the    RosettaScripts  framework included with the  Rosetta 
  molecular modeling suite [ 4 ]. RosettaScripts was chosen for its 
user- facing simplicity and its ability to adapt the same design pro-
tocol to a wide variety of linker design problems. Regardless of the 
linker design method you ultimately choose, the general steps and 
principles outlined here should be applicable. 

 A functional demo containing the full set of inputs and com-
mands used is accessible as a Rosetta demo. A full list of Rosetta 
demos, along with instructions, is available at   https://www.roset-
tacommons.org/demos/latest/      

2    Materials 

 There are two inputs  to   RosettaScripts: the input starting 
structure(s) in Protein Data Bank (PDB) format, and a protocol 
fi le in XML format which specifi es the design protocol. There are 
two outputs to RosettaScripts: a model of the designed protein and 
a fi le containing computational scores. The process for obtaining a 
starting structure is described in Subheading  2.1 , and the process 
for writing the protocol fi le is described in Subheading  2.3 . 

    Design of a structural linker begins with a structure of the two 
domains in the desired relative orientation. A high-resolution X-ray 
crystal structure of a protein dimer that you would like to cova-
lently connect with a linker is the best starting point. However, in 

2.1  Starting 
Structures
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 many   protein design cases, this is not available. If monomeric 
structures of the two domains are available, one can generate a 
dimeric structure using macromolecular docking software, the 
usage of which is outside the scope of this protocol ( see   Note 1 ). If 
structures of one or both monomers are not available, homology 
models can be generated. However, homology modeling is not 
perfect (it is akin to an educated guess), and incorrect models may 
have signifi cant impact on the design of a rigid linker. Therefore, 
homology models should be treated with caution, and used only if 
a high-quality structural template can be identifi ed. If your fi nal 
protein dimer structure is not available in PDB format, it should be 
converted to this format for future steps ( see   Note 2 ).  

   Rosetta is a full-featured  macromolecular   modeling suite that can 
be used for a wide variety  of   protein design and structural predic-
tion purposes. Rosetta is free for academic use, and licenses are 
available to purchase for commercial purposes. To obtain a license, 
visit   https://www.rosettacommons.org/software/license-and- 
download    . Once a license is obtained, download and compile the 
latest version available. Rosetta uses a continual-release model and 
new versions are available weekly. Detailed instructions for compi-
lation can be found at   https://www.rosettacommons.org/docs/
latest/    . Rosetta is a command-line utility, and thus, at minimum, a 
cursory familiarity of the command-line environment is recom-
mended. An online tutorial with suffi cient information can be 
found at   http://cli.learncodethehardway.org/book/    . Upon suc-
cessful compilation of Rosetta, an executable fi le named starting 
with the word “rosetta_scripts” should exist in the Rosetta/main/
source/bin directory. This executable is required for Subheading  3 .  

    In addition to your starting PDB, an XML script describing the 
design protocol is necessary to  run   RosettaScripts. Although exam-
ple scripts are contained here, it is recommended you read the 
documentation for the RosettaScripts syntax, which can be found 
at   https://www.rosettacommons.org/docs/latest/scripting_doc-
umentation/RosettaScripts/RosettaScripts    . 

 The script fi le is responsible for dictating the details of the 
linker design protocol, including the desired linker length and 
structure, as well as the optimization methods and allowed degrees 
of freedom. Typical linker design protocols, including the example 
below, split the task of linker design into two separate stages: a 
backbone construction stage, and a sidechain optimization stage 
(Fig.  1 ). This “divide-and-conquer” approach allows the complex 
task of linker design to be addressed as two simpler subtasks. The 
backbone creation stage optimizes only backbone phi/psi angles, 
and the sequence design stage optimizes linker amino acid sequence 
as well as placement of the linker side chains. In both stages, bond 
angles and lengths are fi xed at their ideal geometric values, and 

2.2  Obtaining 
and Compiling 
the Rosetta Molecular 
Modeling Suite

2.3  Creating  Your 
  RosettaScripts 
Protocol Input File
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sidechain identities and conformation of the two domains remain 
constant.

   RosettaScripts parses the input XML fi le and executes modeling 
operations, called “Movers”, in an iterative fashion. For a complete 
list of available Movers, and their options, see the documentation at 
  https://www.rosettacommons.org/docs/latest/scripting_docu-
mentation/RosettaScripts/Movers/Movers-RosettaScripts     

   The fi rst stage of the linker design protocol is the construction of a 
polypeptide backbone that connects the two domains of your 
dimeric protein structure. In our example, we accomplish this task 
using the BridgeChains Mover. The BridgeChains mover constructs 
a polypeptide chain of the desired length and secondary structure 
using fragments extracted from  natural   protein structures [ 5 ]. 

 In order to sample the phi/psi angles in a physically meaningful 
way, a placeholder “centroid” sidechain is used at every position. 
The placeholder in this example is a “centroid” representation of 
the amino acid valine. The scoring function used in this stage takes 
into account van der Waals attraction/repulsion (score term: vdw), 
the radius of gyration (score term: rg) to encourage compact struc-
tures and the favorability of the phi/psi angles (score term: rama). 
It does not include any terms that depend on side-chain atoms. 

 In addition to fragment-based backbone sampling, the 
BridgeChains mover is responsible for creating a closed peptide 
chain. The chain closure in the BridgeChains mover is accomplished 

2.3.1  Backbone 
Construction

  Fig. 1    Overview of the linker design protocol. In the example, a helical linker is 
designed between two chains of a homodimer       
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using a cyclic coordinate descent algorithm [ 5 ]. The BridgeChains 
mover can be confi gured using several options, which are outlined 
below. Please reference the BridgeChains section of  the   RosettaScripts 
documentation for the most up-to-date list of options. 

 If you are building a structured linker, predominantly helical 
secondary structure is recommended due to stable local hydrogen 
bonding and reduced entropy versus loops. At the end of this 
stage, a newly designed linker will covalently connect your dimeric 
input structure if BridgeChains was successful. This linker will be 
composed of the specifi ed number of residues with the input struc-
tural constraints, and will have backbone phi/psi angles based on 
fragments of natural proteins. However, until this point only the 
protein backbone has been optimized, and thus each amino acid in 
the linker will be the placeholder amino acid valine.

  BridgeChains Options 

   1.    ‘chain1’—The chain that will be at the N-terminus in the com-
pletely linked structure. The C-terminal residue of this chain 
will be the beginning of your designed linker   

   2.    ‘chain2’—The chain that will be at the C-terminus in the com-
pletely linked structure. The N-terminus residue of this chain 
will be the end of your designed linker   

   3.    ‘motif’—The desired length and secondary structure of your 
completed linker. This option is specifi ed with a string with the 
following format: 
 <Length><SS><ABEGO>-<Length><SS><ABEGO>-…-
<Length><SS><ABEGO> 
 Where length is the specifi ed number of residues; SS, or sec-
ondary structure, is specifi ed with ‘H’, for helix, ‘E’ for strand, 
and ‘L’ for loop; and ABEGO is any of the valid ABEGO 
codes, which indicate allowed phi/psi angles for the residues 
in Ramachandran space. For more information about ABEGO 
codes,  see  Table  1 .

   Table 1  
  Backbone phi and psi torsion bins for ABEGO codes   

 Code  Min. Phi  Max. Phi  Min. Psi  Max Psi 

 A  −180.0  0.0  −75.0  50.0 

 B  −180.0  0.0  50.0  285.5 

 E  0.0  180.5  100.0  260.5 

 G  0.0  180.5  −100.0  100.0 

 X  −180.0  180.0  −180.0  180.0 

Design of Protein Linkers
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       4.    ‘overlap’—The number of residues to be rebuilt on each side 
of the new linker. Rebuilding the fl anking residues of the linker 
will allow  more   fl exibility in the linker positioning and will 
result in the creation of more linker models that are able to 
connect the two chains.   

   5.    ‘scorefxn’—The Rosetta score function that should be used 
during sampling of backbone conformations with polypeptide 
fragments.      

   The second stage of the linker design protocol is the optimization of 
the amino acid identities and conformations on the newly designed 
backbone. There are many methods for sidechain optimization avail-
able in Rosetta. Some of these protocols leave the protein backbone 
completely fi xed and optimize only the sidechain positions, others 
incorporate varying amounts of  backbone   fl exibility that allow the 
backbone to adjust in order to accommodate the modifi cations 
being made to the sidechain conformations. In our example, we use 
the PackRotamersMover, which operates on a completely fi xed 
backbone, followed by MinMover, which performs refi nement of 
side chain positions and backbone torsion angles. 

 The PackRotamersMover optimizes sidechain conformations, 
 called   rotamers, using  a   Monte Carlo simulated annealing algo-
rithm [ 6 ]. The example below allows any of the 20 standard amino 
acids to be designed at all positions in the new linker. However, if 
specifi c amino acid identities are desired, this can be confi gured 
using a Rosetta resfi le or a Rosetta Task Operation, the documen-
tation of which can be found at   https://www.rosettacommons.
org/docs/latest/rosetta_basics/fi le_types/resfi les    , and   https://
www.rosettacommons.org/docs/latest/scripting_documenta-
t ion/RosettaScripts/TaskOperations/TaskOperations- 
RosettaScripts    , respectively. 

 MinMover optimizes backbone phi/psi angles and sidechain 
conformations of both domains and the linker using the full 
Rosetta all-atom scoring function. This step results in subtle move-
ments required to reach an energetic minimum. 

 Multiple cycles of design followed by minimization will typi-
cally lead to better scoring models than a single cycle alone. The 
ParsedProtocol and GenericMonteCarlo Movers are used to 
 control this iteration; the full details of these Movers are available 
through  the   RosettaScripts Mover documentation.  

     The below script will construct a linker between chain 1 and chain 
2 in the input PDB. In this example, each chain is 100 amino acids. 
The linker will consist of 16 residues; the fi rst three residues will be 
modeled with a loop secondary structure, followed by ten residues 
with a helical secondary structure, and then three more residues of 
loop. The torsion angles of the loop residues will be unrestricted, 
and the helix residues will be restricted to the ‘A’ region of 

2.3.2  Sidechain 
Optimization

2.3.3  Example Script
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Ramachandran space (180 ≤ phi ≥ 0; −75 ≤ psi ≥ 50). Additionally, 
phi/psi angles of the three residues fl anking the new linker will be 
sampled in order to allow more effi cient closure of the linker ( see  
 Note 3 ). If a successful linker backbone is created, then the amino 
acid sidechains for the linker will be optimized with 20 iterations of 
fi xed backbone design and gradient-based energy minimization. 

 <ROSETTASCRIPTS> 
 <TASKOPERATIONS> 

 #########################################
##### 
 # The OperateOnResidueSubset operation, in 
conjunction 
 # with the PreventRepacking ResidueLevelTaskOperation 
(RLT) 
 # prevents design at positions outside the new loop 
 #########################################
##### 
 <OperateOnResidueSubset name=“looponly” > 

 <And> 
 <Index resnums=“1-100” /> 
 <Index resnums=“117-216” /> 

 </And> 
 <PreventRepackingRLT/> 

 </OperateOnResidueSubset> 
 </TASKOPERATIONS> 

 ############################################## 
 # The “fl dsgn_cen” scorefunction is the recommended 
 # ScoreFunction for backbone design in which a placeholder 
 # amino-acid is used (in the case of this demo, that amino acid 
 # is valine) 
 ############################################## 
 <SCOREFXNS> 

 <centroid_scorefunction weights = "fl dsgn_
cen" /> 

 </SCOREFXNS> 
 <FILTERS> 
 </FILTERS> 
 <MOVERS> 

 <BridgeChains name = "connect" chain1=“1” 
chain2=“2” motif = "3LX-10HA-3LX" over-
lap=“3” scorefxn=“centroid_scorefunction” /> 

 <PackRotamersMover name=“pack” task_operations=
“looponly” /> 

 <MinMover name=“minimize” bb=“true” chi=“true” /> 
 <ParsedProtocol name = "design_and_minimize" > 

Design of Protein Linkers
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 <Add mover = "pack" /> 
 <Add mover = "minimize" /> 

 </ParsedProtocol> 
 ############################################## 
 # Note that Talaris 2013 is the default full-atom score function in 
 # Rosetta, and therefore does not need to be defi ned in the 
 # SCOREFXNS section above 
 ############################################## 
 <GenericMonteCarlo name = "design_mc" trials = "20" mover_
name = "design_and_minimize" scorefxn_name=“talaris2013” /> 

 </MOVERS> 
 <PROTOCOLS> 

 <Add mover_name = "connect"/> 
 <Add mover_name = "design_mc"/> 

 </PROTOCOLS> 
 </ROSETTASCRIPTS>    

3     Methods 

    To run a RosettaScript protocol,    navigate to the directory contain-
ing your input PDB fi le and XML script in a terminal. Rosetta 
executables, such as RosettaScripts, can be modulated through the 
use of command-line fl ags. At a minimum, the ‘-s’ fl ag is needed to 
specify the input PDB, and the ‘-parser:protocol’ fl ag is needed to 
specify the XML script. Additionally, the ‘nstruct’ fl ag is used to 
control the number of times your complete protocol should be 
run. Rosetta uses random numbers during the design process, so 
each execution may result in a different output. Typically, it is 
advisable to design many candidate structures and select only the 
best for in vitro characterization. An example of a complete com-
mand that will run your linker design protocol 5 times is below: 

 / p a t h / t o / R o s e t t a / m a i n / s o u r c e / b i n / r o s e t t a _
scripts.#distribution# \ 
 -s #input_PDB# \ 
 -parser:protocol #script.xml# \ 
 -nstruct 5 

 For a more exhaustive set of command-line fl ags used by 
Rosetta, visit the documentation at: 

   https://www.rosettacommons.org/docs/wiki/rosetta_
basics/options/options-overview      

     Before running the entire linker design protocol, it is useful to run 
a small number of trajectories aimed at identifying an appropriate 
number of residues necessary to connect the two domains of your 

3.1  Running 
RosettaScripts

3.2  Determining 
Appropriate Linker 
Length and Structure
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input with the desired structure. For computational effi ciency, 
there is no need to optimize the sidechains during this step. In 
order to make this change, remove the “design” mover from the 
<PROTOCOLS> block of the example XML script from 
Subheading  2.3.3 . Create a copy of this script for each of the linker 
variants you would like the test ( see   Note 4 ). For each linker vari-
ant, modify the ‘motif’ option for the BridgeChains Mover to rep-
resent the desired linker length and structure to be tested. Use the 
command from Subheading  3.1  to run each of the XML scripts. It 
is recommended to run at least ten trajectories (an ‘nstruct’ value 
of 10) for each linker variant. 

 Each trajectory can result in one of three different outcomes, 
each of which gives important information about the chosen linker 
variant. The fi rst outcome is an error stating that the loop closure 
algorithm failed to close the linker. In this case, it is likely that the 
chosen linker is too short to bridge the gap between the two chains. 
In this case, additional residues may be needed. The second possi-
ble outcome is an error stating that the secondary structure and 
torsion angles don’t match the desired specifi ed secondary struc-
ture/ABEGO. In this case, additional residues and/or less strin-
gent structural requirements may help. The fi nal outcome is a 
successful run that produces an output PDB, which by default will 
be named the same as the input PDB with an additional number at 
the end. For example, an input PDB with the name “my_input.
pdb”, would result in an output named “my_input_0001.pdb” ( see  
 Note 5 ). A successful output indicates that a linker backbone with 
the specifi ed input was created; however, it is useful to examine the 
output to ensure the designed linker is not unnecessarily long for 
the given gap.  

    Once a set of viable linker lengths and structures is determined, the 
full design protocol, which optimizes both the linker backbone 
and sidechains should be run. To generate this protocol, modify 
the example script from Subheading  2.3.3  to contain the desired 
motif you generated in Subheading  3.1 . Additionally, modify the 
OperateOnResidueSubset TaskOperation to include only the 
 residues outside your linker. For example, if your goal is to connect 
two 100-residue domains with a 10-residue linker, then your 
ResidueIndex selectors should include residues 1–100 and 111–
210. Run the protocol using the command in Subheading  3.1 . For 
production runs, it is recommended that at least 1000 trajectories 
be run for each linker variant.  

   The Rosetta full-atom score will be used to rank all linkers designed 
in Subheading  3.2 . These scores are available in the Rosetta output 
fi le name ‘score.sc’. This column based score fi le contains values 
for each of the score terms used by the Rosetta full-atom score 
function. For our purposes, only the ‘total_score’ and ‘description’ 
columns will be used. Sort the rows of score fi le by the total_score 
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column ( see   Note 6 ). The rows with the most negative score cor-
respond to the best output and should be selected for experimental 
characterization ( see   Note 7 ).   

4    Notes 

     1.    Rosetta has a built-in molecular docking protocol. For com-
plete documentation see   https://www.rosettacommons.org/
docs/wik i/app l i ca t ion_documenta t ion/dock ing/
docking-protocol       

   2.    It is often useful to “clean” PDBs before using them as Rosetta 
input. This typically involves removal of water and other 
ligands that Rosetta doesn’t understand by default. A python 
script to do this automatically can be found in Rosetta/tools/
protein_tools/scripts/clean_pdb.py   

   3.    Additional sampling restraints for the residues fl anking the 
linker can be added using Rosetta’s constraint system. For doc-
umentation see   https://www.rosettacommons.org/docs/lat-
est/rosetta_basics/fi le_types/constraint-fi le       

   4.    As a general rule of thumb, each residue in a linker can span 
approximately 2 Å. So, for a 10 Å distance between the two 
chains you are trying to connect, a 5-residue linker is a good 
starting point. Helical linkers may require slightly more resi-
dues, while loop linkers may require fewer.   

   5.    The prefi x used for PDB output can be modifi ed using the 
command-line fl ag ‘-out:prefi x #desired_prefi x#’   

   6.    Rosetta score fi les can be pasted into Microsoft Excel for sim-
plifi ed easy sorting. Use the “text to columns” option with a 
space delimiter to ensure proper formatting.   

   7.    Typical scores for well-designed linkers should typically aver-
age to less than −2.0 Rosetta Energy Units per linker residue. 
 However, the total_score reported in the score.sc fi le will 
include the score of residues outside the linker region. The 
Rosetta score for each individual residue is appended to the 
end of each output PDB and can be used to calculate the score 
for only the linker residues .         
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  Abstract 

   A signifi cant part of biology involves the formation of RNA–protein complexes. X-ray crystallography has 
added a few solved RNA–protein complexes to the repertoire; however, it remains challenging to capture 
these complexes and often only the unbound structures are available. This has inspired a growing interest 
in fi nding ways to predict these RNA–protein complexes. In this study, we show ways to approach this 
problem by computational docking methods, either with a fully automated NPDock server or with a work-
fl ow of methods for generation of many alternative structures followed by selection of the most likely 
solution. We show that by introducing experimental information, the structure of the bound complex is 
rendered far more likely to be within reach. This study is meant to help the user of docking software under-
stand how to grapple with a typical realistic problem in RNA–protein docking, understand what to expect 
in the way of diffi culties, and recognize the current limitations.  

  Key words     Protein–RNA docking  ,   NPDock  ,   Molecular modeling  ,   Macromolecular complexes  , 
  Structural bioinformatics  ,   Statistical potential  

1      Introduction 

 In almost every biological system involving protein and RNA mol-
ecules, somewhere in the process, some form of protein–RNA 
complex formation almost inevitably occurs. A deep grasp of the 
binding mechanisms that depend on both the 3D structure and 
interaction energies of such complexes is therefore essential to 
understanding the biological systems that employ them.    Protein–
RNA interactions have been long known to be critical in the for-
mation of the ribosome as well as the process of protein synthesis 
[ 1 ,  2 ]. The production of small RNAs as well as the regulation of 
gene expression by these molecules both in prokaryotes and in 
eukaryotes requires numerous steps where proteins are involved 
[ 3 ,  4 ]. RNA splicing in eukaryotes is dependent on the formation 
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of protein–RNA complexes in the context of the spliceosome, a 
large, dynamic ribonucleoprotein machine [ 5 ]. 

 Recently, there has been a notable growth in the number of 
experimentally determined structures of RNAs and protein–RNA 
complexes that have been solved using X-ray crystallography; how-
ever, crystallization of these macromolecules remains quite ardu-
ous and capricious [ 6 ,  7 ]. Hence, compared to what we would like 
to know, only a handful of such structures have been solved. Since 
it is often the case that we can only obtain the individual parts of 
protein–RNA complexes, where the structures of individual mole-
cules are like the pieces of a puzzle, it is of considerable interest to 
develop computational tools that can predict their interactions, 
and assemble the puzzle [ 8 ]. Published predictions of protein–
RNA complexes with the use of computational methods include 
examples such as ribosomes at various functional stages [ 9 ], 
miRNA–target–Argonaute complexes [ 10 ], and the catalytic core 
of the spliceosome [ 11 ]. 

 Presently, the state of the art in our ability to  model   protein–
RNA interactions is however very limited. The binding often 
involves small differences in the free energy between the complex 
and the separated molecules when enveloped in the surrounding 
solvent environment. For example, at 27 °C,  a    binding   affi nity of 
 k  D  = 10 −9  (quite strong) yields roughly −12 kcal/mol. Since the 
number of contacts at the RNA–protein interface may only involve 
a dozen residue pairs, on average, each contact may contributes less 
than 1 kcal/mol to the binding free energy, which is comparable to 
thermal energies (about 0.6 kcal/mol at 27 °C). The binding ener-
gies involve the receptor–ligand interactions themselves, the entro-
pic effects of conformational change (particularly fl exing of the 
RNA), entropic effects due to the formation of the complex itself, 
and effects related to solvent interactions [ 12 ]. In the midst of these 
complexities, docking programs must fi nd some way through these 
uncertainties to model RNA–protein docking successfully. 

 In this tutorial, we perform two types of docking: bound and 
unbound. Bound docking involves disassembling a solved complex 
and attempting to put the pieces back together. Unbound docking 
involves starting with the independent crystallographic structures 
of the isolated molecules and attempting to assemble them. Clearly, 
the latter problem is more diffi cult because molecules are often 
somewhat plastic and tend to change shape to some extent upon 
binding. 

 For bound docking, we selected  E. coli  pseudouridine synthe-
tase TruB bound to the T stem-loop of the RNA [ 13 ] as the target 
complex. For unbound docking, we attempted a rather diffi cult 
problem of identifying the binding site of yeast aspartyl tRNA- 
synthetase (aaRS) with aspartyl-tRNA [ 14 ]. We show how starting 
with a limited amount of experimental information and the individ-
ual structures, one can fi lter decoys (mixtures of incorrect structural 
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poses amongst some correct poses) to obtain the approximate 
desired docking structure. Hence, the presentation should provide 
some rough idea of what one can expect of current docking meth-
ods, what sorts of strategies are required to get close (even remotely 
close), roughly what sorts of problems are likely to be encountered 
along the way and fi nally what directions the roads are likely to lead 
toward in the future.  

2     Nomenclature, Materials and Software 

   Here we introduce some docking terminology that will be used in 
the rest of this chapter.

 ●    Receptor–ligand: the larger structure is typically called  the 
  receptor and the smaller one the ligand. In many cases, since 
RNA is quite large when compared to many proteins, the RNA 
is considered the receptor. Nevertheless, this is not always the 
case as we shall also see.  

 ●   Decoy: docking programs can generate a large number of 
structures, many of which are typically far from the true struc-
ture. Such structures are often called “decoys”.  

 ●   Pose: a particular structural arrangement of the ligand with 
respect to  the   receptor.     

   The crystal structures for these complexes were downloaded from 
 the   Protein Data Bank (PDB) at   http://www.rcsb.org/     [ 15 ]. For 
the bound docking complex,  E. coli  pseudouridine synthetase TruB 
bound to the T stem-loop of RNA, we used PDB id 1K8W. For 
the unbound docking, the individual component of yeast aspartyl 
tRNA- synthetase (aaRS) and aspartyl-tRNA were used: PDB ids 
1EOV [ 16 ] and 3TRA [ 17 ], respectively. In this case, the solved 
crystal structure of the complex is available (PDB id 1ASY) and is 
used as the reference to validate the docking results. Because 1ASY 
is a dimer complex, the selected protein and RNA chains are A and 
R, respectively.  

   ModeRNA [ 18 ] is an open-source software package used for com-
parative modeling of RNA structures. The standalone version of 
ModeRNA (version 1.7.1) can be downloaded from   http://www.
genesilico.pl/moderna/download/     and runs on Windows (binary 
version) and Linux (source code). ModeRNA requires Python2.6 
or higher and BioPython libraries [ 19 ]. Alternatively, the 
ModeRNA  web   server [ 20 ] can be accessed from   http://iimcb.
genesilico.pl/modernaserver/    . Usage of the standalone version of 
ModeRNA is recommended for advanced users as it provides addi-
tional functionalities not available on the web server, such as multi-
template modeling and removing modifi ed nucleotides.  

2.1  Nomenclature

2.2  RNA–Protein 
Structures Used 
in This Study

2.3  ModeRNA

Protein-RNA Docking

http://www.rcsb.org/
http://www.genesilico.pl/moderna/download/
http://www.genesilico.pl/moderna/download/
http://iimcb.genesilico.pl/modernaserver/
http://iimcb.genesilico.pl/modernaserver/


356

   GRAMM [ 21 ] is a docking software package mainly developed for 
protein–protein docking, but also can be used to carry out pro-
tein–RNA docking. GRAMM is written in Fortran and can be 
installed on a variety of operating system platforms. The software 
comes with an executable fi le  gramm . The user must set the path 
for the environment variable  GRAMMDAT  to the directory con-
taining the data fi les used by GRAMM for docking. The stand-
alone version is available for download after fi lling out a short 
registration form at   http://vakser.compbio.ku.edu/main/
resources_gramm1.03.download.php    . GRAMM can also be 
accessed via a  web   server at    http://vakser.compbio.ku.edu/
resources/gramm/grammx/    ; however, the server currently is only 
set up to handle protein–protein docking.  

   Filtrest3D [ 22 ] is a freely available tool written in Python that 
helps score and/or rank 3D structures generated from a variety of 
other computational methods based on user-defi ned restraints 
obtained either from experimental data or computational predic-
tions. By employing additional experimental information to help 
fi lter out some of the decoys (false positives), Filtrest3D can aid in 
tertiary structure prediction, macromolecular docking, etc. The 
fi lters can be weighted according to user’s needs, where the default 
weight for any type of fi lter is 1.0. The user is advised to refer the 
online manual (  http://fi ltrest3d.genesilico.pl/readme.html    ) for 
details. A  web   server version of Filterest3D can also be accessed at 
  http://fi ltrest3d.genesilico.pl/fi ltrest3d/index.html    ; however, it 
is not able to handle a large number of structures (maximum fi le 
size < 100 Mb, roughly 1000 fi les). When fi ltering a realistic set of 
decoys, the standalone version of Filtrest3D is recommended, 
which can be downloaded at   http://genesilico.pl/software/
stand-alone/fi ltrest3d/    . It requires Python 2.3 or higher and 
BioPython libraries ≥ 1.41. The usage of fi ltering restraints such as 
secondary structure and solvent accessibility requires the installa-
tion of external third-party software such as STRIDE [ 23 ].  

   DARS-RNP [ 24 ] is a coarse-grained knowledge-based potential for 
scoring of protein–RNA complexes. The potential can be obtained from 
  http://genesilico.pl/software/stand-alone/statistical- potentials/    . 
It is a standalone program that requires Python 2.6 or higher, the 
BioPython library version ≥ 1.45 and Numpy.  

   NPDock [ 25 ] is a  web   server for predicting complexes of protein–
nucleic acid structures. It implements a computational workfl ow 
that includes rigid body docking (with GRAMM), scoring of poses 
(with DARS-RNP), clustering of the best-scored models, and 
refi nement of the most promising solutions. NPDock is available 
at   http://genesilico.pl/NPDock/     and provides a user-friendly 
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interface and 3D visualization of the results, without the diffi culties 
of extensive manual processing of the results. The smallest set of 
input data consists of a protein structure and an RNA structure in 
PDB format. Advanced options are available to control specifi c 
details of the docking process and obtain intermediate results. The 
user only needs to prepare  the   protein and RNA structure of inter-
est, submit it to the server, and, if desired, adjust some input 
parameters such as the number of decoys to generate.  

   All fi les used in the tutorial can be downloaded from   ftp://gene-
silico.pl/iamb/tutorial/     (fi le Protein-RNA docking tutorial.zip). 
 See   Note 1  for the versions of software used in this study.   

3    Methods 

 In this tutorial, we fi rst describe a bound docking approach using 
the NPDock  web   server (which is a relatively user friendly inter-
face) and second an unbound docking approach using manual 
methods (which grants the user more control over the parameters). 
The manual procedures are far more intricate and elaborate. 

       The downloaded PDB fi le often contains a variety of additional 
items in the crystal structure: for example, small molecules like 
water, sulfates, and nitrates that are used in the crystallization pro-
cess or precipitate with the molecule, ions like Na + , K + , or Cl −  that 
bind to the molecule in the crystal structure, and additional het-
eroatoms which are often unique to the particular process of crys-
tallization and are not typically required for docking. For 
protein–RNA docking, we are currently largely forced to focus 
on standard residues for the protein and RNA components, because 
there are few standardized conventions for naming the heteroat-
oms and there are a plethora of them, for which we have only a 
limited ability to model a few of them. Moreover, molecules like 
water (particularly in the unbound structures) can interfere with 
the docking process. Hence, all these additional items should be 
removed from the PDB fi les before using them for docking. 

 NPDock and GRAMM have been programmed to recognize 
only the PDB entries starting with the keyword “ATOM”; there-
fore, the user can submit the downloaded PDB structure as such. 
However, it is generally a good practice to prepare the separate 
protein and RNA fi les manually to be certain of what structure is 
being used. Therefore, we describe how to do this. 

 To prepare  the   protein structure fi le, this can be done using a 
structure visualization tool  like   PyMoL [ 26 ] or Chimera [ 27 ]. For 
this case study, open the protein fi le (1K8W.pdb) using PyMoL. 

2.8  Files
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The fi le contains both water and sulfate molecules that can be 
removed by executing the following command in the PyMoL com-
mand line: 
 PyMOL > remove resn SO4 + HOH 
  Remove: eliminated 309 atoms in model "1k8w". 
 PyMOL > save 1K8W.pdb 
  Save: wrote "1K8W.pdb". 

 As in the case of proteins, PDB fi les of RNA also contain many 
water molecules, ions, small molecules and modifi ed nucleotides. 
Although NPDock and GRAMM have some ability to recognize 
modifi ed bases, there are some docking programs that do not. It is 
very important to verify whether a modifi ed base plays a critical 
role in docking. In this case, fortunately, the matter turns out to be 
not so serious. Therefore, for the purpose of this illustration, we 
assume that these modifi ed nucleotides can be converted to their 
standard bases, without loss of information. Our lab has developed 
a tool called ModeRNA for comparative modeling of RNA struc-
tures, which also has a function for removing modifi cations from 
RNA structures. Using Python, execute the following commands 
to remove all heteroatoms and modifi cations from the RNA 
structure: 
 $python 
  >>>from moderna import * # requires moderna in the 
PYTHONPATH 
  >>>m = load_model('1K8W.pdb','B') # load chain B of 1K8W 
  >>>clean_structure(m) # remove all heteroatoms 
 Chain OK 
  >>>remove_all_modifi cations(m) # reformat to standard bases 
 >>>write_model(m,'na.pdb') # save the fi le 

 The execution of these commands results in a PDB fi le na.pdb 
containing the structural coordinates of RNA with the modifi ed 
nucleotides reverted back to standard bases. 

 In the case of automated docking using the NPDock  web 
  server, the modifi ed bases can be included for the docking calcula-
tion by renaming the HETATM columns in PDB fi le pertaining to 
the modifi ed residues to ATOM.  

   The bound docking is performed to reconstruct the geometry of a 
given protein–nucleic acid complex structure, where the starting 
point is the structure from a co-crystal; here a crystallographic 
structure containing both the RNA and the protein together. 
Bound docking is often performed to validate the accuracy of 
docking potentials in identifying native-like conformations, with-
out taking into consideration any conformational changes that 
occur in the two macromolecules in the unbound state. In this case 
study, we perform bound docking on  E. coli  pseudouridine synthase 

3.2  Bound Docking
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TruB bound to the T stem-loop of the RNA (PDB id 1K8W) using 
the NPDock web server. The steps involved in docking and identi-
fying native-like conformations are described below. 

    After executing the procedures outlined  in   Subheading  3.1 , navi-
gate to the server website   http://genesilico.pl/NPDock/     and 
click the  Submit your job  button and follow the steps described 
below for performing protein–RNA docking.

    1.    Near the top left-hand corner of the web page, enter the 
required job title (e.g., a name like ‘1K8W_test’) and option-
ally an e-mail address for receiving a link to access the results 
when the job is fi nished. Select the  RNA - protein  option under 
the docking tab to specify protein–RNA docking.   

   2.    Using the  Select fi le  button, upload the formatted PDB fi le 
1K8W.pdb for the protein and enter the chain ID as ‘A’ under 
the  Select Chains  option.   

   3.    Repeat  step 2  for the RNA and upload the formatted na.pdb 
fi le ( see  Subheading  3.1 ) and enter the chain ID as ‘B’ for the 
RNA chain under the  Select Chains  option.   

   4.    To sample 50,000 conformations, change the default value 
from 20,000 to 50,000.   

   5.    Leave the clustering and refi nement parameters for this case of 
docking as default values and click the  Submit  button to start 
the job.    

  The amount of time taken to fi nish a particular job depends on 
the size of the macromolecules, the number of decoys to be sam-
pled and other settings such as fi ltering criteria, clustering and 
refi nement parameters. Once the job is completed, a web page is 
displayed with the IDs of the top three refi ned models in PDB 
format, which are downloadable. The web page also provides a 
JSmol 3D visualization tool showing the best model and a steps-
vs-energy graph showing  the   Monte Carlo refi nement of the best 
model. Links to the downloadable structures considered in the 
clustering, the results of the clustering and the raw output fi les 
from the NPDock docking pipeline are also provided for the user 
to perform a more rigorous analysis, if desired. 

 To identify native-like structures from the sampled conforma-
tions, NPDock implements a clustering algorithm proposed by 
Baker and coworkers [ 28 ], used successfully  in    protein   structure 
prediction. The decoys are clustered based on geometrical similar-
ity. For a given set of docking decoys, the fi rst step is to create an 
all-against- all root-mean-square deviation (RMSD) matrix by cal-
culating the RMSD for all pairs of structures. Then, the row which 
has the highest number of RMSD values below a given threshold 
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(default, 5 Å cutoff) is considered to be the fi rst cluster and 
removed from the matrix. The process is repeated until the num-
ber of decoys in one cluster is less than fi ve. The three largest clus-
ters are then considered to be the candidates that contain native-like 
structures and often the lowest scoring decoys from the represen-
tative clusters are identifi ed as native-like. NPDock selects the low-
est scoring models from the three largest clusters as the best 
models.  

    Structural superposition is one of the most commonly used meth-
ods for assessing the quality of the docked models. If the structure 
of the native complex is available, then the docked model can be 
superimposed on the native complex. To evaluate the global simi-
larity, the RMSD provides a criterion for judging the accuracy of 
the fi t between the native and docked complex. One method of 
calculating the RMSD between the docked model and the experi-
mentally measured structure is to perform an optimal superposi-
tion of the receptors of the two structures using a macromolecular 
viewer such  as   PyMoL. Then one calculates the RMSD of selected 
atoms types in the ligand; often the heavy atoms (because the 
ligand is the RNA molecule, this would be the phosphorus atoms, 
for example). 

 To calculate the RMSD between the best model and the refer-
ence complex, download the fi rst model by clicking on its ID and 
superimpose it on the reference complex (1K8W), Fig.  1 . Now, 
calculate the RMSD of superposition for the ligand (or RNA in 
this case) using the method described previously. A sample script 
(run_pymol.py) for calculating RMSD is provided with this tuto-
rial. The value of superposition is found to be around 1.6 Å, imply-
ing that predicted conformation is very similar to the experimentally 
observed structure (the reference complex).

   To identify the position of the fi rst three clusters among the 
sampled conformations (as shown in Fig.  2 ), one must calculate 
the RMSD for all the decoys and plot it against the DARS scores 
in dars_out.txt fi le provided by  the   server in the list of raw output 
fi les.

       The unbound docking involves docking of independently solved 
structures of a protein and RNA to identify their correct mode(s) 
of binding in a given protein–RNA complex. The unbound dock-
ing is signifi cantly more diffi cult, because the starting point is 
structures in their unbound conformations and there are no reli-
able methods to predict conformational changes that happen dur-
ing the complex formation. For this case study of unbound 
docking, we perform docking on yeast aspartyl tRNA-synthetase 
(aaRS) with aspartyl- tRNA as the target. The independently solved 
crystal structures of both the protein and RNA can be downloaded 
from PDB with ids 1EOV and 3TRA, respectively. To validate the 

3.2.2  Comparison 
of the Docked Model 
to the Experimentally 
Observed Complex

3.3  Unbound 
Docking

Bharat Madan et al.



361

docking results, we use the solved structure for this complex (PDB 
id 1ASY; chains A and R for the protein and RNA, respectively), 
Fig.  3 . The steps involved in performing unbound docking and 
identifi cation of the native-like conformations are described in the 
following subsections.

  Fig. 1    Structural superposition of the best docking decoy on the reference com-
plex (PDB id 1K8W). The RNA of the reference complex and the best decoy is 
shown in  cyan  and  magenta , respectively       

  Fig. 2    Plot of the score vs RMSD for the bound docking decoys. The three largest 
clusters are shown in three different colors and symbols, with the fi rst, second, 
and third clusters in  red circles ,  green diamonds , and  blue squares , respectively       
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      The   protein structure fi le (1EOV.pdb) should be prepared in the 
same way as discussed in Subheading  3.1 . However, for the RNA 
structure fi le (3TRA.pdb), the reader should consider that the 
structure in 3TRA.pdb lacks the CCA tail at the 3′ end of the 
tRNA sequence. This is a biologically relevant part of tRNA and, 
as it turns out, this tail is also present in the reference structure 
(PDB id 1ASY). Since the protein–RNA interaction depends on 
this tail, it should be present and one should surmise that the addi-
tion of the CCA tail is necessary to correctly guide the docking of 
the RNA into the CCA binding domain of the protein. Hence, 
further processing of the RNA structure is required. 

 Appending the CCA tail can be done using the ModeRNA 
program. To add a short tail to the PDB structure, ModeRNA 
requires the 3D structure coordinates (from 3TRA.pdb) as a tem-
plate, and a user- defi ned sequence alignment between the target 
and the template. The alignment is constructed using a FASTA 
formatted fi le. For the fi rst sequence in the fi le, add the sequence 
“CCA” at the end of the original RNA sequence and label it as 
“Target”. Then, for the second sequence, align this new RNA 
sequence to the original sequence as shown below and save the 
alignment fi le in FASTA format as ‘alignment.fasta’: 
 >Target 
 UCCGUGAUAGUUUAAUGGUCAGAAUGGGCGCUUGUCGCGUGCCAGAUCG
GGGUUCAAUUCCCCGUCGCGGAGCCA 
 >3TRA template 
 UCCGUGAUAGUUUAAUGGUCAGAAUGGGCGCUUGUCGCGUGCCAGAUCGGGG
UUCAAUUCCCCGUCGCGGAG--- 

3.3.1  Preparation 
of Molecules to Be Docked

  Fig. 3    Schematic representation in ribbon form for the crystal structures of the reference complex used in 
unbound docking and its unbound protein and RNA components. ( a ) Reference complex (pdb id 1ASY; chains 
A and R for protein and RNA, respectively); ( b ) unbound protein (pdb id 1EOV); ( c ) unbound RNA (pdb id 3TRA)       
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 Since the target and the template contain exactly the same 
sequence (up to the CCA tail), ModeRNA copies all the atoms 
from the template to the target model and appends the short ter-
minal fragment to the RNA chain. ModeRNA is also able to per-
form more complex modeling such as modeling of insertions and 
deletions for which the user is advised to refer the manual. 

 To clean up the RNA fi le 3TRA and append the CCA tail, 
execute the following series of commands using Python: 
 $python 
 >>>from moderna import * 
 >>>t = load_template ('3TRA.pdb','A') 
 >>>clean_structure(t)# resets bases, removes HOH and Mg 
 Chain OK 
 >>>a = load_alignment('alignment.fasta') 
 >>>m = create_model(t,a) # add the CCA tail 
 >>>write_model(m,"complete_RNA.pdb") 

 This generates a PDB fi le complete_RNA.pdb containing the 
modeled structure of RNA with the CCA tail included (Fig.  4 ).

   Alternatively, one can carry out all the steps as in Subheading  3.1  
(for the RNA fi le) by replacing 1K8W.pdb with 3TRA.pdb and 
na.pdb with 3TRA_clean.pdb. Then, to append the CCA tail, the 
following command line statement can be used: 
 $python moderna.py -t 3TRA_clean.pdb -c A -a alignment.
fasta -o complete_RNA.pdb 

 where, “-t” specifi es the template structure, “-c” indicates the 
chain to be considered for modeling, “-a” identifi es the alignment 
fi le, and “-o” assigns the name of the output fi le. Finally, there is yet 
another alternative: using the  ModeRNA   server, submit (separately) 

  Fig. 4    Schematic representation of the modeled RNA with a CCA tail. The mod-
eled CCA tail is highlighted in  blue        
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the template and alignment fi les in the online submission form 
(  http://iimcb.genesilico.pl/modernaserver/submit/model/    ), 
and click the “Build Model” option to start processing the job and 
wait till the results are obtained.  

   For manual protein–RNA docking, we selected the GRAMM pro-
gram to generate decoy conformations. GRAMM treats the recep-
tor and ligand (here a protein and a RNA molecule, respectively) 
as rigid bodies and fi nds a geometric match between the two mol-
ecules by projecting the atoms on a 3D grid. The algorithm allows 
for softening the van der Waals interactions and permitting some 
degree of steric clashes that are expected to be alleviated by local 
conformational changes. 

   In the description of docking components, typically the larger mol-
ecule is  called   the “receptor” and the small one the “ligand.” In 
this example, the size of the RNA molecule is smaller compared to 
the protein; therefore, the RNA will be called the ligand and the 
protein the receptor. GRAMM requires the following fi les to per-
form docking:

 ●    rpar.gr—describes the docking parameters  
 ●   rmol.gr—provides the description of molecules to be docked  
 ●   wlist.gr—defi nes the IDs of the decoys to be extracted in PDB 

format.    

 For this case study, we perform docking in low resolution 
mode, as high resolution docking results in a large number of steric 
clashes between the protein and RNA. For this reason, select the 
potential range type as “grid_step” to implement low resolution 
docking and set the grid step radius to 3.1 Å, which is the lowest 
value allowed by the program for “low resolution”. The repulsion 
parameter is set to 10 Å and the attraction double range is set to 0. 
The ligand is allowed to rotate at an angle of 10° and a total of 
10,000 conformations are sampled. The following settings should 
be entered into the docking parameter fi le (rpar.gr): 

 Matching mode (generic/helix) ....................... mmode = generic 
 Grid step ............................................. eta =  3.1  
 Repulsion (attraction is always -1) .................... ro =  10 . 
 Attraction double range (fraction of single range) ..... fr = 0. 
 Potential range type (atom_radius, grid_step) ....... crang =  grid_step  
 Projection (blackwhite, gray) ........................ ccti = gray 
 Representation (all, hydrophobic) .................... crep = all 
 Number of matches to output .......................... maxm =  10000  
 Angle for rotations, deg (10,12,15,18,20,30, 0-no rot.)  ai = 10 

3.3.2  Manual Protein–
RNA Docking

 Protein–RNA Decoy 
Generation Using GRAMM
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 The boldface indicates the most important parameters to 
adjust for particular problems. The confi guration list is defi ned as 
follows:

 ●    mmode—defi nes the docking mode (generic or helix). The 
generic mode involves sampling for all the ligand’s positions 
and orientations. In the helix mode, GRAMM automatically 
discards poses with large displacements along the helix axes 
and angles larger than indicated in the rmol.gr fi le.  

 ●   eta—step of the grid  
 ●   ro—repulsion parameter  
 ●   fr—attraction double range, used in high resolution docking.  
 ●   crang—“atom_radius” implies high resolution docking (pro-

jection of a sphere with van der Waal radius) and “grid_step” 
implies docking under lower resolution  

 ●   ccti—cumulative projection (“gray”) is generally used in low 
resoluation docking, yes-no (“blackwhite”) is often used in 
high resolution docking  

 ●   crep—switch to hydrophobic docking: in this case, it should 
always be “all”  

 ●   maxm—number of output structures  
 ●   ai—angle of rotation for search through rotational 

coordinates    

 These settings may vary for docking of different protein–RNA 
complexes. Therefore, it is advised to experiment with different 
combinations of parameters to obtain the best settings for docking 
of different complex structures. 

 The parameters of the rmol.gr fi le, which provides the infor-
mation of molecules to be docked, are shown below. 
  # Filename Fragment ID Filename Fragment ID (paral/anti max.ang) 
 #------------------------------------------------------------- 
 1EOV.pdb * prot complete_RNA.pdb * na 

 Here, the usage of the asterisk (*) under the Fragment head-
ing indicates that the entire molecule is used for docking. The user 
should remember that only lines with the fi rst word “ATOM” are 
taken into consideration by GRAMM. GRAMM also accepts a 
specifi ed fragment or region of a molecule for docking. Additionally, 
the chain ID (in capitals) can also be specifi ed if docking has to be 
performed for a particular chain. GRAMM considers the fi rst mol-
ecule as  the   receptor and the second molecule as the ligand. The 
ID of each fragment is used by GRAMM to name the output 
fi le (with extension *.res). For example, in this case the name of 
output fi le generated by the docking simulation will be prot-na.res. 
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 In order to start the conformational search with GRAMM, use 
the command: 
 > gramm scan 

 This may take quite some time depending on the computa-
tional power of the system used for docking. It took 36 min on a 
machine with 24 processors (clock speed 2.8 GHz) and 24 GB 
RAM and running Ubuntu 14.04.1. The completion of the con-
formational search generates the prot-na.res fi le, which contains 
information about the 10,000 sampled conformations. 

 To extract the coordinates of each decoy in PDB format, 
GRAMM requires the wlist.gr fi le, which provides information 
about the poses to be extracted from the output fi le. The parame-
ters of the wlist.gr fi le are shown below: 
  #File_of_predictions First_match Last_match separate/

joint + init_lig 
 #-------------------------------------------------------------------------------------- 
 prot-na.res 1 1000 separ no 

 where prot-na.res is the output fi le containing the information 
about the docked complexes. The headings “First_match” and 
“Last_match” denote the id of the decoys to be generated and 
“separate/joint” indicates whether the fi les should be extracted 
separately for each decoy or combined in a single fi le. The last col-
umn heading “+init_lig” specifi es whether the initial conformation 
of the ligand should also be extracted together with each of the 
sampled conformations or not. 

 To extract the coordinates, execute the following command: 

 >gramm coord 

  See   Note 2  regarding extracting structures using this command.  

   In a docking simulation, it is very important to obtain a representa-
tive distribution of the actual conformations, particularly those 
that lie in the region of the docking site. This will allow the cluster-
ing procedure to select the confi guration that is also representative 
of the distribution that is actually found. However, it is often the 
case that the target interface is not easily recognized and the results 
of the docking simulation needs some further processing or help. 

 GRAMM generates a large number of conformations of the 
protein and RNA components where some of the poses of the 
RNA–protein complex may involve binding interactions that are 
very far away from the correct docking site. In order to obtain 
decoys with a reasonable native-complex-like geometry, it is advised 
to remove the obviously nonnative or unreasonable structures 
using some fi ltering criteria. The fi ltering criteria can be any infor-
mation which can be obtained either from experimental data or 
from computational predictions. For instance, in this example, we 
know the CCA binding region and anticodon binding residues from 

 Decoy Filtering According 
to Restraints
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the solved crystal structure of the complex. We use these restraints 
to fi lter native-like decoys from all docked conformations. 

 For fi ltering, we use Filtrest3D. The general syntax for defi n-
ing any type of restraint is: 
 Restraint_type_name ( 
 Restraint_declaration 
 ..... 
 ) 

 For the case of protein–RNA docking presented herein, we 
select the distance restraints for ranking of the decoys. We retain 
decoys in which the aaRS binds the anticodon loop with the anti-
codon binding domain, and the CCA tail with the catalytic domain, 
defi ned by two protein–RNA distance restraints: Gln138-U35 and 
Glu478-A75, respectively. For both these pairs we defi ne the 
required distance as less than or equal to 16 Å. The decoys for 
which the sum of squares of deviations from a 16 Å cutoff is less 
than 80 are retained for further analysis. The parameters used in 
the restraint fi le (fi lter.fi ltrest) for fi ltering are as follows: 
 dist ( 
 E478_near_A75: (E478) "A"-(A75) "B" (<=16) 
 Q138_near_U35: (Q138) "A"-(U35) "B" (<=16) 
 ) 

 where,

 ●    dist indicates a distance based type of restraint  
 ●   E478_near_A75 is the name of the restraint for the amino 

acid- nucleic acid pair E478-A75 in chains A and B, 
respectively.  

 ●   (<=16) specifi es that the distance between any of the closest 
atoms between residues E784 and A75 should be less than or 
equal to 16 Å.    

 To fi lter the decoys using the above defi ned restraints, execute 
the following command. 
 $python fi ltrest3d.py --restraints fi lter.fi ltrest \ 
 --dirfi le ./structures/str_list.txt > fi ltrest_result.out 

 where “--restraints” specifi es the restraint fi le, “--dirfi le” indi-
cates the path to fi le with list of structures to be fi ltered. The output 
is written to a fi le “fi ltrest_result.out”.  See   Note 3  for Filterest3D, 
if any errors are encountered. 

 Out of 10,000 decoys, 19 decoys are found to fulfi ll the fi lter-
ing restraints.  

   The next step of the docking procedure after sampling the confor-
mations is to discriminate near-native structures. An ideal docking 
method should combine both sampling and scoring of decoys to 
identity near-native structures of protein–RNA complexes. 

 Scoring of Decoys 
Using the DARS-RNP 
Potential

Protein-RNA Docking
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Unfortunately, GRAMM does not have a scoring function for 
protein–RNA complexes; therefore, we must use an external scor-
ing function to identify near-native structures from the decoys 
generated using GRAMM. 

 Our team has developed a scoring potential for protein–RNA 
complexes called DARS-RNP [ 24 ] that has performed well in 
identifying near native decoys compared to the other potentials 
available for scoring protein–RNA decoys. To score the fi ltered 
decoys using the DARS-RNP potentials refer to the next Section.  

   If the number of “promising” structures (such as those selected by 
fi ltering) is large, say more than 50, it is generally advised to per-
form clustering to identify the largest set of similar conformations 
that approximate the most likely solution of the docking problem. 
For clustering, we use a 10 Å RMSD cutoff, as outlined at the end 
of Subheading  3.2.1 , and we use the DARS_potential_v3.py 
script for scoring the decoys, which also clusters the best scored 
decoys (that in this case are the fi ltered structures). To perform 
scoring and  clustering using the DARS_potential_v3.py script, 
execute the following command. 
 $python DARS_potential_v3.py -f list.txt -m 19 -c 
10 > DARS.out 

 where, “-f” specifi es the fi le containing the list of structures to 
be scored, “-m” denotes the number of structures considered for 
clustering and “-c” indicates the RMSD cutoff for clustering (10 
Å). The output is written to the fi le “DARS.out”.  See   Note 4  for 
the correct way of running DARS_potential_v3.py script, if errors 
are encountered. 

 This results in two clusters with the fi rst (largest) cluster con-
taining eight structures and the second with fi ve structures. Open 
all 13 complexes  in   PyMoL to visualize the conformations of RNA 
of the two clusters (Fig.  5 ). Choose the fi rst cluster to identify the 
near native-like docked conformation and select the lowest scoring 
decoy from this cluster as the fi nal docked model.

      To assess the accuracy of the docked complex, superimpose the 
best docked model on the reference complex (Fig.  6 ). It can be 
clearly seen that the selected RNA pose, as well as all eight struc-
tures from the fi rst cluster bind in a similar way to the RNA in the 
reference structure. However the CCA tail still does not manage to 
get close enough to dock into CCA binding domain of the protein. 
Now examine the position of the RNA in the structures present in 
the second cluster (Figs.  5  and  6 ). It is clearly visible that in addi-
tion to the CCA tail, which does not dock correctly in the CCA 
domain of protein, the anticodon binding loops of RNA in all fi ve 
structures of the second cluster are positioned away from the bind-
ing site.

 Selection of the Most 
Promising Complex Model

 Comparison of the Docked 
Model to the Experimentally 
Solved Structure
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  Fig. 5    Schematic representation of the conformations of RNA from the two largest clusters. The tRNAs from the 
fi rst and second largest clusters are shown in  magenta  and  red  colors, respectively       

  Fig. 6    Superimposed structures of the lowest scoring decoy on the reference 
complex. The protein and RNA of the reference complex is shown in  gray  and 
 cyan , respectively. The protein and RNA of the lowest scoring decoy is shown in 
 blue  and  magenta , respectively       

 

 



370

   The RMSD of the structural superposition, calculated using 
the method described in Subheading  3.2.2 , was found to be 9.8 Å 
for this complex. This value indicates a much larger deviation from 
the reference complex than in the case of the bound docking 
example described earlier. One of the ways to further improve the 
quality of the docked model is to perform fl exible optimization, for 
instance using Molecular Dynamics with a physics-based force fi eld 
[ 29 ,  30 ], which may improve the quality of the model. However, 
such optimization is not trivial and requires extensive preparation 
of the system to be analyzed as well as complicated analysis of the 
results, which is out of the scope of this chapter.    

   The methods used in this study exhibit the use of computational 
methods to predict how protein and RNA molecules with known 
structures form protein–RNA complexes. We demonstrated the use 
of a  web   server NPDock for a fully automated protein–RNA com-
plex structure modeling and the use of a workfl ow of various tools 
for a more elaborate docking, analyzing the docking results and 
obtaining the most promising model. Both bound and unbound 
docking exercises are presented for the user to understand the steps 
involved in performing docking for a given pair of protein and RNA 
components. This tutorial also explains various problems which can 
be encountered during the docking procedure and suggests the 
implementation of certain methods to overcome such problems. 
The analysis of the docked models in unbound docking highlights 
the inadequacy of the docking algorithms in sampling native-like 
conformations and calls for the development of better tools and 
algorithms for fl exible macromolecular docking.   

4    Notes 

     1.    The exercises described in this tutorial were performed on a 
computer running Ubuntu 14.04.1 with installed Python and 
Biopython version 2.7.6 and 1.63, respectively. This tutorial 
uses the latest version of the all software mentioned in 
Subheading  2 , available during the preparation of this 
manuscript.   

   2.    The “gramm scan” command can extract only 1000 structures 
at a time, which means the user has to repeatedly edit the wlist.
gr fi le to extract all 10,000 structures. To automate this pro-
cess, we have provided a sample Perl script (extract_GRAMM.
pl) which can be modifi ed accordingly.   

   3.    The user may encounter some problems while using Filtrest3D, 
as the program was written using old Biopython libraries. For 
this, we have provided the fi les which should be replaced, if 
errors are encountered.   

3.4  Summary
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   4.    The “-v” switch can be used to specify the version of Biopython 
used while using DARS_potential_v3.py script for scoring 
and clustering. This will save the user from running into errors, 
particularly in cases where this tutorial is run on a machine 
with installed Biopython version ≥ 1.45.         
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