
Computational
Design of
Ligand Binding
Proteins

Barry L. Stoddard Editor

Methods in
Molecular Biology 1414

 M E T H O D S I N M O L E C U L A R B I O L O G Y

 Series Editor
 John M. Walker

 School of Life and Medical Sciences
 University of Hertfordshire

 Hatfield, Hertfordshire, AL10 9AB , UK

 For further volumes:
 http://www.springer.com/series/7651

http://www.springer.com/series/7651
http://www.springer.com/series/7651

 Computational Design of Ligand
Binding Proteins

 Edited by

 Barry L. Stoddard

Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA

 ISSN 1064-3745 ISSN 1940-6029 (electronic)
 Methods in Molecular Biology
 ISBN 978-1-4939-3567-3 ISBN 978-1-4939-3569-7 (eBook)
 DOI 10.1007/978-1-4939-3569-7

 Library of Congress Control Number: 2016937968

 © Springer Science+Business Media New York 2016
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
 The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed
to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

 Printed on acid-free paper

 This Humana Press imprint is published by Springer Nature
 The registered company is Springer Science+Business Media LLC New York

 Editor
 Barry L. Stoddard
 Division of Basic Sciences
 Fred Hutchinson Cancer Research Center
 Seattle , Washington , USA

v

 Introduction: Design and Creation of Ligand-Binding Proteins

 The appropriate balance of ligand binding affi nity and specifi city is a fundamental feature of
most if not all biological processes, including immune recognition, cellular metabolism,
regulation of gene expression, and cell signaling. The ability to accurately predict and reca-
pitulate the physical basis for ligand binding behavior is therefore a crucial part of under-
standing and manipulating such biological phenomena. It also represents a critical technical
requirement in the reciprocal fi elds of drug design and protein engineering.

 This book provides a collection of protocols and approaches, compiled and described
by many of today’s leaders in the fi eld of protein engineering, that they apply to the prob-
lem of creating ligand-binding proteins that display desirable combinations of target affi nity
and specifi city. The descriptions provided by each chapter’s authors also provide a snapshot
of their current “belief system” regarding the challenging problem of protein engineering
and design, as it is applied to the creation of novel ligand binding functions.

 The problem of how to effectively engineer novel binding properties onto protein scaf-
folds, and how to do so while exploiting the information that is provided by high- resolution
protein structures, has been under investigation for almost 40 years if not longer. Such
efforts date back at least to the design of small folded peptides and proteins capable of bind-
ing individual nucleosides and single-stranded DNA, followed by subsequent attempts to
generate additional ligand binding functions using various protein scaffolds (see Refs. [1, 2]
for early examples of such work). By the early 1990s, some of the fi rst computational algo-
rithms intended to design novel ligand binding sites into proteins of known structure had
been described [3], and the fi eld of structure-based protein engineering as it is known
today was underway.

 Although the fi eld of protein engineering, including the specifi c problem of designing
novel ligand binding capabilities onto engineered protein folds, now comprises an extensive
and growing publication record, signifi cant challenges regarding the accurate calculation or
prediction of protein–ligand binding affi nities (even when provided a high-resolution struc-
ture of the actual complex) still represent signifi cant hurdles to the fi eld’s advancement.
For example:

 ● Several recent studies have demonstrated that current methods for structure-based
calculation of binding affi nities display variable accuracies. At least three broad (and
somewhat overlapping) classes of scoring functions for predicting binding affi nities
from high-resolution structures have been developed: force - fi eld (formulated by calcu-
lating the individual energetic contributions of physical interactions between the pro-
tein and ligand) [4, 5], knowledge - based (produced by statistical mining of large
databases of protein–ligand structures to deduce rules and models that govern binding
affi nity) [6–9], and empirical (in which binding energy is calculated to be a product of
a collection of weighted energy terms fi t to a training data set of known binding affi ni-
ties, with the weighting coeffi cients calculated via linear regression analyses) [10–14].
Even with all these tools, the accuracy of many methods that are intended to calculate
structure-based binding affi nities (as well as the ability to identify and rank the most
tightly bound ligands to a given protein) has been shown to often be somewhat poor

 Pref ace

vi

[15–17], leading to the conclusion by one group that “more precise chemical descrip-
tions of the protein–ligand complex do not generally lead to a more accurate predic-
tion of binding affi nity” [17]. Therefore, the reliable prediction of affi nity remains a
signifi cant challenge in biophysical chemistry [15].

 ● Even for the most thoroughly studied of ligand-binding proteins, the basis for tight,
specifi c binding is not well understood. For example, avidin and streptavidin exhibit
some of the highest known affi nities to their cognate molecular ligand (Ka ~ 10 15 M −1).
Over 20 years of studies on these proteins have produced a wide range of hypotheses
regarding their high affi nities, including exceptional shape complementarity across a
stabilized network of hydrophobic side chains and precisely arranged hydrogen bond
partners [18], the precisely tuned dynamic behavior of the protein [19], a large free
energy benefi t upon ligand binding due to the strengthening of noncovalent interac-
tions within the protein scaffold [20], or the induction of polarized moieties within the
bound complex that create a cooperative effect between neighboring hydrogen bonds
[21]. Not surprisingly, attempts to engineer altered binding properties onto avidin or
streptavidin have yielded constructs with unexpected and unpredictable properties [22].

 ● Attempts to computationally engineer novel ligand-binding proteins have either been
unsuccessful [23, 24] or have produced computationally designed constructs that dis-
play low affi nities. Optimization of those designed proteins has then required laborious
rounds of random mutagenesis and affi nity maturation [25, 26].

 The sources of error in calculating and modeling protein–ligand binding interactions
and affi nities are myriad, and their relative importance is still not entirely clear. These
include: (1) Inaccuracies in the treatment of solvent and desolvation effects during binding
[27–29]. (2) Limited consideration of protein dynamics [30–32]. (3) Diffi culties incorpo-
rating the contribution of entropic changes into calculations of binding energies, leading to
examples where modifi cations of ligand binding sites that lead to favorable enthalpic gains
are confounded by substantial losses in entropy, with no improvement in overall binding
affi nity (recently reviewed extensively in Ref. [33]). Even for the most straightforward
aspect of a protein–ligand interface (i.e., the observation of direct interatomic interactions
and corresponding estimation of their enthalpic contributions to binding), uncertainties
exist regarding interatomic distance cutoffs [17] and best strategies for estimating charge
and protonation states [34].

 Therefore, the creation of novel ligand-binding proteins that display tight binding
affi nity to their desired target and that also can discriminate between closely related targets
remains an important goal, but is plagued by rather poor understanding of how to accu-
rately calculate binding affi nities or predict binding specifi city, even when armed high struc-
tural information of protein–ligand complexes. As a result, the creation of highly specifi c
ligand-binding proteins with high affi nity remains extremely challenging and generally
requires a substantial investment of time and effort to identify designed protein scaffolds
that are actually active, and then to manually optimize their behavior. Nevertheless, studies
from groups around the world have recently demonstrated that engineered proteins can,
with considerable effort, be created that perform as desired, even in highly demanding
in vivo applications. In this book, a series of 21 author groups present individual chapters
that describe, in considerable detail, the types of overall thought processes and approaches,
as well as very detailed computational and/or experimental protocols, that are used in their
research groups as they attempt to address and resolve the diffi culties associated with the
design and creation of engineered ligand-binding proteins.

Preface

vii

 The reader will fi nd a wide variety of technical issues and variables described in this
volume. The fi rst three chapters are largely concerned with a fundamental challenge that
precedes actual protein engineering: identifying, characterizing, and modeling protein–
ligand binding sites and predicting their corresponding modes and affi nities of molecular
interaction. Various strategies are shown to rely on both sequence-based and structure-
based methods of analysis, and often utilize evolutionary information to determine the rela-
tive importance of positions within individual protein scaffolds that are important for form
and function. With the development of controlled, blind binding site prediction challenges
within the protein informatics and design community, the number of methods available to
perform such analyses has exploded, as summarized in Chapter 2 . Virtually all structure-
based methods for binding site evaluation rely on accurate modeling of protein–ligand
conformational sampling and scoring of individual docked solutions, which is further dis-
cussed in Chapters 3 and 4 .

 Beyond the basic ability to identify and model protein–ligand binding sites and their
interactions, the fi eld of protein engineering also now has at its disposal a number of increas-
ingly powerful and robust computational platforms for structure-based engineering, includ-
ing the widely used and rapidly evolving ROSETTA program suite as well as other programs
such as POCKETOPTIMIZER and PROTEUS. Many of the fundamental features of these
computational program suites, as well as individual examples of their utility and application
for the design of a protein binding site for a defi ned small molecular ligand, are found in
Chapters 5 through 7 .

 The output of even the most powerful structure-based computational design algorithms
is usually augmented by considerable experimental time and effort, generally consisting of
the preparation of combinatorial protein libraries or the systematic generation of large num-
bers of individual protein mutants on top of designed protein constructs, which are then
subjected to selections or screens for optimal activity. While the ultimate goal of protein
design is to eliminate the need for such manual intervention and effort, at this time many
strategies for protein design involve combining information from computational design to
the subsequent creation and screening of protein mutational libraries. Several examples of
such approaches, which have resulted in particularly notable recent successes in protein engi-
neering and the creation of designed ligand-binding proteins’, are outlined and described in
Chapters 8 – 10 and can then be found at various points within the remaining chapters.

 Finally, the exact technical hurdles and necessary approaches required for the creation
of ligand-binding proteins obviously are dependent upon the chemical and structural nature
of the ligand to be recognized and bound with high affi nity and specifi city. The remaining
12 chapters describe a variety of specifi c scenarios and methodological approaches, ranging
from the design of metal-binding proteins and light-induced ligand-binding proteins, to
the creation of binding proteins that also display catalytic activity, to binding of larger pep-
tide, protein, DNA, and RNA ligands.

 The continued development of approaches to design and create ligand-binding pro-
teins, beyond enabling the creation of unique protein-based reagents and molecules for
biotechnology and medicine, will continue to test and refi ne the ability of modern biophysi-
cal chemistry to fundamentally understand and exploit the forces and principles that drive
molecular recognition. The behaviors and properties of designed ligand-binding proteins
resulting from the types of methods described in this book (including the “failures”—those
constructs that fail to bind their intended targets and those that bind to unintended ligands)
will eventually be explained by systematically examining their structures and properties. As
has been famously attributed to Richard Feynman, “That which I cannot create, I do not

Preface

http://dx.doi.org/10.1007/978-1-4939-3569-7_2
http://dx.doi.org/10.1007/978-1-4939-3569-7_3
http://dx.doi.org/10.1007/978-1-4939-3569-7_4
http://dx.doi.org/10.1007/978-1-4939-3569-7_5
http://dx.doi.org/10.1007/978-1-4939-3569-7_7
http://dx.doi.org/10.1007/978-1-4939-3569-7_8
http://dx.doi.org/10.1007/978-1-4939-3569-7_10

viii

 1. Gutte B, Daumigen M, Wittschieber E (1979)
Design, synthesis and characterisation of a
34-residue polypeptide that interacts with
nucleic acids. Nature 281:650–655

 2. Moser R, Thomas RM, Gutte B (1983)
Artifi cial crystalline DDT-binding polypeptide.
FEBS 157:247–251

 3. Hellinga HW, Richards FM (1991)
Construction of new ligand binding sites in
proteins of known structure. I. Computer-
aided modeling of sites with pre-defi ned geom-
etry. J Mol Biol 222:763–785

 4. Huang N, Kalyanaraman C, Bernacki K et al.
(2006) Molecular mechanics methods for pre-
dicting protein-ligand binding. Phys Chem
Chem Phys 8: 5166–5177

 5. Ewing T, Makino S, Skillman A et al. (2001)
DOCK 4.0: Search strategies for automated
molecular docking of fl exible molecule data-
bases. J Comut Mol Des 15:411–428

 6. Gehlhaar DK, Verkhivker GM, Rejto PA et al.
(1995) Molecular recognition of the inhibitor
AG-1343 by HIV-1 protease: conformation-
ally fl exible docking by evolutionary program-
ming. Chem Biol 2: 317–324

 7. Muegge I, Martin Y (1999) A general and fast
scoring function for protein-ligand interac-
tions: a simplifi ed potential approach. J Med
Chem 42: 791–804

 8. Mooij W, Verdonk M (2005) General and tar-
geted statistical potentials for protein-ligand
interactions. Proteins 61: 272–287

 9. Hohlke H, Hendlich M, Klebe G (2000)
Knowledge-based scoring function to predict
protein-ligand interactions. J Mol Biol 295:
337–356

 10. Bohm H (1994) The development of a simple
empirical scoring function to estimate the
binding constant for a protein-ligand complex
of known three-dimensional structure. J
Comput Mol Des 8: 243–256

 11. Eldridge M, Murray C, Auton T et al. (1997)
Empirical scoring functions: the development
of a fast empirical scoring function to estimate
the binding affi nity of ligands in receptor com-
plexes. J Comput Aid Mol Des 11: 425–445

 12. Friesner R, Al E (2004) Glide: a new approach
for rapid, accurate docking and scoring. J Med
Chem 47: 1739–1749

 13. Krammer A, Kirchhoff P, Jiang X et al. (2005)
LigScore: a novel scoring function for predicting

binding affi nities. J Mol Graphics Model 23:
395–407

 14. Wang R, Lai L, Wang S (2002) Further devel-
opment and validation of empirical scoring
functions for structure-based binding affi nity
prediction. J Comput Mol Des 16: 11–26

 15. Ross G, Morris G, Biggin P (2013) One size
does not fi t all: the limits of structure-based
models in drug discovery. J Chem Theory
Comput 9: 4266–4274

 16. Ashtawy H, Mahapatra N (2012) A compara-
tive assessment of ranking accuracies of con-
ventional and machine-learning-based scoring
functions for protein-ligand binding affi nity
prediction. IEEE/ACM Trans Comput Biol
Bioinform 9: 1301–1312

 17. Ballester P, Schreyer A, Blundell T (2014)
Does a more precise chemical description of
protein-ligand complexes lead to more accu-
rate prediction of binding affi nity? J Chem
Inform Model 54: 944–955

 18. Livnah O, Bayer EA, Wilchek M et al. (1993)
Three-dimensional structures of avidin and the
avidin-biotin complex. Proc Natl Acad Sci U S
A 90: 5076–5080

 19. Trong I, Wang Z, Hyre D et al. (2011)
Streptavidin and its biotin complex at atomic
resolution. Acta Crystallogr D Biol Crystallogr
67:813–821

 20. Williams D, Stephens E, O’brien D et al.
(2004) Understanding noncovalent interac-
tions: ligand binding energy and catalytic effi -
ciency from ligand-induced reductions in
motion within receptors and enzymes. Angew
Chem Int Ed Engl 43:6596–6616

 21. Dechancie J, Houk K (2008) The origins of
femtomolar protein–ligand binding: hydrogen
bond cooperativity and desolvation energetics
in the biotin–(strept)avidin binding site. JACS
129: 5419–5429

 22. Aslan FM, Yu Y, Mohr SC et al. (2005)
Engineered single-chain dimeric streptavidins
with an unexpected strong preference for
biotin- 4- fl uorescein. Proc Natl Acad Sci U S A
102: 8507–8512

 23. Schreir B, Stumpp C, Wiesner S et al. (2009)
Computational design of ligand binding is not
a solved problem. Proc Natl Acad Sci U S A
106: 18491–18496

 24. Looger L, Dwyer M, Smith J et al. (2003)
Computational design of receptor and sensor

understand.” The following volume provides detailed (although by no means complete and
total) examples of the current approaches and methods by which the protein engineering
and design community attempt to do both.

 Seattle, WA, USA Barry L. Stoddard

 References

Preface

http://www.ncbi.nlm.nih.gov/pubmed/?term=Trong+I,+Wang+Z,+Hyre+D+et+al.+(2011)+Strepavidin+and+its+biotin+complex+at+atomic+resolution.+Acta+Cryst+D+67:813+-+821#Acta crystallographica. Section D, Biological crystallography.

ix

proteins with novel functions. Nature 423:
185–190

 25. Procko E, Berguig G, Shen B et al. (2014) A
computationally designed inhibitor of an
Epstein-Barr viral Bcl-2 protein induces apop-
tosis in infected cells. Cell 157: 1644–1656

 26. Tinberg CE, Khare SD, Dou J et al. (2013)
Computational design of ligand-binding pro-
teins with high affi nity and selectivity. Nature
501: 212–216

 27. Leach A, Shoichet B, Peishoff C (2006)
Prediction of protein-ligand interactions.
Docking and Scoring: successes and gaps.
J Med Chem 49: 5851–5855

 28. Schneider G (2010) Virtual screening: an end-
less staircase? Nat Rev Drug Discov 9: 273–276

 29. Huang S, Grinter S, Zou X (2010) Scoring
functions and their evaluation methods for
protein-ligand docking: recent advances and

future directions. Phys Chem Chem Phys 12:
12899–12908

 30. Michel J, Esses J (2010) Prediction of protein-
ligand binding affi nity by free energy simula-
tions: assumptions, pitfalls and expectations.
J Comput Aid Mol Des 24: 639–658

 31. Mobley D (2012) Let’s get honest about sam-
pling. J Comput Aid Mol Des 26: 93–95

 32. Guvench O, Mackerell A (2009) Computational
evaluation of protein-small molecule binding.
Curr Opin Struct Biol 19: 56–61

 33. Chodera J, Mobley D (2013) Entropy- enthalpy
compensation: role and ramifi cation in biomo-
lecular ligand recognition and design. Ann Rev
Biophys 42: 121–142

 34. Rocklin GJ, Boyce SE, Fischer M et al. (2013)
Blind prediction of charged ligand binding
affi nities in a model binding site. J Mol Biol
425: 4569–4583

Preface

xi

 Preface. v
 Contributors . xiii

 1 In silico Identification and Characterization of Protein- Ligand Binding Sites . . 1
 Daniel Barry Roche and Liam James McGuffin

 2 Computational Modeling of Small Molecule Ligand Binding Interactions
and Affinities. 23
 Marino Convertino and Nikolay V. Dokholyan

 3 Binding Site Prediction of Proteins with Organic Compounds
or Peptides Using GALAXY Web Servers . 33
 Lim Heo , Hasup Lee , Minkyung Baek , and Chaok Seok

 4 Rosetta and the Design of Ligand Binding Sites . 47
 Rocco Moretti , Brian J. Bender , Brittany Allison , and Jens Meiler

 5 PocketOptimizer and the Design of Ligand Binding Sites 63
 Andre C. Stiel , Mehdi Nellen , and Birte Höcker

 6 Proteus and the Design of Ligand Binding Sites . 77
 Savvas Polydorides , Eleni Michael , David Mignon , Karen Druart ,
 Georgios Archontis , and Thomas Simonson

 7 A Structure-Based Design Protocol for Optimizing Combinatorial
Protein Libraries . 99
 Mark W. Lunt and Christopher D. Snow

 8 Combined and Iterative Use of Computational Design
and Directed Evolution for Protein–Ligand Binding Design 139
 Meng Wang and Huimin Zhao

 9 Improving Binding Affinity and Selectivity of Computationally
Designed Ligand-Binding Proteins Using Experiments 155
 Christine E. Tinberg and Sagar D. Khare

 10 Computational Design of Multinuclear Metalloproteins
Using Unnatural Amino Acids . 173
 William A. Hansen , Jeremy H. Mills , and Sagar D. Khare

 11 De Novo Design of Metalloproteins and Metalloenzymes
in a Three-Helix Bundle . 187
 Jefferson S. Plegaria and Vincent L. Pecoraro

 12 Design of Light-Controlled Protein Conformations and Functions 197
 Ryan S. Ritterson , Daniel Hoersch , Kyle A. Barlow , and Tanja Kortemme

 13 Computational Introduction of Catalytic Activity into Proteins 213
 Steve J. Bertolani , Dylan Alexander Carlin , and Justin B. Siegel

 Contents

xii

 14 Generating High-Accuracy Peptide-Binding Data in High Throughput
with Yeast Surface Display and SORTCERY . 233
 Lothar “Luther” Reich , Sanjib Dutta , and Amy E. Keating

 15 Design of Specific Peptide–Protein Recognition . 249
 Fan Zheng and Gevorg Grigoryan

 16 Computational Design of DNA-Binding Proteins . 265
 Summer Thyme and Yifan Song

 17 Motif-Driven Design of Protein–Protein Interfaces . 285
 Daniel-Adriano Silva , Bruno E. Correia , and Erik Procko

 18 Computational Reprogramming of T Cell Antigen
Receptor Binding Properties . 305
 Timothy P. Riley , Nishant K. Singh , Brian G. Pierce , Brian M. Baker ,
and Zhiping Weng

 19 Computational Modeling of T Cell Receptor Complexes. 319
 Timothy P. Riley , Nishant K. Singh , Brian G. Pierce , Zhiping Weng ,
and Brian M. Baker

 20 Computational Design of Protein Linkers . 341
 Brian Kuhlman , Tim Jacobs , and Tom Linskey

 21 Modeling of Protein–RNA Complex Structures Using Computational
Docking Methods . 353
 Bharat Madan , Joanna M. Kasprzak , Irina Tuszynska , Marcin Magnus ,
 Krzysztof Szczepaniak , Wayne K. Dawson , and Janusz M. Bujnicki

Index . 373

Contents

xiii

 BRITTANY ALLISON • Department of Chemistry , Vanderbilt University , Nashville , TN , USA;
 Center for Structural Biology , Vanderbilt University , Nashville , TN , USA
 GEORGIOS ARCHONTIS • Theoretical and Computational Biophysics Group,

Department of Physics , University of Cyprus , Nicosia , Cyprus
 MINKYUNG BAEK • Department of Chemistry , Seoul National University , Seoul ,

 Republic of Korea
 BRIAN M. BAKER • Department of Chemistry and Biochemistry and the Harper Cancer

Research Institute, University of Notre Dame, South Bend IN USA
 KYLE A. BARLOW • Graduate Program in Bioinformatics, California Institute for

Quantitative Biomedical Research, and Department of Bioengineering and
Therapeutic Sciences , University of California, San Francisco , San Francisco , CA , USA

 BRIAN J. BENDER • Department of Chemistry , Vanderbilt University , Nashville , TN , USA;
 Department of Pharmacology , Vanderbilt University , Nashville , TN , USA

 STEVE J. BERTOLANI • Department of Chemistry , University of California Davis , Davis ,
 CA , USA

 JANUSZ M. BUJNICKI • Laboratory of Bioinformatics and Protein Engineering ,
 International Institute of Molecular and Cell Biology in Warsaw , Warsaw , Poland;
 Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology,
Faculty of Biology , Adam Mickiewicz University , Poznan , Poland

 DYLAN ALEXANDER CARLIN • Biophysics Graduate Group , University of California
Davis , Davis , CA , USA

 MARINO CONVERTINO • Department of Biochemistry and Biophysics , University of North
Carolina , Chapel Hill , NC , USA

 BRUNO E. CORREIA • Institute of Bioengineering , Ecole polytechnique fédérale de
Lausanne , Lausanne , Switzerland

 WAYNE DAWSON • Laboratory of Bioinformatics and Protein Engineering ,
 International Institute of Molecular and Cell Biology in Warsaw , Warsaw , Poland

 NIKOLAY V. DOKHOLYAN • Department of Biochemistry and Biophysics ,
 University of North Carolina , Chapel Hill , NC , USA

 KAREN DRUART • Department of Biology, Laboratoire de Biochimie (CNRS
UMR7654) , Ecole Polytechnique , Palaiseau , France

 SANJIB DUTTA • Department of Biology , Massachusetts Institute of Technology ,
 Cambridge , MA , USA

 GEVORG GRIGORYAN • Department of Biological Sciences , Dartmouth College , Hanover ,
 NH , USA; Department of Computer Science , Dartmouth College , Hanover , NH , USA

 WILLIAM A. HANSEN • Computational Biology and Molecular Biophysics Program ,
 Rutgers State University of New Jersey , Piscataway , NJ , USA; Center for Integrative
Proteomics Research , Rutgers State University of New Jersey , Piscataway , NJ , USA

 LIM HEO • Department of Chemistry , Seoul National University , Seoul ,
 Republic of Korea

 Contributors

xiv

 BIRTE HÖCKER • Max Planck Institute for Developmental Biology , Tübingen , Germany;
Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany

 DANIEL HOERSCH • California Institute for Quantitative Biomedical Research and
Department of Bioengineering and Therapeutic Sciences , University of California,
San Francisco , San Francisco , CA , USA; Fachbereich Physik, Freie Universität Berlin,
Berlin, Germany

 TIM JACOBS • University of North Carolina , Chapel Hill , NC , USA
 JOANNA M. KASPRZAK • Laboratory of Bioinformatics and Protein Engineering ,

 International Institute of Molecular and Cell Biology in Warsaw , Warsaw , Poland ;
 Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology,
Faculty of Biology , Adam Mickiewicz University , Poznan , Poland

 AMY E. KEATING • Department of Biology , Massachusetts Institute of Technology ,
 Cambridge , MA , USA

 SAGAR D. KHARE • Department of Chemistry and Chemical Biology , Rutgers State
University of New Jersey , Piscataway , NJ , USA; Center for Integrative Proteomics
Research, Rutgers State University of New Jersey, Piscataway, NJ, USA

 TANJA KORTEMME • California Institute for Quantitative Biomedical Research and
Department of Bioengineering and Therapeutic Sciences , University of California,
San Francisco , San Francisco , CA , USA

 BRIAN KUHLMAN • Department of Biochemistry and Biophysics ,
 University of North Carolina , Chapel Hill , NC , USA

 HASUP LEE • Department of Chemistry , Seoul National University , Seoul ,
 Republic of Korea

 TOM LINSKEY • University of Washington , Seattle , WA , USA
 MARK W. LUNT • Department of Chemical and Biological Engineering ,

 Colorado State University , Fort Collins , CO , USA
 BHARAT MADAN • Laboratory of Bioinformatics and Protein Engineering ,

 International Institute of Molecular and Cell Biology in Warsaw , Warsaw , Poland
 MARCIN MAGNUS • Laboratory of Bioinformatics and Protein Engineering ,

 International Institute of Molecular and Cell Biology in Warsaw , Warsaw , Poland
 LIAM JAMES MCGUFFIN • School of Biological Sciences , University of Reading , Reading , UK
 JENS MEILER • Department of Chemistry , Vanderbilt University , Nashville , TN , USA;

 Center for Structural Biology , Vanderbilt University , Nashville , TN , USA ;
 Department of Pharmacology , Vanderbilt University , Nashville , TN , USA

 ELENI MICHAEL • Theoretical and Computational Biophysics Group,
Department of Physics , University of Cyprus , Nicosia , Cyprus

 DAVID MIGNON • Department of Biology, Laboratoire de Biochimie
(CNRS UMR7654) , Ecole Polytechnique , Palaiseau , France

 JEREMY H. MILLS • Department of Biochemistry , University of Washington , Seattle ,
 WA , USA

 ROCCO MORETTI • Department of Chemistry , Vanderbilt University , Nashville , TN ,
 USA ; Center for Structural Biology , Vanderbilt University , Nashville , TN , USA

 MEHDI NELLEN • Max Planck Institute for Developmental Biology , Tübingen , Germany
 VINCENT L. PECORARO • Department of Chemistry , University of Michigan ,

 Ann Arbor , MI , USA

Contributors

xv

 BRIAN G. PIERCE • Institute for Bioscience and Biotechnology Research, University of
Maryland, Rockville, MD, USA

 JEFFERSON S. PLEGARIA • Department of Chemistry , University of Michigan ,
 Ann Arbor , MI , USA

 SAVVAS POLYDORIDES • Theoretical and Computational Biophysics Group,
Department of Physics , University of Cyprus , Nicosia , Cyprus

 ERIK PROCKO • Department of Biochemistry , University of Illinois , Urbana , IL , USA
 LOTHAR “LUTHER” REICH • Department of Biology , Massachusetts Institute

of Technology , Cambridge , MA , USA
 TIMOTHY P. RILEY • Department of Chemistry and Biochemistry, University of Notre

Dame, Notre Dame, IN, USA; Harper Cancer Research Institute , University of
Notre Dame , Notre Dame , IN , USA

 RYAN S. RITTERSON • California Institute for Quantitative Biomedical Research and
Department of Bioengineering and Therapeutic Sciences , University of California,
San Francisco , San Francisco , CA , USA

 DANIEL BARRY ROCHE • Institut de Biologie Computationnelle , LIRMM,
CNRS, Université de Montpellier , Montpellier , France ; Centre de Recherche en
Biologie cellulaire de Montpellier , CNRS-UMR 5237 , Montpellier , France

 CHAOK SEOK • Department of Chemistry , Seoul National University , Seoul ,
 Republic of Korea

 JUSTIN B. SIEGEL • Department of Chemistry , University of California Davis , One
Shields Avenue, Davis , CA , USA; Genome Center, University of California Davis,
One Shields Avenue, Davis, CA, USA; Department of Biochemistry and Molecular
Medicine, University of California Davis, One Shields Avenue, Davis, CA, USA

 DANIEL-ADRIANO SILVA • Department of Biochemistry , University of Washington ,
 Seattle , WA , USA

 THOMAS SIMONSON • Department of Biology, Laboratoire de Biochimie (CNRS
UMR7654) , Ecole Polytechnique , Palaiseau , France

 NISHANT K. SINGH • Department of Chemistry and Biochemistry, University of Notre
Dame, Notre Dame, IN, USA; Harper Cancer Research Institute , University of
Notre Dame , Notre Dame , IN , USA

 CHRISTOPHER D. SNOW • Department of Chemical and Biological Engineering ,
 Colorado State University , Fort Collins , CO , USA

 YIFAN SONG • Department of Biochemistry , University of Washington , Seattle , WA , USA
 ANDRE C. STIEL • Max Planck Institute for Developmental Biology , Tübingen ,

 Germany
 KRZYSZTOF SZCZEPANIAK • Laboratory of Bioinformatics and Protein Engineering ,

 International Institute of Molecular and Cell Biology in Warsaw , Warsaw , Poland
 SUMMER THYME • Department of Molecular and Cellular Biology , Harvard University ,

 Cambridge , MA , USA
 CHRISTINE E. TINBERG • Department of Biochemistry , University of Washington ,

 Seattle , WA , USA; Amgen, South San Francisco, CA, USA

Contributors

xvi

 IRINA TUSZYNSKA • Laboratory of Bioinformatics and Protein Engineering ,
 International Institute of Molecular and Cell Biology in Warsaw , Warsaw , Poland ;
 Institute of Informatics , University of Warsaw , Warsaw , Poland

 MENG WANG • Department of Chemical and Biomolecular Engineering ,
 University of Illinois at Urbana-Champaign , Urbana , IL , USA

 ZHIPING WENG • Program in Bioinformatics and Integrative Biology,
University of Massachusetts Medical School, Worcester, MA, USA

 HUIMIN ZHAO • Departments of Chemical and Biomolecular Engineering,
Biochemisry, and Chemistry and the Institute for Genomic Biology, University
of Illinois at Urbana-Champaign, Urbana, IL USA

 FAN ZHENG • Department of Biological Sciences , Dartmouth College , Hanover , NH , USA

Contributors

1

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_1, © Springer Science+Business Media New York 2016

 Chapter 1

 In silico Identifi cation and Characterization
of Protein- Ligand Binding Sites

 Daniel Barry Roche and Liam James McGuffi n

 Abstract

 Protein–ligand binding site prediction methods aim to predict, from amino acid sequence, protein–ligand
interactions, putative ligands, and ligand binding site residues using either sequence information, struc-
tural information, or a combination of both. In silico characterization of protein–ligand interactions has
become extremely important to help determine a protein’s functionality, as in vivo-based functional eluci-
dation is unable to keep pace with the current growth of sequence databases. Additionally, in vitro bio-
chemical functional elucidation is time-consuming, costly, and may not be feasible for large-scale analysis,
such as drug discovery. Thus, in silico prediction of protein–ligand interactions must be utilized to aid in
functional elucidation. Here, we briefl y discuss protein function prediction, prediction of protein–ligand
interactions, the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the
Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping the fi eld.
We also discuss, in detail, our cutting-edge web-server method, FunFOLD for the structurally informed
prediction of protein–ligand interactions. Furthermore, we provide a step-by-step guide on using the
FunFOLD web server and FunFOLD3 downloadable application, along with some real world examples,
where the FunFOLD methods have been used to aid functional elucidation.

 Key words Protein function prediction , Protein–ligand interactions , Binding site residue prediction ,
 Biochemical functional elucidation , Critical Assessment of Techniques for Protein Structure Prediction
(CASP) , Continuous Automated EvaluatiOn (CAMEO) , Protein structure prediction , Structure-
based function prediction , Quality assessment of protein–ligand binding site predictions

1 Introduction

 Proteins play an essential role in all cellular activity, which includes:
 enzymatic catalysis, maintaining cellular defenses, metabolism and
catabolism, signaling within and between cells, and the mainte-
nance of the cells’ structural integrity. Hence, the identifi cation
and characterization of a protein binding site and associated ligands
is a crucial step in the determination of a protein’s functionality
[1 – 3].

2

 Protein–ligand interaction prediction methods can be categorized
into two broad groups: sequence-based methods and
 structure- based methods [1 , 3 , 4]. Sequence-based methods uti-
lize evolutionary conservation to determine residues, which may
be structurally or functionally important. These methods include
 fi restar [5 , 6], WSsas [7], INTREPID [8], Multi-RELIEF [9],
 ConSurf [10], ConFunc [11], DISCERN [12], TargetS [13], and
 LigandRFs [14]. Structure-based methods can additionally be sep-
arated into geometric-based methods (FINDSITE [15], Surfl ex-
PSIM [16], LISE [17], Patch-Surfer2.0 [18], CYscore [19],
 LigDig [20], and EvolutionaryTrace [21 , 22]), energetic methods
(SITEHOUND [23]), and miscellaneous methods that utilize
information from homology modeling (FunFOLD [3], FunFOLD2
[2], COACH [24], COFACTOR [25], GalaxySite [26], and
 GASS [27]), surface accessibility (LigSite CSC [28]), and physio-
chemical properties, utilized by methods including SCREEN [29].

 In recent years, there has been an explosion in the development
and availability of protein–ligand binding site prediction meth-
ods. This is a direct result of the inclusion of a ligand binding
site prediction category in the Critical Assessment of Techniques
for Protein Structure Prediction (CASP) competition [30 – 32],
along with the subsequent inclusion of ligand binding site pre-
diction in the Continuous Automated EvaluatiOn (CAMEO)
competition [33].

 Ligand binding site residue prediction was fi rst introduced in
CASP8 [30], where the aim was to predict putative binding site
residues, in the target protein, which may interact with a bound
biologically relevant ligand. The top methods in CASP8 (LEE [4]
and 3DLigandSite [34]) utilized homologous structures with
bound biologically relevant ligands in their prediction strategies.
In both CASP9 [31] and CASP10 [32], protein–ligand interaction
methods converged on similar strategies; the structural superposi-
tion of models, onto templates bound to biologically relevant
ligands [1].

 After the CASP10 competition, the protein–ligand interaction
analysis moved to the CAMEO [33] continuous evaluation com-
petition. This was a direct result of a lack of targets for evaluation,
over the 3-month prediction period of the CASP competition,
although predictions were still accepted for the CASP11 competi-
tion. This also resulted in a change of prediction format, where
methods not only have to predict potential ligand binding site resi-
dues, but also predict the probability that each residue binds to a
specifi c ligand type: I, Ion; O, Organic ligand; N, nucleotide; and
P, peptide. In addition, the most likely type that a protein may bind
is also predicted [33]. The continuous weekly assessment of
 CAMEO allows for a much better picture, of how a method per-
forms, on a large diverse data set, containing a wide diversity of
ligand types [33].

1.1 Predicting
 Protein–Ligand
Interactions

1.2 The Role of CASP
 and CAMEO
on the Development
of Protein–Ligand
Interaction Methods

Daniel Barry Roche and Liam James McGuffi n

3

 Both CASP and CAMEO utilize a number of different metrics to
analyze protein–ligand interaction predictions. The fi rst score uti-
lized in CASP8 [30] was the Matthews Correlation Coeffi cient
(MCC) score [35]. The MCC score is a statistical score for the
comparison of predicted ligand binding site residues to observed
ligand binding site residues, by analyzing the number of residues
assigned as true positives, false positives, true negatives, and false
negatives, resulting in a score between −1 and 1 (1 is a perfect pre-
diction, 0 is a random prediction). The disadvantage of the MCC
score is that it is a statistical measure, which does not take into
account the 3D nature of a protein. Additionally, it is often a sub-
jective matter to assign observed ligand binding site residues, even
in an experimental structure, which is another disadvantage of
using a purely statistical metric.

 Thus, we proposed a new scoring metric: the Binding-site
Distance Test (BDT) score [36], which addresses some of the
problems associated with the MCC score. The BDT score takes
into account the distance in 3D space a predicted binding site resi-
due is from an observed binding site residue. The BDT score
ranges from 0 to 1 (1 is a perfect prediction, 0 is a random predic-
tion). Binding sites which are predicted close to the observed bind-
ing site score higher than binding sites predicted far from the
observed site. The BDT score was used in addition to the MCC
score in both the CASP9 [31] and CASP10 [32] assessments and
is now a standard assessment metric used in CAMEO [33].

 The FunFOLD server has been developed with the user in mind,
 providing an intuitive interface (Fig. 1), which allows users to eas-
ily predict protein–ligand interactions for their protein of interest
[2]. Additionally, for the more expert user, a PDB fi le of the top
IntFOLD2-TS [37] model containing the biologically relevant
ligand cluster can be downloaded for further interrogation, along
with predicted ligand–protein interaction quality scores.
Additionally, the results are available in CASP FN and CAMEO-LB
format. The FunFOLD2 server takes as input a protein sequence,
and optionally a short name for the target protein. Also, the user
has the option to include an email address, to allow for easy results
delivery or the submission page can be bookmarked and returned
to later, when results are available. The FunFOLD2 server runs the
IntFOLD2-TS structure prediction algorithm to produce a set of
models and related templates that can be used to predict protein–
ligand interactions. The FunFOLD2 [2] method combines the
 original FunFOLD method [3] for ligand binding site residue pre-
diction, the FunFOLDQA method [1] for ligand binding site
quality assessment, and a number of scores to comply with the
CAEMO-LB prediction format [33].

 The original FunFOLD method [3] was designed based on the
following concept: protein structural templates from the PDB con-

1.3 Metrics
to Assess Protein–
Ligand Interactions

1.4 The FunFOLD2
 Server
for the Prediction
of Protein–Ligand
Interactions

Identifi cation and Characterization of Ligand Binding Sites

4

taining biologically relevant ligands, and having the same fold
(according to TM-align [38]), as the model built for the target
under analysis, may contain similar binding sites. Firstly, the
FunFOLD algorithm takes as input a model and a set of template
PDB IDs (generated by IntFOLD2-TS [37]). Secondly, TM-align
[38] is used to superpose each template determined to contain a
biologically relevant ligand onto the target model (originally the
method used an in-house curated ligand list, now the latest ver-
sion, FunFOLD3, described below, makes use of the BioLip data-
base [39]). Template- model superpositions having a TM-score ≥
0.4 are used in the next step. TM-scores ranging from 0.4 to 0.6
has been shown to mark the transition step of signifi cantly related
folds [40]. Thirdly, all retained templates are superposed onto the
model and ligands are assigned to clusters using an agglomerative
hierarchical clustering algorithm, identifying each continuous mass
of contacting ligands, thus locating potential binding pockets.
Ligands are determined to be in contact within a cluster if the con-
tact distance is less than or equal to the Van der Waal radius of the
contacting atoms plus 0.5 Å. The location of the largest ligand
cluster is thus determined to be the putative binding site.

 Fourthly, putative ligand binding site residues are deter-
mined using a novel residue voting method. The distance between
all atoms in the ligand cluster and all atoms in the modeled 3D

 Fig. 1 Submission page for the FunFOLD server

Daniel Barry Roche and Liam James McGuffi n

5

protein is calculated. Again, residues are determined to be in
contact with the ligand cluster, if the contact distance between
any atom in the residue and any atom in the ligand cluster is less
than or equal to the Van der Waal radius of the contacting atoms
plus 0.5 Å. Finally, the next step is “residue voting,” where all
residues determined to be in contact with the ligand cluster are
further analyzed and included in the fi nal prediction if a residue
has at least one contact to 2 ligands within the cluster and at
least 25 % of the ligands in the cluster [3].

 The next tool utilized by the FunFOLD2 server [2] is the
FunFOLDQA algorithm [1], which assesses the quality of the
 FunFOLD prediction [3], outputting a set of quality scores. The
FunFOLDQA algorithm produces fi ve feature-based scores:
BDTalign, Identity, Rescaled BLOSUM62 score, Equivalent
Residue Ligand Distance Score, and 3D Model Quality (using
ModFOLDclust2 [41]), which are subsequently combined using a
neural network to produce predicted MCC and BDT scores. The
 predicted MCC and BDT scores can be used to rank the FunFOLD
predictions of the top 10 IntFOLD2-TS models, to fi nd the best
prediction. This has been shown to provide statistically signifi cant
improvements of protein–ligand prediction quality over using
FunFOLD alone [1]. The BDTalign score basically determines the
fi t of the model binding site into the binding sites of the templates
used in the prediction. The Identity score assesses the relationship
between the binding site residues, which are equivalent in 3D space,
between the model and the templates, scoring them according to
their amino acid identity. The Rescaled BLOSUM62 score utilizes
the same concept as the Identity score, but scores equivalent resi-
dues in 3D space according to the BLOSUM62 scoring matrix.
Furthermore, the Equivalent Residue Ligand Distance score scores
equivalent residues in 3D space between the model and each tem-
plate according to their distance from the bound ligand.

 The fi nal component of the FunFOLD2 server [2] is to score
the resultant ligand binding site residues, from the top prediction,
based on the CAMEO-LB criteria. The fi rst score is a global func-
tional propensity metric, which calculates the probability that the
protein will bind to each ligand type (I, Ion; O, Organic; N,
Nucleotide; P, Peptide). The second score is the per-residue func-
tional propensity metric, which determines the propensity that
each predicted ligand binding site residue is in contact with each
ligand type (I, O, N, & P) [2].

 The FunFOLD3 algorithm is the latest implementation of
 FunFOLD. FunFOLD3 was designed to produce predictions to
comply with the CAMEO-LB prediction format [33], including
the development of new metrics to predict per-atom P-values .
Another major change in FunFOLD3 is the use of the BioLip data-
base [39], for the determination of biologically relevant ligands at

1.5 The FunFOLD3
Algorithm
for the Prediction
of Protein–Ligand
Interactions

Identifi cation and Characterization of Ligand Binding Sites

6

multiple binding sites. In addition to the provision of functional
annotations, namely EC [42] numbers and GO terms [43]. The
FunFOLD3 algorithm along with FunFOLDQA [1] has been
integrated into the latest version of the IntFOLD server pipeline
[44] and is available as an executable JAR fi le. The executable ver-
sion of FunFOLD3 does not incorporate the FunFOLDQA bind-
ing site quality scoring module, however, the FunFOLDQA
program may be downloaded as a separate JAR executable if
desired.

 The FunFOLD2 method and its previous implementations
have been benchmarked at CASP9 and CASP10 and were amongst
the top performing methods [31 , 32]. In addition to CASP, the
FunFOLD2 and FunFOLD3 methods are now continuously
benchmarked by CAMEO [33] (http://www.cameo3d.org).
Furthermore, the FunFOLD algorithms have been utilized in
numerous studies, including the investigation of barley powdery
mildew proteins [45 , 46], calcium binding proteins [47], and
olfactory proteins [48], which have resulted in biologically signifi -
cant fi ndings.

 In summary, the use of computational methods for the predic-
tion of protein–ligand interactions is essential in the era of high-
throughput next- generation sequencing, as experimental methods
are unable to keep pace. The prediction of protein–ligand interac-
tions can lead to the interpretation of a protein’s general function.
These predictions can be further utilized in subsequent in silico,
in vivo and in vitro studies, for the discovery of new functions, as
well as in drug discovery, which can impact on issues such as health
and disease.

2 Materials and Systems Requirements

 1. For the FunFOLD2 web server [2], internet access and a web

browser are required. The server is freely accessible at: http://
www.reading.ac.uk/bioinf/FunFOLD/ (See Fig. 1 and Note
1). The FunFOLD2 server has been extensively tested on
Google Chrome and Firefox, which are recommended for
proper use. The server also works on other browsers such as
Internet Explorer, Safari and Opera, but these browsers have
not been tested as extensively.

 2. To run your protein–ligand interaction predictions on the
FunFOLD2 server you require an amino acid sequence for your
protein of interest, in single-letter code format. Additionally, a
short name can be given for the target sequence submitted and
an email address can be included to inform the user when the
prediction is complete. If the length of the target amino acid
sequence is longer than 500 amino acids, it is best to divide the

2.1 Web Server
Requirements

Daniel Barry Roche and Liam James McGuffi n

7

target sequence into domains, using PFAM [49] or SMART
[50], then submit each domain sequence separately. For a more
detailed explanation along with potential problems that can be
encountered at the submission stage see Note 1 .

 A downloadable version of the FunFOLD3 method is available as
an executable JAR fi le, which can be run locally. The executable
has several dependencies and system requirements which are briefl y
described below. The executable along with a detailed README
fi le and example input and output data can be downloaded from
the following location: http://www.reading.ac.uk/bioinf/down-
loads/ (See Note 2 for potential errors that may be encountered).

 The system requirements are as follows:

 1. A linux-based operating system such as Ubuntu.
 2. A recent version of Java (www.java.com/getjava/).
 3. A recent version of PyMOL (www.pymol.org).
 4. The TM-align program [38] (http://zhanglab.ccmb.med.

umich.edu/TM-align/). Please ensure the TM-align program
is working on your system before attempting to run FunFOLD3.
Ensure that you have the correct 32-bit/64-bit version for your
hardware and that the TMalign fi le is made executable: chmod
+x TMalign.

 5. wget and ImageMagick installed system wide.
 6. The CIF chemical components database fi le [51] should be

downloaded from here: ftp://ftp.wwpdb.org/pub/pdb/data/
monomers/components.cif.

 7. The BioLip databases [39] containing ligand and receptor PDB
fi les are also required (up to 30 GB or disc space may be
required). The databases need to be downloaded in two sec-
tions: fi rstly all annotations prior to 2013-03-06 can be down-
loaded from here for the receptor database: http://zhanglab.
c c m b . m e d . u m i c h . e d u / B i o L i P / d o w n l o a d / r e c e p -
tor_2013-03-6.tar.bz2 (3.6 G) and from here for the ligand
database: http://zhanglab.ccmb.med.umich.edu/BioLiP/
download/ligand_2013-03-6.tar.bz2 (438 M). The Text File
of the BioLip annotations can be downloaded from here:
http://zhanglab.ccmb.med.umich.edu/BioLiP/download/
BioLiP.tar.bz2. To update the databases to include annotations
after 2013-03-6 it is recommended to download and use this
perl script which will update the databases: http://zhanglab.
ccmb.med.umich.edu/BioLiP/download/download_all_sets.
pl. The BioLip text fi le: http://zhanglab.ccmb.med.umich.
edu/BioLiP/download/BioLiP.tar.bz2 and all the weekly
update text fi les should be concatenated to form a large text fi le
containing all of the annotations. Furthermore, it is recom-
mended to regularly update your BioLip and CIF databases.

2.2 Requirements
for the FunFOLD3
Downloadable
Executable

Identifi cation and Characterization of Ligand Binding Sites

8

Additionally, a shell script is available as downloadBioLipdata.
sh, which can be downloaded from here: http://www.reading.
ac.uk/bioinf/downloads/, in a compressed directory:
FunFOLD3Package.tar.gz. To run the shell script simply edit
the fi le paths for the location of the BioLip databases and the
executable directory.

 8. Please ensure your system environment is set to English, as uti-
lizing other languages may cause problems with the FunFOLD
calculations: export LC_ALL=en_US.utf-8.

 9. Note the FunFOLD3 executable does not contain the
FunFOLDQA code. The FunFOLDQA code is available to
download as a separate executable if desired.

3 Methods

 In this section we present a step-by-step guide on utilizing the
 FunFOLD2 server and the FunFOLD3 downloadable executable,
to produce protein–ligand interaction predictions for the user’s
sequence of interest. We also describe interesting case studies of
the FunFOLD3 method and its previous implementations.

 1. Navigate to the FunFOLD2 submission page: http://www.

reading.ac.uk/bioinf/FunFOLD/FunFOLD_form_2_0.html.
 2. The next step is to paste the full single-letter format amino acid

sequence of your protein of interest into the text box provided
on the submission page (see Fig. 1).

 3. Optionally, the user can provide a short name for their target
sequence.

 4. The user has the option to supply their email address, which
enables an email to be sent to the user once the results of the
target sequences become available.

 5. Once all of the required information boxes, on the submission
page, have been fi lled, the user then needs to click on the sub-
mit button to enable submission of their prediction.

 6. Presently, submissions are limited to one per IP address, to
enable the maintenance of speed and server capacity. Upon
completion of the user’s prediction, their IP address is auto-
matically unlocked and they can then submit their next target
sequence. See Note 1 for common problems encountered at
the submission step.

 7. Upon job completion an email is sent to the user, which con-
tains a link to the prediction results for the target sequence. See
Fig. 2 for an example results page (FunFOLD3 via the
IntFOLD server) and Fig. 3 for example results from CASP11.

3.1 The
FunFOLD2 Server

Daniel Barry Roche and Liam James McGuffi n

9

 8. The results page contains graphical results for the target
sequence, in addition to downloadable machine readable results
in CASP format. Firstly, a graphical representation of the ligand
binding site, showing putative binding site residues, rendered
using PyMOL (www.pymol.org) is shown. The backbone of the
protein is shown as a green ribbon, while the putative ligand
binding site residues are labeled and shown as blue sticks.
Secondly, a link is also available to download a PDB fi le contain-
ing the putative ligand binding site cluster within the top

 Fig. 2 The IntFOLD3-FN (FunFOLD3) server results page for CASP11 target T0807 (PDB ID 4wgh)

Identifi cation and Characterization of Ligand Binding Sites

10

 Fig. 3 Comparison of FunFOLD3 ligand binding site predictions (A, C, E, G) for 4 CASP11 targets, compared to
the observed ligand binding sites (B, D, F, H). (a) Predicted ligand binding site for T0854 (PDB ID 4rn3), with cor-
rectly predicted binding site residues in blue and under- and over- predictions in red , the MG ligand is colored by
element. BDT score of 0.845 and MCC score of 0.745. (b) The observed ligand binding site for T0854 (PDB ID
4rn3), with binding site residues colored in blue and the ligand MG colored by element. (c) Predicted ligand
binding site for T0798 (PDB ID 4ojk), with correctly predicted binding site residues in blue and under- and over-
predictions in red , the GDP ligand is colored by element. BDT score of 0.797 and MCC score of 0.754. (d) The
observed ligand binding site for T0798 (PDB ID 4ojk), with binding site residues colored in blue and the ligand
GDP colored by element. (e) Predicted ligand binding site for T0807 (PDB ID 4wgh), with correctly predicted
binding site residues in blue and under- and over-predictions in red , the NAP ligand is colored by element.

Daniel Barry Roche and Liam James McGuffi n

11

IntFOLD [52] model. Thirdly, the CASP FN format results are
shown. This includes a list of putative ligand binding site resi-
dues. The list also includes, the most likely ligand, which is the
most likely ligand to be bound to the target protein according
to the FunFOLD prediction. This is followed by the centroid
ligand and a list of all ligands within the putative ligand cluster
is also included. The centroid and most likely ligand have an
associated residue number that corresponds to their residue
number in the downloadable PDB fi le, the residue number can
be easily used to locate the ligand in the PDB fi le for a more
detailed examination of the results.

 9. The fi nal section of the results page is a JSmol view of the
ligand binding site within the target protein, which can be eas-
ily used to examine the prediction in 3D space. There are a
number of options to rotate the protein, show and hide the
ligands as well as alter the way the ligands are represented.

 10. Moreover, for the version of FunFOLD (FunFOLD3) inte-
grated into the IntFOLD pipeline [44], putative EC [42] and
GO [43] codes, derived from templates used in the prediction
from the BioLip [39] database are included (See Note 3 for
details on the IntFOLD server [44 , 53]).

 11. In addition, predicted quality scores from FunFOLDQA [1]
are also provided: BDTalign, Identity, Rescaled BLOSUM62
score, Equivalent Residue Ligand Distance Score, and Model
Quality along with the predicted MCC and BDT scores (See
Subheading 1.4 for a description of these scores). Furthermore,
the propensity that the target protein binds to each ligand type
(I, Ion; O, Organic; N, Nucleotide; P, Peptide) is also pro-
vided in CAMEO-LB format [33] (See Note 2 for potential
errors that may be encountered and Note 4 for current method
limitations).

 1. For large-scale analysis or to integrate the FunFOLD3 method

into a structure prediction pipeline or web server (See Notes 2
and 5) a downloadable executable JAR fi le, which has been
developed to run on linux-based operating systems is available
(http://www.reading.ac.uk/bioinf/downloads/). This version

3.2 The FunFOLD3
Executable

Fig. 3 (continued) BDT score of 0.849 and MCC score of 0.771. (f) The observed ligand binding site for T0807
(PDB ID 4wgh), with binding site residues colored in blue and the ligand NAP colored by element. (g) Predicted
ligand binding site for T0819 (PDB ID 4wbt), with correctly predicted binding site residues in blue and under-
and over-predictions in red , the PLP ligand is colored by element. BDT score of 0.753 and MCC score of 0.877.
(h). The observed ligand binding site for T0819 (PDB ID 4wbt), with binding site residues colored in blue and
the ligand PLP colored by element. All images were rendered using PyMOL (http://www.pymol.org/)

Identifi cation and Characterization of Ligand Binding Sites

12

of the program has been tested on recent versions of Ubuntu,
but it should work on all linux-based systems that have bash
installed and meet the system requirements (See Subheading
 2.2 and item 1).

 2. To run the program you can simply edit the shell script
(FunFOLD3.sh) or you can follow the steps below.

 3. The user can optionally set the bash environment variable for
Java, TM-align, and PyMOL if they have not installed it system
wide, along with the location of the databases and database fi les,
e.g.

 export LC_ALL=en_US.utf-8

 export PYMOL_HOME=/usr/bin/

 export TMALIGN_HOME=/home/roche/bin/

 export JAVA_HOME=/usr/bin/

 export BIOLIP_Directory=/home/roche/bin/BioLip/FunFOLD
 BioLip/

 export BIOLIP_LIGAND=/home/roche/bin/BioLip/FunFOLD-
BioLip/ligand/

 export BIOLIP_RECEPTOR=/home/roche/bin/BioLip/Fun-
FOLDBioLip/receptor/

 export BIOLIP_TXT=/home/roche/bin/BioLip/FunFOLD
BioLip/BioLiP.txt

 export CIF=/home/roche/bin/BioLip/FunFOLD BioLip/com-
ponents.cif

 $BIOLIP_Directory = BioLip directory location

 $BIOLIP_TXT = BioLip database text fi le including the
full directory path

 $BIOLIP_LIGAND = BioLip ligand directory

 $BIOLIP_RECEPTOR = BioLip receptor directory

 $CIF = CIF fi le including the full directory path

 4. For example, if the path of your model was “/home/roche/
bin/FunFOLD3/MUProt_TS3”, your list of templates was “/
home/roche/bin/FunFOLD3/T0470_PARENTNew.dat”
(all templates should be listed on a single line separated by a
space), your FASTA sequence fi le was “/home/roche/bin/
FunFOLD3/T0470.fasta”, your output directory was “/
home/roche/bin/FunFOLD3/” and your target was called
T0470:

 $JAVA_HOME/java -jar FunFOLD3.jar /home/roche/
bin/FunFOLD3/MUProt_TS3 T0470 /home/roche/bin/Fun-
FOLD3/ /home/roche/bin/FunFOLD3/T0470_PARENTNew.dat /
home/roche/bin/FunFOLD3/T0470.fasta $BIOLIP_TXT $BIOLIP_
LIGAND $BIOLIP_RECEPTOR $CIF

 Or, using the shell script provided:

Daniel Barry Roche and Liam James McGuffi n

13

 ./FunFOLD3.sh /home/roche/bin/FunFOLD3/MUProt_TS3
T0470 /home/roche/bin/FunFOLD3/ /home/roche/bin/Fun-
FOLD3/T0470_PARENTNew.dat /home/roche/bin/FunFOLD3/
T0470.fasta

 5. Basically, the user requires a model generated for their target
protein, this can be achieved using a homology modeling
method either in-house or via a web server such as IntFOLD
[37] (see Note 3). Additionally, the user needs a list of structur-
ally similar templates. Again this list of templates can be gener-
ated from the list of templates used to generate the target
protein model. The program utilizes the templates that have the
same fold and contain biologically relevant ligands in the predic-
tion process. Furthermore, it is important to download and
install the BioLip databases [39] and CIF chemical components
library fi le [51]. Additionally, it is important that the full paths
for all input fi les are used, the output directory should also end
with a "/" and must contain the input model, template list, and
FASTA sequence fi le.

 6. Additionally, a shell script is available called downloadBioLip-
data.sh, which can be used to download and update the BioLip
and CIF libraries. The shell script and the required perl script
can be found on the downloads page, in a compressed direc-
tory: FunFOLD3Package.tar.gz. To run the shell script simply
edit the fi le paths for the location of the BioLip databases and
the executable directory.

 7. A number of output fi les are produced in the output directory
(e.g. “/home/roche/bin/FunFOLD3/”) and a log of the pre-
diction process is output to screen as standard output. A descrip-
tion of the output fi les are as follows:

 (a) The fi nal ligand binding site prediction fi le “T0470_
FN.txt” is supplied, conforming to CASP FN format. This
fi le contains a list of predicted binding site residues,
ligands, along with associated EC and GO terms.

 (b) The fi nal binding site prediction fi le “T0470_FN2_
CAMEO- LB.txt” is additionally supplied in CAMEO-LB
format. This fi le contains the predicted propensity that
each ligand type is in contact with the predicted binding
site residues.

 (c) A PDB fi le “T0470_lig.pdb”, which contains superposi-
tions of all templates, having the same fold and containing
biologically relevant ligands, onto the model is produced.

 (d) A reduced version of the PDB fi le “T0470_lig2.pdb”,
which contains only the target model with all possible
ligands is also produced.

Identifi cation and Characterization of Ligand Binding Sites

14

 (e) Another reduced version of the PDB fi le “T0470_lig3.
pdb”, which contains only the target model with the pre-
dicted centroid ligand, is additionally output.

 (f) A graphical representation of the protein–ligand interac-
tion prediction “T0470_binding_site.png” is automati-
cally generated using PyMOL.

 (g) Finally, the PyMOL script “pymol.script” that was used to
generate the image fi le is also output.

 8. An example of output produced by FunFOLD3 for target T0470
can be found in the compressed directory: “T0470_Results.tar.
gz” along with an example of the required input: “T0470_Input.
tar.gz”. These example directories can be found on the down-
loads page: http://www.reading.ac.uk/bioinf/downloads/, as
part of the FunFOLD3 package - FunFOLD3Package.tar.gz.

 To enable timely throughput and wide use of the server, a fair
usage policy is implemented. Users are allowed to submit one pre-
diction per IP address. Once the fi rst job is complete, a notifi cation
is sent to the user via email, if an email address has been provided.
If a user does not provide an email address, then a link to the
results page is provided, which users are recommended to book-
mark during the submission process. Once the job has been com-
pleted, the user’s IP address is unlocked and the server is ready to
receive the next submission. The results for each complete job is
saved for 30 days. It is recommended for large-scale analysis of a
large number of proteins (proteome level) to download the exe-
cutable version of FunFOLD3 (See Subheading 3.2 and Notes 2
and 5).

 The FunFOLD3 method and its previous implementation have
been used in a number of studies [45 – 48], which have led to bio-
logically signifi cant fi ndings, here we discuss one such study.
Furthermore, in-house analysis of the CASP11 FN predictions
produced by the FunFOLD3 algorithm, via the IntFOLD server
are evaluated (CASP11 group ID: TS133).

 The fi rst study combined proteogenomic and in silico structural
and functional annotations (prediction of protein–ligand interac-
tions), to enable the investigation of the pathogen proteome of
barley powdery mildew [45 , 46]. Basically, genomic scale structure
prediction was carried out using IntFOLD [53]. Both the global
and per- residue model quality were assessed utilizing ModFOLD3
[52 , 54] and putative protein–ligand interactions were additionally
predicted using FunFOLD [3]. The results lead to interesting con-
clusions about the structural and functional diversity of the pro-
teomes. Firstly, only six proteins could be modeled with a model

3.3 Server Fair
Usage Policy

3.4 Case Studies

3.5 Analysis
of the Barley Powdery
Mildew Proteome

Daniel Barry Roche and Liam James McGuffi n

15

quality score above 0.4, leading to a conclusion that the genome is
very structurally diverse and may have many novel folds. Secondly,
for the six predicted structures, FunFOLD [3] was able to predict
that the proteins were carbohydrate binding, and using the models
and other additional data it was concluded that they were probably
glycosyl hydrolases. Furthermore, the putative functionality was
experimentally verifi ed. In conclusion the FunFOLD method was
crucial in the putative functionality assignment of these enzymes,
which were subsequently experimentally verifi ed.

 The second case study focuses on the analysis of FunFOLD3 blind
predictions from the CASP11 competition. Briefl y, all CASP11
targets with associated PDB IDs were analyzed. Firstly, targets
were analyzed using the BioLip [39] database to determine if they
contained biologically relevant ligands. Secondly, targets deemed
to contain biologically relevant ligands were further investigated to
determine ligand binding site residues, using the standard CASP
distance cut- off; the Van der Waal radius of the contacting atom of
a residue and the contacting ligand atom plus 0.5 Å. This resulted
in a set of 11 proteins containing biologically relevant ligands and
binding site residues.

 In CASP11, the FunFOLD3 method was integrated into the
IntFOLD-TS predictions (TS133). Protein–ligand interactions
were predicted for 8 out of the 11 FN targets (described above),
with a mean MCC score of 0.554 and a mean BDT score of 0.478.
Four of the top predictions are subsequently discussed in detail.
Fig. 3 highlights the four assessed predictions, compared to the
observed binding sites, with BDT scores ranging from 0.753 to
0.849. Figure 3a shows the predicted ligand binding site for a
HAD-superfamily hydrolase, subfamily IA, variant 1 from Geobacter
sulfurreducens (CASP ID T0854 and PDB ID 4rn3), with cor-
rectly predicted binding site residues in blue (16,18 and 173) and
under (177) and over- predictions [18] in red, the MG ligand is
colored by element. The prediction resulted in a BDT score of
0.845 and an MCC score of 0.745. Figure 3b shows the observed
binding site for T0854 (PDB ID 4rn3), with binding site residues
colored in blue and the ligand MG colored by element. A minority
of residues were either under or over- predicted for this target as a
result of the centroid ligand and the ligand cluster not being well
superposed. The binding sites of the templates were not well super-
posed onto the model binding site, thus, the ligand cluster was not
optimally located in the binding site.

 The second CASP11 target is a cGMP- dependent protein
kinase II from Rattus norvegicus (CASP ID T0798 and PDB ID
4ojk). Figure 3c shows the predicted ligand binding site, with cor-
rectly predicted binding site residues (14, 15, 16, 17, 18, 19, 29, 30,
31, 117, 118, 120, 121, 147, 148, 149) in blue and under [11 , 31]

3.6 CASP11
Functional Prediction

Identifi cation and Characterization of Ligand Binding Sites

16

and over-predictions (13, 33, 35, 36, 61, 62) in red, the GDP
ligand is colored by element. This prediction has a BDT score of
0.797 and an MCC score of 0.754. The observed ligand binding
site for T0798 (PDB ID 4ojk), with binding site residues colored
in blue and the ligand GDP colored by element can be seen in Fig.
 3d . Again, the minority of under- and over-predictions are caused
by fi rstly having a very large ligand binding site, which did not have
the ligands cluster in the correct location within the large binding
site, in part due to a number of templates having larger cofactor
ligands and others having an additional MG ion bound with the
cofactor.

 The third example is of an aldo/keto reductase from Klebsiella
pneumoniae (CASP ID T0807 and PDB ID 4wgh). Figure 3e
shows the predicted ligand binding site, with correctly predicted
binding site residues (20, 21, 22, 50, 55, 143, 165, 193, 194, 195,
196, 198, 199, 201, 224, 240, 241, 242, 244, 248, 251) in blue
and under- (80, 142, 243, 245, 252) and over-predictions (23, 54,
113, 197, 200, 207) in red, the NAP ligand is colored by element.
This prediction resulted in a BDT score of 0.849 and an MCC
score of 0.771. In addition, the observed ligand binding site can
be seen in Fig. 3f , with binding site residues colored in blue and
the ligand NAP colored by element. Furthermore, the over- and
under-predictions seem to be a direct result of a number of tem-
plates having an additional ligand bound along with the cofactor,
resulting in an extended ligand binding site.

 The fi nal CASP11 target that we will analyze is a histidinol-
phosphate aminotransferase from Sinorhizobium meliloti (CASP
ID T0819 and PDB ID 4wbt). Figure 3g shows the predicted
ligand binding site, with correctly predicted binding site residues
(93, 94, 95, 119, 167, 194, 197, 223, 225, 226, 234) in blue and
under- (161, 196) and over-predictions (347) in red, the PLP
ligand is colored by element. The prediction results in a BDT score
of 0.753 and an MCC score of 0.877. In addition, Fig. 3h shows
the observed ligand binding site for T0819 (PDB ID 4wbt), with
binding site residues colored in blue and the ligand PLP colored by
element. Here, the under- and over-predictions are a result of the
incorrect orientation of residues in one case away from the binding
site (TYR 161), in the other cases the under-predicted residue
(ALA 196) and the over-predicted residue (ARG 347) are located
on fl exible loops.

 These four CASP11 examples and the results [30 – 32] from
 previous CASP assessments, along with in-house evaluations [1 ,
 3], highlight the usefulness of the FunFOLD methods for the
accurate prediction of protein–ligand interactions, for a wide range
of proteins and ligand binding sites. See Note 4 for current method
limitations.

Daniel Barry Roche and Liam James McGuffi n

17

4 Notes

 1. When using the FunFOLD server [1 – 3], several problems may
be encountered. These mainly include, but are not limited to,
providing the incorrect data to the server. It is important to
input a sequence in plain text and single-letter code format, into
the text box labeled “Input sequence of target protein”.
Additionally, it is recommended not to submit sequences longer
than 500 amino acids. Firstly, these sequences usually contain
multiple domains, thus it may not be possible to fi nd a good
template to model multiple domains, resulting in one or more
domains not being modeled well. Secondly, if both domains
contain ligand binding sites only one will be predicted and dis-
played in the results page. Hence, it is advisable to partition the
sequence into domains and submit each domain sequence as a
separate job.

 The next place where errors can occur is the next submission
box “Short name for protein target”; inputting a short name for
your protein sequence is useful to keep track of your prediction
by providing a meaningful description. The short descriptor is
limited to a set of characters: letters A–Z (either case), the num-
bers 0–9, and the following characters: .~_-. The protein
descriptor supplied by the user is subsequently utilized in the
subject line of the email sent to the user, which contains a link
to the FunFOLD results for their target protein.

 The fi nal text box to be completed is the “E-mail address”.
This will enable a link of the graphical and machine readable
results to be sent to the user, upon job completion. Here errors
can occur if the user incorrectly inputs their email address.

 2. For the downloadable Java application FunFOLD3, errors can
occur but are not limited to the following reasons: Firstly, errors
can occur if the dependencies—Java, TM-align [38], BioLip
[39], and PyMOL—are not installed or not installed correctly;
secondly, if the full paths to the input fi les, BioLip database, CIF
database, and output directory are not included; thirdly, if the
target model to be analyzed is not in the output directory;
fourthly, if the list of templates used in the prediction contains
non-existent PDB IDs or the PDB IDs (including chain identi-
fi ers) are not all on the same line of the text fi le, the program
will not run; fi fthly, if the input sequence fi le is not in FASTA
format; fi nally, it is recommended to limit the template list to 40
template structures, for effi cient prediction and this is near the
limit of the number of structure fi les PyMOL can handle (See
Subheading 3.2 and the README fi le downloaded with the
executable).

Identifi cation and Characterization of Ligand Binding Sites

18

 Moreover, downloading the BioLip database may be time-
consuming and is an area where problems may occur if the
instructions available on the BioLip website and contained in
the README are not followed. Alternatively, if the user has the
I-TASSER [55] pipeline installed on their system, the BioLip
databases [39] will have been installed as part of the I-TASSER
installation process.

 3. The IntFOLD server [44 , 53] is a novel independent server,
which gives users easy access to a number of cutting-edge meth-
ods, for the prediction of structure and function from sequence.
The idea behind the IntFOLD server is to provide easy access to
our methods from a single location, producing easily under-
standable integrated output of results, enabling ease of access
for the non-expert user. The IntFOLD server provides output
in graphical form, enabling users to interpret results at a glance
as well as CASP formatted text fi les, allowing a more in-depth
analysis of the prediction results. The IntFOLD pipeline inte-
grates a number of methods, to enable users to simply input a
target sequence and produce a set of models (IntFOLD3-TS
[37]), with associated global and per- residue model quality
(ModFOLD5 [54]), disorder prediction (DISOclust3 [56]),
domain partitioning (DomFOLD3), and function prediction
results utilizing FunFOLD3 [1 – 3]. The component methods of
the IntFOLD server have been ranked amongst the top meth-
ods in their respective categories at recent CASP and CAMEO
competitions.

 4. Predicting protein–ligand interactions is a diffi cult task, which
results in a number of limitations to current prediction meth-
ods. The following is a non-exhaustive list of the most common
limitations currently encountered in the fi eld: (1) If the server
or prediction algorithm is unable to build a model for the target
sequence, then no protein–ligand interactions are predicted.
The solution to this problem is to utilize sequence-based meth-
ods (see Subheading 1.1 for suggestions of sequence-based pre-
diction methods), which are less accurate. (2) If structurally
similar templates to the target, which containing biologically
relevant ligands cannot be found, then no prediction can be
made. (3) The FunFOLD server currently outputs predictions
based on the top IntFOLD model, which has the highest global
model quality score. This model may not have the best per-res-
idue model quality around the binding site location, resulting in
under- or over-predicted ligand binding site residues.

 5. The user has the option of using the server version of FunFOLD,
IntFOLD, or the downloadable java application. The user has
to leverage the option most appropriate to meet their needs.
The server only permits users to submit one job at a time due to
server load balancing. If the user would like to carry out large-

Daniel Barry Roche and Liam James McGuffi n

19

scale analysis, for example predicting protein–ligand interac-
tions for a proteome, it is then recommended to download and
use the executable java application for FunFOLD3. This allows
the user the freedom in the number of structures they can ana-
lyze, provided they have adequate CPU capacity.

 For light use (several predictions a week), server prediction is
adequate for the user, whereas for heavy users (greater than 5–10
predictions a week) the downloadable application would be the
most useful. Extensive help pages are available for the FunFOLD
 server. Furthermore, at least 30 GB of disc space is required to
download the complete BioLip libraries. In addition, an extensive
README fi le, example input and output fi les are available to aid
the user in the installation and running of the FunFOLD3 down-
loadable java application.

 Acknowledgements

 Daniel Barry Roche is a recipient of a Young Investigator Fellowship
from the Institut de Biologie Computationnelle, Université de
Montpellier (ANR Investissements D’Avenir Bio-informatique:
projet IBC).

 References

 1. Roche DB, Buenavista MT, Mcguffi n LJ
(2012) FunFOLDQA: a quality assessment
tool for protein- ligand binding site residue pre-
dictions. PLoS One 7:e38219

 2. Roche DB, Buenavista MT, Mcguffi n LJ
(2013) The FunFOLD2 server for the predic-
tion of protein- ligand interactions. Nucleic
Acids Res 41:W303–W307

 3. Roche DB, Tetchner SJ, Mcguffi n LJ (2011)
FunFOLD: an improved automated method
for the prediction of ligand binding residues
using 3D models of proteins. BMC
Bioinformatics 12:160

 4. Oh M, Joo K, Lee J (2009) Protein-binding
site prediction based on three-dimensional
protein modeling. Proteins 77(Suppl 9):
152–156

 5. Lopez G, Maietta P, Rodriguez JM et al (2011)
Firestar--advances in the prediction of func-
tionally important residues. Nucleic Acids Res
39:W235–W241

 6. Lopez G, Valencia A, Tress ML (2007) Firestar-
-prediction of functionally important residues
using structural templates and alignment reli-
ability. Nucleic Acids Res 35:W573–W577

 7. Talavera D, Laskowski RA, Thornton JM
(2009) WSsas: a web service for the annotation

of functional residues through structural
homologues. Bioinformatics 25:1192–1194

 8. Sankararaman S, Kolaczkowski B, Sjolander K
(2009) INTREPID: a web server for predic-
tion of functionally important residues by evo-
lutionary analysis. Nucleic Acids Res 37:
W390–W395

 9. Ye K, Feenstra KA, Heringa J et al (2008)
Multi- RELIEF: a method to recognize speci-
fi city determining residues from multiple
sequence alignments using a Machine-Learning
approach for feature weighting. Bioinformatics
24:18–25

 10. Ashkenazy H, Erez E, Martz E et al (2010)
ConSurf 2010: calculating evolutionary con-
servation in sequence and structure of proteins
and nucleic acids. Nucleic Acids Res
38(Suppl):W529–W533

 11. Wass MN, Sternberg MJ (2008) ConFunc--
functional annotation in the twilight zone.
Bioinformatics 24:798–806

 12. Sankararaman S, Sha F, Kirsch JF et al (2010)
Active site prediction using evolutionary and
structural information. Bioinformatics
26:617–624

 13. Dong-Jun Y, Jun H, Jing Y et al (2013)
Designing template-free predictor for targeting

Identifi cation and Characterization of Ligand Binding Sites

20

protein- ligand binding sites with classifi er
ensemble and spatial clustering. IEEE/ACM
Trans Comput Biol Bioinform 10:994–1008

 14. Chen P, Huang JHZ, Gao X (2014) LigandRFs:
random forest ensemble to identify ligand-
binding residues from sequence information
alone. BMC Bioinformatics 15:S4

 15. Brylinski M, Skolnick J (2008) A threading-
based method (FINDSITE) for ligand-binding
site prediction and functional annotation. Proc
Natl Acad Sci U S A 105:129–134

 16. Spitzer R, Cleves AE, Jain AN (2011) Surface-
based protein binding pocket similarity.
Proteins 79:2746–2763

 17. Xie ZR, Liu CK, Hsiao FC et al (2013) LISE:
a server using ligand-interacting and site-
enriched protein triangles for prediction of
ligand-binding sites. Nucleic Acids Res
41:W292–W296

 18. Zhu X, Xiong Y, Kihara D (2015) Large-scale
binding ligand prediction by improved patch-
based method Patch-Surfer2.0. Bioinformatics
31:707–713

 19. Cao Y, Li L (2014) Improved protein-ligand
binding affi nity prediction by using a curvature-
dependent surface-area model. Bioinformatics
30:1674–1680

 20. Fuller JC, Martinez M, Henrich S et al (2014)
LigDig: a web server for querying ligand-pro-
tein interactions. Bioinformatics
31:1147–1149

 21. Erdin S, Ward RM, Venner E et al (2010)
Evolutionary trace annotation of protein func-
tion in the structural proteome. J Mol Biol
396:1451–1473

 22. Madabushi S, Yao H, Marsh M et al (2002)
Structural clusters of evolutionary trace resi-
dues are statistically signifi cant and common in
proteins. J Mol Biol 316:139–154

 23. Hernandez M, Ghersi D, Sanchez R (2009)
SITEHOUND-web: a server for ligand bind-
ing site identifi cation in protein structures.
Nucleic Acids Res 37:W413–W416

 24. Yang J, Roy A, Zhang Y (2013) Protein-ligand
binding site recognition using complementary
binding-specifi c substructure comparison and
sequence profi le alignment. Bioinformatics
29:2588–2595

 25. Roy A, Yang J, Zhang Y (2012) COFACTOR:
an accurate comparative algorithm for
structure- based protein function annotation.
Nucleic Acids Res 40:W471–W477

 26. Heo L, Shin WH, Lee MS et al (2014)
GalaxySite: ligand-binding-site prediction by
using molecular docking. Nucleic Acids Res
42:W210–W214

 27. Izidoro SC, De Melo-Minardi RC, Pappa GL
(2014) GASS: identifying enzyme active sites
with genetic algorithms. Bioinformatics
31:864–870

 28. Huang B, Schroeder M (2006) LIGSITEcsc:
predicting ligand binding sites using the
Connolly surface and degree of conservation.
BMC Struct Biol 6:19

 29. Andersson CD, Chen BY, Linusson A (2010)
Mapping of ligand-binding cavities in proteins.
Proteins 78:1408–1422

 30. Lopez G, Ezkurdia I, Tress ML (2009)
Assessment of ligand binding residue predic-
tions in CASP8. Proteins 77(Suppl
9):138–146

 31. Schmidt T, Haas J, Cassarino TG et al (2011)
Assessment of ligand binding residue predic-
tions in CASP9. Proteins: Structure, Function,
and Bioinformatics 79 Suppl 10:126–136

 32. Gallo Cassarino T, Bordoli L, Schwede T
(2014) Assessment of ligand binding site pre-
dictions in CASP10. Proteins 82(Suppl
2):154–163

 33. Haas J, Roth S, Arnold K et al (2013) The
Protein Model Portal--a comprehensive
resource for protein structure and model infor-
mation. Database (Oxford) 2013:bat031

 34. Wass MN, Sternberg MJ (2009) Prediction of
ligand binding sites using homologous struc-
tures and conservation at CASP8. Proteins
77(Suppl 9):147–151

 35. Matthews BW (1975) Comparison of the pre-
dicted and observed secondary structure of T4
phage lysozyme. Biochim Biophys Acta
405:442–451

 36. Roche DB, Tetchner SJ, Mcguffi n LJ (2010)
The binding site distance test score: a robust
method for the assessment of predicted protein
binding sites. Bioinformatics 26:2920–2921

 37. Buenavista MT, Roche DB, Mcguffi n LJ
(2012) Improvement of 3D protein models
using multiple templates guided by single-tem-
plate model quality assessment. Bioinformatics
28:1851–1857

 38. Zhang Y, Skolnick J (2005) TM-align: a pro-
tein structure alignment algorithm based on
the TM-score. Nucleic Acids Res
33:2302–2309

 39. Yang J, Roy A, Zhang Y (2013) BioLiP: a semi-
manually curated database for biologically rel-
evant ligand-protein interactions. Nucleic
Acids Res 41:D1096–D1103

 40. Xu J, Zhang Y (2010) How signifi cant is a pro-
tein structure similarity with TM-score = 0.5?
Bioinformatics 26:889–895

 41. Mcguffi n LJ, Roche DB (2010) Rapid model
quality assessment for protein structure predic-
tions using the comparison of multiple models
without structural alignments. Bioinformatics
26:182–188

 42. Webb EC (1989) Nomenclature Committee of
the International-Union-of-Biochemistry
(Nc-Iub) - Enzyme Nomenclature -
Recommendations 1984 - Supplement-2 -

Daniel Barry Roche and Liam James McGuffi n

21

Corrections and Additions. Eur J Biochem
179:489–533

 43. Ashburner M, Ball CA, Blake JA et al (2000)
Gene ontology: tool for the unifi cation of biol-
ogy. Nat Genet 25:25–29

 44. Mcguffi n LJ, Atkins JD, Salehe BR et al (2015)
IntFOLD: an integrated server for modelling
protein structures and functions from amino
acid sequences. Nucleic Acids Research
43:W169–W173

 45. Bindschedler LV, Mcguffi n LJ, Burgis TA et al
(2011) Proteogenomics and in silico structural
and functional annotation of the barley pow-
dery mildew Blumeria graminis f. sp. hordei.
Methods 54:432–441

 46. Pedersen C, Ver Loren Van Themaat E,
Mcguffi n LJ et al (2012) Structure and evolu-
tion of barley powdery mildew effector candi-
dates. BMC Genomics 13:694

 47. Zhou Y, Xue S, Yang JJ (2013) Calciomics:
integrative studies of Ca2+−binding proteins
and their interactomes in biological systems.
Metallomics 5:29–42

 48. Don CG, Riniker S (2014) Scents and sense: in
silico perspectives on olfactory receptors.
J Comput Chem 35:2279–2287

 49. Finn RD, Bateman A, Clements J et al (2014)
Pfam: the protein families database. Nucleic
Acids Res 42:D222–D230

 50. Letunic I, Doerks T, Bork P (2015) SMART:
recent updates, new developments and status
in 2015. Nucleic Acids Res 43:D257–D260

 51. Feng Z, Chen L, Maddula H et al (2004)
Ligand Depot: a data warehouse for ligands
bound to macromolecules. Bioinformatics
20:2153–2155

 52. Roche DB, Buenavista MT, Mcguffi n LJ
(2014) Assessing the quality of modelled 3D
protein structures using the ModFOLD server.
Methods Mol Biol 1137:83–103

 53. Roche DB, Buenavista MT, Tetchner SJ et al
(2011) The IntFOLD server: an integrated
web resource for protein fold recognition, 3D
model quality assessment, intrinsic disorder
prediction, domain prediction and ligand bind-
ing site prediction. Nucleic Acids Res
39:W171–W176

 54. Mcguffi n LJ, Buenavista MT, Roche DB
(2013) The ModFOLD4 server for the quality
assessment of 3D protein models. Nucleic
Acids Res 41:W368–W372

 55. Roy A, Kucukural A, Zhang Y (2010)
I-TASSER: a unifi ed platform for automated
protein structure and function prediction. Nat
Protoc 5:725–738

 56. Mcguffi n LJ (2008) Intrinsic disorder prediction
from the analysis of multiple protein fold recog-
nition models. Bioinformatics 24:1798–1804

Identifi cation and Characterization of Ligand Binding Sites

23

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_2, © Springer Science+Business Media New York 2016

 Chapter 2

 Computational Modeling of Small Molecule Ligand
Binding Interactions and Affi nities

 Marino Convertino and Nikolay V. Dokholyan

 Abstract

 Understanding and controlling biological phenomena via structure-based drug screening efforts often
critically rely on accurate description of protein–ligand interactions. However, most of the currently avail-
able computational techniques are affected by severe defi ciencies in both protein and ligand conforma-
tional sampling as well as in the scoring of the obtained docking solutions. To overcome these limitations,
we have recently developed MedusaDock, a novel docking methodology, which simultaneously models
ligand and receptor fl exibility. Coupled with MedusaScore, a physical force fi eld-based scoring function
that accounts for the protein–ligand interaction energy, MedusaDock, has reported the highest success rate
in the CSAR 2011 exercise. Here, we present a standard computational protocol to evaluate the binding
properties of the two enantiomers of the non-selective β-blocker propanolol in the β2 adrenergic recep-
tor’s binding site. We describe details of our protocol, which have been successfully applied to several other
targets.

 Key words Flexible docking , MedusaDock , MedusaScore , Induced Fit , Gaia , Chiron , Protein–ligand
interactions , Protein structure refi nement

1 Introduction

 The interactions between small molecules or small peptides and
protein targets are at the basis of many biological processes; there-
fore, the scientifi c community has been very prolifi c in developing
algorithms, protocols, and methodologies to describe, understand,
and control the process of recognition and formation of protein–
ligand and protein–peptide complexes [1 – 5]. The ability to eluci-
date the pharmacodynamical properties of low molecular weight
compounds or small peptides, along with the possibility of ratio-
nally designing novel drugs, relies on the accurate prediction of
atomic interactions between ligands and target proteins. However,
the ligands’ large number of degrees of freedom and proteins’
backbone and side chains fl exibility present a critical challenge for
an effective computational description of the ligand–receptor

24

interaction (i.e., docking calculations) [6 – 8]. Modeling the
 induced fi t phenomenon, whereby both the target and the ligand
undergo mutually adaptive conformational changes upon binding,
is particularly demanding due to signifi cant conformational sam-
pling required for computational optimization of such interactions
[8 – 10]. In order to properly account for this effect, experimentally
(via X-ray crystallography or NMR spectroscopy) and/or compu-
tationally (via molecular dynamics or normal mode analysis) deter-
mined protein conformations have been included in current
docking calculations [11 – 15]. However, multiple conformations
of the protein may not be available, or be biased toward the pro-
tein–ligand complex conformations, and, thus not able to capture
new rearrangements of protein binding sites upon binding of novel
compounds.

 To overcome these limitations, we have recently developed a
new docking algorithm, namely MedusaDock [16], which accounts
for ligand and receptor fl exibility at the same time. In MedusaDock,
we build a stochastic rotamer library for each ligand, and simulta-
neously model the protein sidechain conformation using a rotamer
library for all natural amino acids. The effi cient sampling of our
docking is associated with the use of MedusaScore [17], a physical
force fi eld-based scoring function accounting for the protein–
ligand interaction energy. The adoption of MedusaScore circum-
vents the problem of low transferability among different targets
and ligands, which is typical of empirical scoring functions classi-
cally used in docking calculations [18 , 19]. MedusaDock and
MedusaScore have been successfully adopted in the evaluation of
the binding properties of both peptides [5] and small molecules
[16 , 20 , 21].

 Our docking approach has successfully predicted the native
conformations of 28 out of the 35 study cases proposed in the
recent CSAR-2011 competition [20], more than any other group
in the exercise (H. Carlson, personal communications). In this
chapter, we present a standard protocol to perform the docking of
the propanolol enantiomers in the binding site of the β2 adrenergic
 receptor (β2AR). We (1) assess the structural quality of this G pro-
tein-coupled receptor’s structure using our in-house developed
 software Gaia, which compares the intrinsic properties of protein
structural models to high-resolution crystal structures (http://
chiron.dokhlab.org [22]); (2) generate the optimized starting
structures of ligands using widely used molecular modeling tools;
and fi nally (3) calibrate and run docking calculations using
MedusaDock [16], which will eliminate any possible bias origi-
nated from the starting conformations of the amino acids in β2AR
binding pockets.

Marino Convertino and Nikolay V. Dokholyan

25

2 Materials

 To implement the reported docking calculation procedure, it is
necessary to have access to an internet-connected computer run-
ning a Linux operative system and mount a licensed copy of the
Schröedinger Suite (Schröedinger, LLC), as well as a licensed copy
of the MedusaDock software (Molecules in Action, LLC).

3 Methods

 1. Navigate through the Protein Data Bank (PDB) website [23]
to download the crystallographic coordinates of the human
β2AR at 2.8 Å resolution (PDB-ID: 3NY8 [24]). From the
downloaded fi le, remove the coordinates of (1) the co-crystal-
lized inverse agonist ICI 118,551; (2) water molecules not
mediating the binding of ICI 118,551 to β2AR; and (3) mol-
ecules used for technical purposes and present in the fi nal crys-
tal structure.

 2. In order to estimate the quality of the resulting β2AR protein
structure, run the in-house developed software Gaia [22].
Navigate to the following address http://chiron.dokhlab.org.
Click on the Submit Task button in the starting page (Fig. 1a).
In the step 1 section, enter a Job Title in the dedicated win-
dow, and upload the fi le containing the β2AR crystallographic
structure in pdb format. You can choose to receive an e-mail
notifi cation when the submitted job is completed. In the step
2 section, choose the task Gaia to validate the submitted pro-
tein structure. The status of the calculation can be monitored
via the panel Gaia, which is accessible by clicking the Home/
Overview button in the starting page (Fig. 1a). Upon comple-
tion of the job (indicated by a green mark in the Status), a
short report of some protein features will be presented on the
web page (Fig. 1b). The user can download a detailed report
on the structural features of the protein clicking on the eye
icon in the table (Fig. 1b , see Note 1).

 1. Several applications can be used to prepare the structure of
ligands to be used in docking calculations. In this specifi c case,
we will use a number of applications available via the
Schrödinger Suite. Starting from the Maestro interface (v.
9.3.5), use the 2D Sketcher tool to draw the chemical struc-
tures of the inverse agonist ICI 118,551, co-crystallized with
the β2AR protein, as well as the two propanolol enantiomers,
whose binding modes will be investigated through docking.

3.1 Protein
Preparation

3.2 Ligand
Preparation

Modeling Ligand Interactions and Affi nities

26

 Fig. 1 (a) Home page of Chiron/Gaia server for protein structure refi nement, which is available at the follow-
ing link: http://chiron.dokhlab.org. (b) Short report of protein’s structural features from the Chiron/Gaia server.

Marino Convertino and Nikolay V. Dokholyan

27

 2. The ligand structures need to be further optimized using the
LigPrep application. The user can choose the appropriate force
fi eld (in this case MMFFs [25]) for the optimization of atom
distances, angles, and dihedral angles, along with the most
appropriate pH for the determination of the formal charges of
titratable groups (see Note 2). Several options are available for
the determination of the ligands’ stereochemistry. Since we
have manually drawn the ligand structures, we determine the
appropriate chiralities from the generated 3D structures with-
out constructing any tautomers. The optimized structures of
ligands are saved in mol2 format for docking calculations, and
in Structure Data Format (i.e., SDF format by MDL
Information Systems) for storage.

 1. Docking calculations are executed via our Monte Carlo-based
 algorithm MedusaDock [16], which simultaneously accounts
for ligands’ and receptors’ (side chains) fl exibility. We calibrate
docking calculations to the target protein by performing a self-
docking of any co-crystallized binder as retrieved from the
PDB to assess both the convergence of docking calculations,
and the ability of reproducing the native pose of the co-crystal-
lized ligand (i.e., ICI 118,551) in the β2AR binding site.

 2. In order to test the convergence of docking results, submit
several independent docking calculations of ICI 118,551 in
the β2AR binding site (e.g., 100, 200, 500) using MedusaDock
[16] (see Note 3), and plot the distributions of the binding
energies as estimated by MedusaScore [17] (Fig. 2a). The
number of calculations by which there is no more variation of
the poses’ binding energy distributions will be the minimal
number of docking runs normally submitted to explore the
binding modes of compounds (with similar molecular weight
and rotatable bonds to ICI 118,551) in the β2AR binding site.

 3. The estimated binding energies for all of the docking poses of
ICI 118,551 (as for any docked compound) show a normal
distribution (Fig. 2b). Therefore, according to the central
limit theorem [26], it is possible to retrieve as statistical sig-
nifi cant solutions from only those docking poses for which the

3.3 Docking
Calibration

Fig. 1 (continued) The green mark below the Status column indicates the completion of the job; the eye icon
in the table gives access to a detailed report, which can be downloaded in pdf format. (c) Initial summary
about protein’s structural features as downloaded from the Chiron/Gaia server. Values highlighted in red usu-
ally need the user attention in order to further refi ne the submitted protein structure (see Note 1). A detailed
report about steric clashes, hydrogen bonds in the shell and in the core of the protein, solvent accessible
surface area, and void volume is also available to the user

Modeling Ligand Interactions and Affi nities

28

 Z -score is lower than −2 (i.e., less than 5 % probability that the
specifi c docking pose is extracted by chance). In this case, Z is
defi ned as:

Z

x
=

- m
s

where x is the estimated binding energy of a specifi c docking
poses, and μ and σ are the mean and the standard deviation of
the binding energies in the population of binding poses,
respectively.

-45 -40 -35 -30 -25 -20 -15
Medusa Score (kcal/mol)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 F
re

qu
en

cy

200 runs

-45 -40 -35 -30 -25 -20 -15
Medusa Score (kcal/mol)

0

0.2

0.4

0.6

0.8

1

a

b

N
or

m
al

iz
ed

 F
re

qu
en

cy
200 runs
500 runs

 Fig. 2 (a) Convergence of the distributions of docking pose’s binding energies extracted from 200 and 500
independent MedusaDock calculations are reported in green and blue , respectively. (b) Normal distribution (red
dashed curve) of docking pose’s binding energies extracted from 200 independent MedusaDock calculations
(green bars)

Marino Convertino and Nikolay V. Dokholyan

29

 4. On the subset of extracted docking poses (i.e., poses with
 Z -score lower than −2), perform a cluster analysis to retrieve
the most representative docking pose (i.e., centroid of the most
populated cluster of poses). Cluster the ensemble of docking
solutions according to the root mean square deviation (RMSD)
computed over the ligand’s heavy atoms. The optimal number
of highly populated clusters can be identifi ed by applying the
average linkage method [27] and the Kelley penalty index [28]
in order to minimize the number of clusters and the spread of
internal values in each cluster. The clustering level with the low-
est Kelley penalty represents a condition where the clusters are
highly populated and concurrently maintain the smallest inter-
nal spread of RMSD values (see Note 4). The centroid of the
most populated cluster is chosen as the representative confor-
mation of the ICI 118,551 bound to β2AR.

 5. Calculate the RMSD of the extracted solution of ICI 118,551
with respect to the original co-crystallized conformation of the
ligand in β2AR. The RMSD computed over the ligand’s heavy
atoms (1.4 Å) is below the X-ray resolution (2.8 Å). Therefore,
the applied strategy is successful in reproducing the native pose
of ICI 118,551 as also demonstrated by the consistency with
the electron- density map of the crystal as downloaded from
the Uppsala Electron Density Server [29] (Fig. 3a).

 1. Using MedusaDock submit the number of independent dock-
ing calculations determined in the step 2 of docking calibra-
tion (see Note 5).

 2. Isolate, cluster, and retrieve the obtained docking poses of pro-
panolol enantiomers (Fig. 3b) as described in the steps 3 – 5 of
docking calibration.

4 Notes

 1. Starting from Gaia panel in the Home/Overview page (Fig.
 1b), the user can download a detailed report of the structural
properties of the submitted protein in comparison with what
observed in high-resolution crystal structures. The initial sum-
mary is reported in Fig. 1c . Values highlighted in red usually
need the user attention in order to further refi ne the submitted
protein structure. Such operation can be performed using the
 software Chiron [30], which minimizes the number of non-
physical atom interactions (clashes) in the given protein
structure.

 2. The user can choose several options for the ligands’ optimiza-
tion. Available force fi elds are MMFFs [25] or OPLS_2005

3.4 Docking
Calculations
for Propanolol
Enantiomers

Modeling Ligand Interactions and Affi nities

30

[31 , 32]. The ionization state of titratable groups can be
refi ned at the appropriate pH (the user should retrieve any
available information about the pH value at the protein bind-
ing site) using either the Epik or the Ionizer application. The
user can also decide to generate tautomers or all possible com-
binations of stereoisomers for each optimized ligand.

 3. MedusaDock command can be submitted in a machine run-
ning a Linux operating system using the following command:

 $> ./medusaDock.linux –i TARGET_PROTEIN –m
 MOLECULE_TO_DOCK –o DOCKING_SOLUTION –p ./ MEDUSADOCK_
PARAMETERS/ -M BINDING_SITE_CENTER –r BINDING_SITE_
RADIUS –S SEED_NUMBER –R

 In this specifi c case TARGET_PROTEIN is β2AR; MOLECULE_
TO_DOCK is ICI 118,551; DOCKING_SOLUTION is the output name
for the calculation; MEDUSADOCK_PARAMETERS is the directory
where parameters for docking calculations are stored; BINDING_
SITE_CENTER is the centroid of the ICI 118,551’s crystallo-
graphic coordinates as retrieved from the PDB (PDB ID: 3NY8),

 Fig. 3 (a) Superimposition of MedusaDock docking solution of ICI 118,551 to its crystallographic conformation
in the β2AR binding site (PDB-ID: 3NY8). The described docking procedure demonstrates high reliability as it
reproduces the binding pose of the original co-crystallized molecule with a RMSD computed over the ligand’s
heavy atoms of 1.4 Å, which is below the X-ray resolution (2.8 Å). The binding energy as estimated by
MedusaDock is −39.4 kcal/mol and −37.9 kcal/mol for ICI 118,551 in its docked and crystallized conforma-
tion, respectively. Carbon atoms are represented in blue and green for ICI 118,551 in its docked and crystal-
lized conformation, respectively. β2AR electron density map available from the Electron Density Server is
reported as white mesh. (b) R/S propanolol bound conformations obtained by combining the MedusaScore
values with a hierarchical cluster analysis of statistically signifi cant docking solutions (i.e., poses with Z -score
lower than −2, main text). The binding energy as estimated by MedusaScore is −38.1 kcal/mol and −38.8
kcal/mol for R- and S-propanolol, respectively. The reported solutions represent the centroids of the most
populated clusters of statistically signifi cant docking poses of R- and S-propanolol (i.e., 61.5 % and 57.7 % of
the conformational ensembles, respectively). Carbon atoms are represented in pink and cyan for R- and
S-enantiomers, respectively. The same color code is adopted to indicate the sidechains of β2AR amino acids
when in complex with the two enantiomers

Marino Convertino and Nikolay V. Dokholyan

31

which has been chosen as center of the β2AR binding site;
 BINDING_SITE_RADIUS is 8 Å; SEED_NUMBER is a random number
to be used to defi ne a new independent Monte Carlo cycle; and
 –R is the fl ag which specify the initialization of a docking calcula-
tion in MedusaDock. The command is customizable for running
multiple independent docking calculations as in the following
 bash script:

 $> for i in $(seq –w 1 200)

 $> do

 $> rng = \$RANDOM #random number generation

 $> ./medusaDock.linux –i TARGET_PROTEIN –m
 MOLECULE_TO_DOCK –o DOCKING_SOLUTION –p ./
 MEDUSADOCK_PARAMETERS/ -M BINDING_SITE_
CENTER –r BINDING_SITE_RADIUS –S ${rng} –R

 $> done

 In this case, we perform 200 independent docking calcula-
tions of ICI 118,551 in β2AR. Even though MedusaDock can
perform on a single 8-core CPU, each docking calculation
requires on average 8 min to be completed, therefore the user
should consider the use of supercomputer for the docking of
small libraries of compounds.

 4. We perform the cluster analysis using an ad hoc developed pro-
gram. The less experienced user is advised to refer to the
 Conformer Cluster script available in the Resources of the
Schrödinger Suite.

 5. Perform MedusaDock calculations for propanolol enantiomers
by adapting the command reported in Note 3 to the new
compounds.

 Acknowledgments

 This work was supported by the National Institute of Health grant
2R01GM080742. The authors are grateful to Dr. J. Das and
B. Williams for critical reading of the manuscript. Calculations are
performed on KillDevil high-performance computing cluster at
the University of North Carolina at Chapel Hill.

 References

 1. Guedes IA, de Magalhães CS, Dardenne LE
(2014) Receptor–ligand molecular docking.
Biophys Rev 6:75–87

 2. Grinter S, Zou X (2014) Challenges, applica-
tions, and recent advances of protein-ligand
docking in structure-based drug design.
Molecules 19:10150–10176

 3. Audie J, Swanson J (2012) Recent work in the
development and application of protein- peptide
docking. Future Med Chem 4:1619–1644

 4. Bhattacherjee A, Wallin S (2013) Exploring
protein- peptide binding specifi city through
computational peptide screening. PLoS
Comput Biol 9:e1003277

Modeling Ligand Interactions and Affi nities

32

 5. Dagliyan O, Proctor EA, D’Auria KM et al
(2011) Structural and dynamic determinants
of protein- peptide recognition. Structure
19:1837–1845

 6. Leach AR, Shoichet BK, Peishoff CE (2006)
Prediction of protein-ligand interactions.
Docking and scoring: successes and gaps.
J Med Chem 49:5851–5855

 7. Sousa SF, Fernandes PA, Ramos MJ (2006)
Protein-ligand docking: current status and
future challenges. Proteins 65:15–26

 8. Teague SJ (2003) Implications of protein fl ex-
ibility for drug discovery. Nat Rev Drug Discov
2:527–541

 9. Carlson HA, McCammon JA (2000)
Accommodating protein fl exibility in computa-
tional drug design. Mol Pharmacol 57:213–218

 10. Teodoro ML, Kavraki LE (2003)
Conformational fl exibility models for the
receptor in structure based drug design. Curr
Pharm Des 9:1635–1648

 11. Barril X, Morley SD (2005) Unveiling the full
potential of fl exible receptor docking using
multiple crystallographic structures. J Med
Chem 48:4432–4443

 12. Damm KL, Carlson HA (2007) Exploring
experimental sources of multiple protein con-
formations in structure-based drug design.
J Am Chem Soc 129:8225–8235

 13. Karplus M (2003) Molecular dynamics of bio-
logical macromolecules: a brief history and
perspective. Biopolymers 68:350–358

 14. Karplus M, Kuriyan J (2005) Molecular
dynamics and protein function. Proc Natl
Acad Sci U S A 102:6679–6685

 15. Rueda M, Bottegoni G, Abagyan R (2009)
Consistent improvement of cross-docking
results using binding site ensembles generated
with elastic network normal modes. J Chem
Inf Model 49:716–725

 16. Ding F, Yin SY, Dokholyan NV (2010) Rapid
fl exible docking using a stochastic rotamer
library of ligands. J Chem Inf Model
50:1623–1632

 17. Yin S, Biedermannova L, Vondrasek J,
Dokholyan NV (2008) MedusaScore: an accu-
rate force fi eld- based scoring function for vir-
tual drug screening. J Chem Inf Model
48:1656–1662

 18. Gohlke H, Klebe G (2001) Statistical potentials
and scoring functions applied to protein-ligand
binding. Curr Opin Struct Biol 11:231–235

 19. Golbraikh A, Tropsha A (2002) Beware of
q(2)! J Mol Graph Model 20:269–276

 20. Ding F, Dokholyan NV (2012) Incorporating
backbone fl exibility in medusadock improves
ligand-binding pose prediction in the csar2011
docking benchmark. J Chem Inf Model
53:1871–1879

 21. Serohijos AWR, Yin SY, Ding F et al (2011)
Structural basis for mu-opioid receptor bind-
ing and activation. Structure 19:1683–1690

 22. Kota P, Ding F, Ramachandran S, Dokholyan
NV (2011) Gaia: automated quality assess-
ment of protein structure models.
Bioinformatics 27:2209–2215

 23. Berman HM, Westbrook J, Feng Z et al
(2000) The protein data bank. Nucleic Acids
Res 28:235–242

 24. Wacker D, Fenalti G, Brown MA et al (2010)
Conserved binding mode of human beta2
adrenergic receptor inverse agonists and antag-
onist revealed by X-ray crystallography. J Am
Chem Soc 132:11443–11445

 25. Halgren TA (1995) The Merck molecular
force fi eld. I. basis, form, scope, parameteriza-
tion, and performance of MMFF94. J Comp
Chem 17:490–519

 26. Central limit theorem. Encyclopedia of
Mathematics. http://www.encyclopediaof-
math.org/index.php?title=Central_limit_
theorem&oldid=18508

 27. Legendre P, Legendre L (1998) Numerical
Ecology. Second English Edition. Developments
in Environmental Modelling 20:302–305.
Elsevier, Amsterdam

 28. Kelley LA, Gardner SP, Sutcliffe MJ (1996) An
automated approach for clustering an ensem-
ble of NMR-derived protein structures into
conformationally related subfamilies. Protein
Eng 9:1063–1065

 29. Kleywegt GJ, Harris MR, Zou J et al (2004)
The Uppsala electron-density server. Acta
Crystallogr D Biol Crystallogr 60:2240–2249

 30. Ramachandran S, Kota P, Ding F, Dokholyan
NV (2011) Automated minimization of steric
clashes in protein structures. Proteins
79:261–270

 31. Jorgensen WL, Tirado-Rives J (1988) The
OPLS potential functions for proteins. Energy
minimizations for crystals of cyclic peptides
and crambin. J Am Chem Soc 110(6):
1657–1666

 32. Jorgensen WL, Maxwell DS, TiradoRives
J (1996) Development and testing of the
OPLS all-atom force fi eld on conformational
energetics and properties of organic liquids.
J Am Chem Soc 118:11225–11236

Marino Convertino and Nikolay V. Dokholyan

http://www.encyclopediaofmath.org/index.php?title=Central_limit_theorem&oldid=18508
http://www.encyclopediaofmath.org/index.php?title=Central_limit_theorem&oldid=18508
http://www.encyclopediaofmath.org/index.php?title=Central_limit_theorem&oldid=18508

33

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_3, © Springer Science+Business Media New York 2016

 Chapter 3

 Binding Site Prediction of Proteins with Organic
Compounds or Peptides Using GALAXY Web Servers

 Lim Heo , Hasup Lee , Minkyung Baek , and Chaok Seok

 Abstract

 We introduce two GALAXY web servers called GalaxySite and GalaxyPepDock that predict protein com-
plex structures with small organic compounds and peptides, respectively. GalaxySite predicts ligands that
may bind the input protein and generates complex structures of the protein with the predicted ligands
from the protein structure given as input or predicted from the input sequence. GalaxyPepDock takes a
protein structure and a peptide sequence as input and predicts structures for the protein–peptide complex.
Both GalaxySite and GalaxyPepDock rely on available experimentally resolved structures of protein–ligand
complexes evolutionarily related to the target. With the continuously increasing size of the protein struc-
ture database, the probability of fi nding related proteins in the database is increasing. The servers further
relax the complex structures to refi ne the structural aspects that are missing in the available structures or
that are not compatible with the given protein by optimizing physicochemical interactions. GalaxyPepDock
allows conformational change of the protein receptor induced by peptide binding. The atomistic interac-
tions with ligands predicted by the GALAXY servers may offer important clues for designing new mole-
cules or proteins with desired binding properties.

 Key words GALAXY , Binding site prediction , Peptide docking , Ligand docking , Ligand design

1 Introduction

 Proteins are involved in numerous biological processes such as
enzymatic activities and signal transductions [1 – 3]. The biological
functions of proteins result from their molecular interactions with
other molecules such as metal ions, small organic compounds, lip-
ids, peptides, nucleic acids, or other proteins. Typically, proteins
interact with other molecules by binding them at specifi c sites.
Therefore, identifi cation of the binding sites on the three-
dimensional protein surfaces can be an important step for inferring
protein functions [4 , 5] and for designing novel molecules that
 control protein functions [6 , 7] or designing new proteins with
desired interaction properties [8 , 9]. Various methods have been
developed to predict ligand binding sites of proteins from protein
sequences or structures. Those methods are based on geometry,

34

energy, evolutionary information, or combinations of them [10].
Methods utilizing available experimentally resolved structures of
homologous protein–ligand complexes were proven to be success-
ful in predicting binding sites in the community-wide blind predic-
tion experiments [11 – 13]. Those methods predict binding sites by
transferring the available binding information for homologs,
assuming that binding sites are conserved among homologs.
However, methods based on evolutionary information alone may
not be suffi cient to predict interactions at the binding sites in
atomic detail, and physicochemical interactions may have to be
considered in addition.

 In this chapter, we introduce two methods that predict bind-
ing sites of small organic compounds and peptides that are avail-
able on the GALAXY web server called GalaxyWEB [14]. These
methods effectively search the protein structure database to fi nd
available experimental structures of related proteins complexed
with ligands, build three-dimensional protein–ligand complex
structures from the available information, and further refi ne the
complex structure to go beyond the available information by opti-
mizing physicochemical energy. The GalaxySite server predicts
binding sites of small organic compounds from input protein
structure or sequence [15]. Binding ligands are fi rst predicted and
the predicted ligands are then docked to the given protein struc-
ture or a predicted protein structure if sequence is given. The pre-
dicted complex structures are optimized by protein–ligand docking
simulations which take into account the binding information
derived from related proteins and additional physicochemical
energy that do not rely on evolutionary information. GalaxySite
was ranked among top methods in the recent critical assessment
techniques for protein structure prediction (CASP) experiments
when evaluated in terms of predicted binding site residues [16 ,
 17]. GalaxyPepDock predicts protein–peptide complex structures
from input protein structure and peptide sequence [18]. It also
combines information on interactions found in homologous com-
plexes in the protein structure database and additional physico-
chemical energy to optimize the protein–peptide complex
structures. The protein structure is allowed to change fl exibly
according to its interaction with the peptide ligand during
optimization.

 The method proved its usefulness in the recent critical assess-
ment of prediction of interactions (CAPRI) experiments ([19],
http://www.ebi.ac.uk/msd-srv/capri/round28/round28.html).
 Both GalaxySite ligand binding site prediction server and the
 GalaxyPepDock peptide binding site prediction server rely on simi-
larity to the protein–ligand complexes of known structures and
provide detailed protein–ligand atomic interactions by sophisti-
cated energy optimization.

Lim Heo et al.

35

2 Materials

 1. A personal computer or device and a web browser are required
to access the GalaxyWEB server through the Internet. A
JavaScript enabled web browser is highly recommended to see
the results on the web browser: The server compatibility was
tested on Google Chrome, Firefox, Safari, and Internet Explorer.

 2. The following input materials are required to use GalaxySite
and GalaxyPepDock on GalaxyWEB.
 (a) To run GalaxySite for ligand binding site prediction, a

sequence in FASTA format or a structure fi le in standard
PDB format for the protein of interest is required. The input
target protein sequence/structure fi le must contain 20 stan-
dard amino acids in one/three-letter codes. The input should
be a single- chain protein, and the number of amino acids
should be greater than 30 and less than 500. The user may
judiciously delete irrelevant protein chains or termini before
job submission to meet this requirement and/or to save
computational cost. An example input sequence (Fig. 1 ,

 Fig. 1 The GalaxySite input page

Prediction of Ligand Binding Sites with GALAXY Webserver

36

 Label 1) and structure fi le (Fig. 1 , Label 2) can be obtained
from the GalaxySite web page.

 (b) To run GalaxyPepDock for peptide binding site predic-
tion, a structure fi le in standard PDB format for the recep-
tor protein of interest and a sequence fi le in FASTA format
for the peptide of interest are required. The number of
amino acids of the receptor protein should be less than
900 and that of the peptide less than 30. The input peptide
sequence fi le must contain 20 standard amino acids in one-
letter codes. Example input fi les (Fig. 2 , Label 1) can be
obtained from the GalaxyPepDock web page.

3 Methods

 1. Go to GalaxyWEB, http://galaxy.seoklab.org. Click “Site” in
the “Services” tab at the top of the page.

 2. In the “User Information” section, enter job name (defaults to
“None”). The user can provide e-mail address so that the server
sends progress reports of the submitted job automatically.

3.1 Ligand Binding
Site Prediction Using
 GalaxySite

 Fig. 2 The GalaxyPepDock input page

Lim Heo et al.

37

Otherwise, the user should bookmark the report page (Fig. 3b)
after submitting the job.

 3. In the “Query Protein Information” section, provide a FASTA-
formatted protein sequence or a standard PDB- formatted pro-
tein structure fi le. If the structure of query protein has been
already determined or predicted, the user may simply upload
the protein structure fi le in PDB format (Fig. 1 , Label 3).
If only the sequence of the query protein is known, the user
may provide a FASTA-formatted protein sequence by copying
the sequence and pasting it into the text box (Fig. 1 , Label 4).
When sequence information is provided, the GalaxySite server
predicts its protein structure by using a simplifi ed version of
GalaxyTBM [20], a template- based protein structure predic-
tion method (see Note 1).

 Fig. 3 (a) A summary page showing the submission information of a GalaxySite job. (b) An example report page
showing the status of the GalaxySite job

Prediction of Ligand Binding Sites with GALAXY Webserver

38

 4. Press the submit button to queue the job. If any errors occur
with the provided input, the user will get a notice about the
errors that need to be corrected. If the submission is successful,
the user will be directed to the summary page of the submis-
sion information which has a link to the report page (Fig. 3a).
The number of jobs in the “WAIT” or “RUN” status allowed
per user is limited to three.

 5. Click “LINK” in the submission information page to access to
the report page. The user can track the status of the submitted job
in the report page which will be refreshed every 30 s (Fig. 3b).
When the job is completed, predicted results will be automatically
presented. Average run time of GalaxySite is 2–4 h.

 6. Ligands predicted to bind: GalaxySite predicts up to three
ligands that are likely to bind to the target protein (see Note
2). The predicted ligands are presented in the descending
order of the estimated likelihood of binding (Fig. 4). For each
ligand, ligand name in a three-letter code (Fig. 4 , Label 1) and
two- dimensional chemical structure (Fig. 4 , Label 2) are
shown. Ligand name is hyperlinked to the ligand summary
page of RCSB PDB (http://www.rcsb.org) [21] for detailed
information on the molecule. PDB IDs for protein–ligand
complexes used for the prediction are also provided and

 Fig. 4 An example of the “Ligands predicted to bind” section on the GalaxySite report page

Lim Heo et al.

39

hyperlinked to the structure summary page of RCSB PDB
(Fig. 4 , Label 3).

 7. Predicted ligand binding residues: For each predicted ligand,
information on the predicted ligand binding residues is pro-
vided (Fig. 5a). Ligand binding residues are defi ned from the
protein–ligand complex structure obtained by molecular dock-
ing in GalaxySite (Fig 4a , Label 1). If the distance of any amino
acid residue from any ligand atom is less than the sum of van
der Waals radii of the two atoms + 0.5 Å, the residue is consid-
ered to bind the ligand. In addition, detailed atomic interac-
tions between ligand and ligand binding residues are analyzed
by using LIGPLOT [22] and can be seen through LINK (Fig
 4a , Label 2). On the LIGPLOT page (Fig. 5b), the ligand mol-
ecule and the protein amino acid residues are depicted in violet
and brown, respectively. Hydrogen bonds are shown in green
dashed lines with their lengths, and hydrophobic contacts are
shown in red spikes. Ideas for designing ligands or ligand bind-
ing site residues may be gained from this interaction analysis.

 Fig. 5 (a) An example of the “Predicted ligand binding residue” section on the GalaxySite report page. (b) An
example of interaction analysis between ligand and ligand binding residues made by LIGPLOT. (c) An example
of the “Predicted binding poses” section on the GalaxySite report page

Prediction of Ligand Binding Sites with GALAXY Webserver

40

 8. Predicted binding poses: For each predicted ligand, a pre-
dicted protein–ligand complex structure can be seen on the
page using PV (http://biasmv.github.io/pv/), a JavaScript
protein viewer, if the web browser supports JavaScript (Fig.
 5c). Users can zoom in and out by scrolling mouse wheel
and change the focusing center by double clicking. Different
predicted protein–ligand complex structures are shown by
clicking the model number in the “View in PV” line (Fig 4c ,
 Label 3). Predicted protein–ligand complex structures can
be downloaded in PDB-formatted fi le for further analyses
(Fig 4c , Label 4).

 9. Re-submission with other ligands: Other ligands that are likely
to bind to the query protein are listed in another table (Fig. 6).
Similarly to the top three ligands with the highest estimated
likelihood of binding (see step 6), ligand names, two-
dimensional chemical structures, and PDB IDs for the corre-
sponding protein–ligand complexes are shown in the table. By
clicking the “Submit” button (Fig. 6 , Label 1), the user can
re-submit a new ligand binding site prediction job with a
selected ligand.

 10. Detailed explanations on the GalaxySite web server are also
provided on the GalaxySite help page; click “Help” tab at the
top of the page, and then click “ GalaxySite” on the right of the
help page. The prediction method used for the GalaxySite pro-
gram is described in the original paper [15].

 1. Go to GalaxyWEB, http://galaxy.seoklab.org. Click

“ PepDock” in the “Services” tab at the top of the page.
 2. In the “User Information” section, enter job name (defaults to

“None”). The user can provide e-mail address so that the
server sends progress reports of submitted job automatically.

3.2 Peptide Binding
Site Prediction Using
 GalaxyPepDock

 Fig. 6 An example of the “Re-submission with other possible ligands” section on the GalaxySite report page

Lim Heo et al.

41

Otherwise, the user should bookmark the report page after
submitting job.

 3. In the “Protein–peptide Docking” section, provide a standard
PDB-formatted protein structure fi le (Fig. 2 , Label 2) and a
FASTA- formatted peptide sequence fi le (Fig. 2 , Label 3).

 4. Press the submit button to queue the job. If the submission is
successful, a “Submission Information” page will appear (Fig. 7a).

 5. Click “LINK” of the submission information page to access
the report page. The report page will be refreshed every 30 s,
updating the status of the submitted job. When the job is com-
pleted, the predicted results will be presented. Average run
time of GalaxyPepDock is 2–3 h (Fig. 7b).

 6. Predicted protein–peptide complex structures: Predicted struc-
tures of the query protein–peptide complex can be visualized
on the report page using PV (http://biasmv.github.io/pv/), a
JavaScript protein viewer, if the web browser supports JavaScript

 Fig. 7 (a) A summary page showing the submission information of a GalaxyPepDock job. (b) An example report
page showing the status of the GalaxyPepDock job

Prediction of Ligand Binding Sites with GALAXY Webserver

42

(Fig. 8). Users can zoom in and out by scrolling mouse wheel
and change the focusing center by double clicking. Template
structures selected from the database of protein–peptide com-
plex structures to be used in the prediction are shown in light
colors; protein and peptide structures are in light red and blue,
respectively. Different protein–peptide complex model struc-
tures can be seen by clicking the model number in the “View
in PV” line (Fig. 8 , Label 1). Predicted protein–peptide com-
plex structures can also be downloaded in PDB-formatted fi les
for further analyses (Fig. 8 , Label 2).

 7. Additional information: Additional information on predicted
models and intermediate results generated during the
GalaxyPepDock run is provided in a table (Fig. 9a). Structures
of protein template and peptide template are given as PDB IDs
and can also be downloaded (Fig. 9a , Labels 1 and 2 , respec-
tively). Sequences and alignments of the query and the tem-
plate used for the prediction are provided (Fig. 9a , Label 3) for
both protein and peptide (Fig. 9b). Structure similarity
between the predicted protein structure and the protein tem-
plate structure is presented in terms of TM-score [23] and
RMSD (Fig. 9a , Label 4). A score called interaction similarity
score [18] that was designed to describe the similarity of the
amino acids of the query complex aligned to the interacting

 Fig. 8 An example of the “Predicted protein–peptide complex structures” section
on the GalaxyPepDock report page

Lim Heo et al.

43

residues of the template complex is reported for each predic-
tion. This is to give an idea on the degree of the relative
 differences in similarity to the selected templates among differ-
ent models (Fig. 9a , Label 5).

 8. Predicted binding site residues: Binding site residues of the pro-
tein taken from the predicted complex structure (Fig. 9a , Label
7 and 9c) and the estimated prediction accuracy of the binding
site (Fig. 9a , Label 6) are provided (see Note 3). Those residues
with any heavy atom within 5 Å from any peptide heavy atom
in the predicted structure are reported as binding residues.

 9. GalaxyPepDock help page is also available; click the “Help”
tab at the top of the page, and click “GalaxyPepDock” on the
right of the help page. More detailed description of the predic-
tion method of GalaxyPepDock can be found in the original
paper [18].

4 Notes

 1. When a protein sequence is provided as input, GalaxySite pre-
dicts its protein structure fi rst by using a simplifi ed version of
the GalaxyTBM template- based protein structure prediction
program. Protein structure is required because ligand binding

Query protein : AEYVRALFDFNGNDEEDLPFKKGDILRIFDKPEEQWWNAEDSE-GKRGMIPVPYVEKY
Templ protein : —TFVALYDYESRTETDLSFKKGEPLQIVNNTEGDWWLAHSLTTGQTGYIPSNYVAPS
Query peptide : –PPPALPPKK
Templ peptide : AFAPPLPRR–

8 PHE

a

b

c
9 ASP

10 PHE
12 GLY
13 ASN
14 ASP
16 GLU

33 GLU
35 GLN
36 TRP
48 MET
50 PRO
52 PRO
53 TYR

17 ASP

 Fig. 9 An example of the “Additional information” section on the GalaxyPepDock report page. (a) A summary
table showing the results of the protein–peptide complex structure predictions. (b) An example of structure/
sequence alignments between the query protein/peptide and the template protein/peptide. (c) An example of
the list of predicted binding residues of protein

Prediction of Ligand Binding Sites with GALAXY Webserver

44

sites are predicted by structure-based protein–ligand docking
with additional information from available protein–ligand
complex structures in the database. For computational effi -
ciency, loop/termini modeling and further refi nement step
employed in the original GalaxyTBM are skipped during the
 GalaxySite runs. If the user desires to use a protein structure
predicted by the full components of GalaxyTBM, he/she can
run the GalaxyTBM program on GalaxyWEB. Select “TBM”
in the “Services” tab at the top of the GalaxyWEB page. The
same FASTA-formatted protein sequence described in the
Materials section is suffi cient to run GalaxyTBM.

 2. Because GalaxySite predicts ligand binding sites using available
protein–ligand complex structures, it cannot predict ligand
binding sites if no structures for similar protein–ligand com-
plexes are identifi ed. In such cases, GalaxySite generates the
message, “No template for binding site prediction has been
found”.

 3. The estimated prediction accuracy in GalaxyPepDock means
the estimated fraction of correctly predicted binding site resi-
dues. This value is obtained by using the linear regression data
obtained from the prediction and experimental results on the
PeptiDB test set [24]. A low value of estimated prediction
accuracy implies that proper templates were not able to be
selected, and the current similarity-based method may not
provide reliable results for the query. When a very low value of
estimated accuracy is returned, the user is recommended to try
an ab initio protein–peptide docking method such as PEP-
SiteFinder [25] that does not rely on similarity to the known
structures .

 Acknowledgement

 This work was supported by the National Research Foundation of
Korea grants funded by the Ministry of Science, ICT & Future
Planning (No. 2013R1A2A1A09012229).

 References

 1. Kristiansen K (2004) Molecular mechanisms of
ligand binding, signaling, and regulation
within the superfamily of G-protein-coupled
receptors: molecular modeling and mutagene-
sis approaches to receptor structure and func-
tion. Pharmacol Ther 103(1):21–80.
doi: 10.1016/j.pharmthera.2004.05.002

 2. Negri A, Rodriguez-Larrea D, Marco E,
Jimenez- Ruiz A, Sanchez-Ruiz JM, Gago F

(2010) Protein- protein interactions at an
enzyme-substrate interface: characterization of
transient reaction intermediates throughout a
full catalytic cycle of Escherichia coli thiore-
doxin reductase. Proteins 78(1):36–51.
doi: 10.1002/prot.22490

 3. Pawson T, Nash P (2000) Protein-protein
interactions defi ne specifi city in signal trans-
duction. Genes Dev 14(9):1027–1047

Lim Heo et al.

http://dx.doi.org/10.1016/j.pharmthera.2004.05.002
http://dx.doi.org/10.1002/prot.22490

45

 4. Campbell SJ, Gold ND, Jackson RM, Westhead
DR (2003) Ligand binding: functional site
location, similarity and docking. Curr Opin
Struct Biol 13(3):389–395

 5. Kinoshita K, Nakamura H (2003) Protein
informatics towards function identifi cation.
Curr Opin Struct Biol 13(3):396–400

 6. Laurie AT, Jackson RM (2006) Methods for
the prediction of protein-ligand binding sites
for structure-based drug design and virtual
ligand screening. Curr Protein Pept Sci
7(5):395–406

 7. Sotriffer C, Klebe G (2002) Identifi cation and
mapping of small-molecule binding sites in
proteins: computational tools for structure-
based drug design. Farmaco 57(3):243–251

 8. Damborsky J, Brezovsky J (2014)
Computational tools for designing and engi-
neering enzymes. Curr Opin Chem Biol 19:8–
16. doi: 10.1016/j.cbpa.2013.12.003

 9. Feldmeier K, Hocker B (2013) Computational
protein design of ligand binding and catalysis.
Curr Opin Chem Biol 17(6):929–933

 10. Tripathi A, Kellogg GE (2010) A novel and
effi cient tool for locating and characterizing
protein cavities and binding sites. Proteins
78(4):825–842. doi: 10.1002/prot.22608

 11. Lopez G, Ezkurdia I, Tress ML (2009)
Assessment of ligand binding residue predic-
tions in CASP8. Proteins 77(Suppl 9):138–
146. doi: 10.1002/prot.22557

 12. Lopez G, Rojas A, Tress M, Valencia A (2007)
Assessment of predictions submitted for the
CASP7 function prediction category. Proteins
69(Suppl 8):165–174. doi: 10.1002/prot.
21651

 13. Oh M, Joo K, Lee J (2009) Protein-binding
site prediction based on three-dimensional
protein modeling. Proteins 77(Suppl 9):152–
156. doi: 10.1002/prot.22572

 14. Ko J, Park H, Heo L, Seok C (2012)
GalaxyWEB server for protein structure pre-
diction and refi nement. Nucleic Acids Res
40(Web Server Issue):W294–W297.
doi: 10.1093/nar/gks493

 15. Heo L, Shin WH, Lee MS, Seok C (2014)
GalaxySite: ligand-binding-site prediction by
using molecular docking. Nucleic Acids Res

42(Web Server Issue):W210–W214.
doi: 10.1093/nar/gku321

 16. Gallo Cassarino T, Bordoli L, Schwede T
(2014) Assessment of ligand binding site pre-
dictions in CASP10. Proteins 82(Suppl
2):154–163. doi: 10.1002/prot.24495

 17. Schmidt T, Haas J, Gallo Cassarino T, Schwede
T (2011) Assessment of ligand-binding residue
predictions in CASP9. Proteins 79(Suppl
10):126–136. doi: 10.1002/prot.23174

 18. Lee H, Heo L, Lee MS, Seok C (2015)
GalaxyPepDock: a protein-peptide docking
tool based on interaction similarity and energy
optimization. Nucleic Acids Res. doi: 10.1093/
nar/gkv495

 19. Lensink MF, Wodak SJ (2013) Docking, scor-
ing, and affi nity prediction in CAPRI. Proteins
81(12):2082–2095. doi: 10.1002/prot.24428

 20. Ko J, Park H, Seok C (2012) GalaxyTBM:
template- based modeling by building a reliable
core and refi ning unreliable local regions.
BMC Bioinformatics 13:198. doi: 10.1186/
1471-2105-13-198

 21. Bernstein FC, Koetzle TF, Williams GJ, Meyer
EF Jr, Brice MD, Rodgers JR, Kennard O,
Shimanouchi T, Tasumi M (1977) The Protein
Data Bank: a computer- based archival fi le for
macromolecular structures. J Mol Biol 112(3):
535–542

 22. Wallace AC, Laskowski RA, Thornton JM
(1995) LIGPLOT: a program to generate
schematic diagrams of protein-ligand interac-
tions. Protein Eng 8(2):127–134

 23. Zhang Y, Skolnick J (2005) TM-align: a pro-
tein structure alignment algorithm based on
the TM-score. Nucleic Acids Res 33(7):2302–
2309. doi: 10.1093/nar/gki524

 24. London N, Movshovitz-Attias D, Schueler-
Furman O (2010) The structural basis of
peptide- protein binding strategies. Structure
18(2):188–199. doi: 10.1016/j.str.2009.
11.012

 25. Saladin A, Rey J, Thevenet P, Zacharias M,
Moroy G, Tuffery P (2014) PEP-SiteFinder: a
tool for the blind identifi cation of peptide
binding sites on protein surfaces. Nucleic Acids
Res 42(Web Server issue):W221–226.
 doi: 10.1093/nar/gku404

Prediction of Ligand Binding Sites with GALAXY Webserver

http://dx.doi.org/10.1016/j.cbpa.2013.12.003
http://dx.doi.org/10.1002/prot.22608
http://dx.doi.org/10.1002/prot.22557
http://dx.doi.org/10.1002/prot.21651
http://dx.doi.org/10.1002/prot.21651
http://dx.doi.org/10.1002/prot.22572
http://dx.doi.org/10.1093/nar/gks493
http://dx.doi.org/10.1093/nar/gku321
http://dx.doi.org/10.1002/prot.24495
http://dx.doi.org/10.1002/prot.23174
http://dx.doi.org/10.1093/nar/gkv495
http://dx.doi.org/10.1093/nar/gkv495
http://dx.doi.org/10.1002/prot.24428
http://dx.doi.org/10.1186/1471-2105-13-198
http://dx.doi.org/10.1186/1471-2105-13-198
http://dx.doi.org/10.1093/nar/gki524
http://dx.doi.org/10.1016/j.str.2009.11.012
http://dx.doi.org/10.1016/j.str.2009.11.012
http://dx.doi.org/10.1093/nar/gku404

47

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_4, © Springer Science+Business Media New York 2016

 Chapter 4

 Rosetta and the Design of Ligand Binding Sites

 Rocco Moretti , Brian J. Bender , Brittany Allison , and Jens Meiler

 Abstract

 Proteins that bind small molecules (ligands) can be used as biosensors, signal modulators, and sequestering
agents. When naturally occurring proteins for a particular target ligand are not available, artifi cial proteins
can be computationally designed. We present a protocol based on RosettaLigand to redesign an existing
protein pocket to bind a target ligand. Starting with a protein structure and the structure of the ligand,
Rosetta can optimize both the placement of the ligand in the pocket and the identity and conformation of
the surrounding sidechains, yielding proteins that bind the target compound.

 Key words Computational design , Protein/small molecule interaction , Sequence optimization ,
 Protein design , Ligand docking

1 Introduction

 Proteins which bind to small molecules (i.e. ligands) are involved
in many biological processes such as enzyme catalysis, receptor sig-
naling, and metabolite transport. Designing these interactions can
produce reagents which can serve as biosensors, in vivo diagnos-
tics, signal modulators, molecular delivery devices, and sequester-
ing agents [1 – 5]. Additionally, the computational design of
proteins which bind small molecules serves as a critical test of our
understanding of the principles that drive protein/ligand
interactions.

 While in vitro techniques for the optimization of protein/
ligand interactions have shown success [6], these are limited in the
number of sequence variants which can be screened, and often
require at least a modest starting affi nity which to further optimize
[7]. Computational techniques allow searching larger regions of
sequence space and permit design in protein scaffolds with no
detectable intrinsic affi nity for the target ligand. Computational
and in vitro techniques are often complementary and starting
activity achieved via computational design can often be improved
via in vitro techniques ([8] and Chapter 9 of this volume).

http://dx.doi.org/10.1007/978-1-4939-3569-7_9

48

Although challenges remain, computational design of small mole-
cule interactions have yielded success on a number of occasions
[5 , 9], and further attempts will refi ne our predictive ability to
generate novel ligand binders.

 The Rosetta macromolecular modeling software suite [10 , 11]
has proven to be a robust platform for protein design, having pro-
duced novel protein folds [12 , 13], protein/DNA interactions
[14], protein/peptide interactions [15], protein/protein interac-
tions [16], and novel enzymes [17 – 19]. Technologies for design-
ing protein/ligand interactions have also been developed and
applied [4 , 8 , 20]. Design of ligand binding proteins using Rosetta
approaches the problem in one of two ways. One method derives
from enzyme design, where predefi ned key interactions to the
ligand are emplaced onto a protein scaffold and the surrounding
context is subsequently optimized around them [8]. The other
derives from ligand docking, in which the interactions with a mov-
able ligand are optimized comprehensively [4 , 20]. Both approaches
have proven successful in protein redesign, and features from both
can be combined using the RosettaScripts system [21], tailoring
the design protocol to particular design needs.

 Here we present a protocol derived from RosettaLigand ligand
docking [22 – 25], which designs a protein binding site around a
given small molecule ligand (Fig. 1). After preparing the protein
and ligand structures, the placement of the ligand in the binding
pocket is optimized, followed by optimization of sidechain identity
and conformation. This process is repeated iteratively, and the pro-
posed designs are sorted and fi ltered by a number of relevant struc-
tural metrics, such as predicted affi nity and hydrogen bonding.
This design process should be considered as part of the integrated
program of computational and experimental work, where proteins
designed computationally are tested experimentally and the experi-
mental results are used to inform subsequent rounds of computa-
tional design.

2 Materials

 1. A computer running a Unix-like operating system such as Linux
or MacOS. Use of a multi-processor computational cluster is
recommended for productions runs, although test runs and
small production runs can be performed on conventional laptop
and desktop systems.

 2. Rosetta. The Rosetta modeling package can be obtained from
 the RosettaCommons website (https://www.rosettacommons.
org/software/license-and-download). Rosetta licenses are
available free to academic users. Rosetta is provided as source
code and must be compiled before use. See the Rosetta

Rocco Moretti et al.

https://www.rosettacommons.org/software/license-and-download
https://www.rosettacommons.org/software/license-and-download

49

Documentation (https://www.rosettacommons.org/docs/lat-
est/) for instructions on how to compile Rosetta. The protocol
in this paper has been tested with Rosetta weekly release version
2015.12.57698.

 3. A program to manipulate small molecules. OpenBabel [26] is a
free software package which allows manipulation of many small
molecule fi le formats. See http://openbabel.org/ for down-
load and installation information. The protocol in this paper has
been tested with OpenBabel version 2.3.1. Other small mole-
cule manipulation programs can also be used.

 Fig. 1 Flowchart of RosettaLigand design protocol. From the combined input
coordinates of the protein and ligand, the position of the ligand is optimized.
Next, residues in the protein/ligand interface are optimized for both identity and
position. After several cycles of small molecule perturbation, sidechain rotamer
sampling, Monte Carlo minimization with Metropolis (MCM) criterion, and a fi nal
gradient-based minimization of the protein to resolve any clashes (“high resolu-
tion redocking”), the fi nal model is the output. Further optimization can occur by
using the fi nal models of one round of design as the input models of the next
round. Most variables in this protocol are user-defi ned, and will be varied to best
fi t the protein–ligand complex under study

Design of Ligand Binding Sites With Rosetta

https://www.rosettacommons.org/docs/latest/
https://www.rosettacommons.org/docs/latest/
http://openbabel.org/

50

 4. A ligand conformer generation program. We recommend the
BCL [27] which is freely available from http://meilerlab.org/
index.php/bclcommons for academic use but does require an
additional license to the Cambridge Structural Database [28]
for conformer generation. The protocol in this paper has been
tested with BCL version 3.2. Other conformer generation pro-
grams such as Omega [29], MOE [30], or RDKit [31] can also
be used.

 5. The structure of the target small molecule in a standard format
such as SDF or SMILES (see Note 1).

 6. The structure of the protein to be redesigned, in PDB format
(see Notes 2 and 3).

3 Methods

 Throughout the protocol ${ROSETTA} represents the directory
in which Rosetta has been installed. File contents and commands
to be run in the terminal are in italics . The use of a bash shell is
assumed—users of other shells may need to modify the syntax of
command lines.

 Structure from non-Rosetta sources or structures from other
Rosetta protocols can have minor structural variations resulting in
energetic penalties which adversely affect the design process (see
 Notes 4 and 5).

 ${ROSETTA}/main/source/bin/relax.linuxgccrelease -ignore_
unrecognized_res -ignore_zero_occupancy_false -use_input_sc -fl ip_HNQ
-no_optH false -relax:constrain_relax_to_start_coords -relax:coord_con-
strain_sidechains -relax:ramp_constraints false -s PDB.pdb

 For convenience, rename the output structure.
 mv PDB_0001.pdb PDB_relaxed.pdb

 1. Convert the small molecule to SDF format, including adding

hydrogens as needed (see Note 6).
 obabel LIG.smi --gen3D -O LIG_3D.sdf
 obabel LIG_3D.sdf -p 7.4 -O LIG.sdf

 2. Generate a library of ligand conformers (see Notes 7 and 8).
 bcl.exe molecule: ConformerGenerator -top_models 100 -ensem-
ble_fi lenames LIG.sdf -conformers_single_fi le LIG_conf.sdf

 3. Convert the conformer library into a Rosetta-formatted “params
fi le” (see Notes 9 and 10).
 ${ROSETTA}/main/source/src/python/apps/public/molfile_

to_params.py -n LIG -p LIG --conformers-in-one-fi le LIG_conf.sdf
 This will produce three fi les: “LIG.params”, a Rosetta-readable

description of the ligand; “LIG.pdb”, a selected ligand conformer;
and “LIG_conformers.pdb”, the set of all conformers (see Note 11).

3.1 Pre-relax
the Protein Structure
into the Rosetta
Scoring Function [32]

3.2 Prepare
the Ligand

Rocco Moretti et al.

http://meilerlab.org/index.php/bclcommons
http://meilerlab.org/index.php/bclcommons

51

 1. Identify the location of desired interaction pockets. Visual
inspection using programs like PyMol or Chimera [33] is nor-
mally the easiest method (see Note 14). Use the structure edit-
ing mode of PyMol to move the LIG.pdb fi le from step 3.2.3
into the starting conformation. Save the repositioned molecule
with its new coordinates as a new fi le (LIG_positioned.pdb) (see
 Note 15).

 2. If necessary, use a text editor to make the ligand be residue 1 on
chain X (see Note 16).

 3. Using a structure viewing program, inspect and validate the
placement of the ligand (LIG_positioned.pdb) in the binding
pocket of the protein (PDB_relaxed.pdb) (see Note 17).

 1. Prepare a residue specifi cation fi le. A Rosetta resfi le allows speci-

fi cation of which residues should be designed and which should
not. A good default is a resfi le which permits design at all resi-
dues at the auto-detected interface (see Note 18).
 ALLAA
 AUTO
 start
 1 X NATAA

 2. Prepare a docking and design script (“design.xml”). The sug-
gested protocol is based off of RosettaLigand docking using the
 RosettaScripts framework [22 – 25]. It will optimize the location
of ligand in the binding pocket (low_res_dock), redesign the
surrounding sidechains (design_interface), and refi ne the inter-
actions in the designed context (high_res_dock). To avoid spu-
rious mutations, a slight energetic bonus is given to the input
residue at each position (favor_native).

 <ROSETTASCRIPTS>
 <SCOREFXNS>

 <ligand_soft_rep weights=ligand_soft_rep />
 <hard_rep weights=ligandprime />

 </SCOREFXNS>
 <TASKOPERATIONS>

 <DetectProteinLigandInterface name=design_
interface cut1=6.0 cut2=8.0 cut3=10.0 cut4=12.0
design=1 resfi le="PDB.resfi le"/> # see Note 19

 </TASKOPERATIONS>
 <LIGAND_AREAS>

 <docking_sidechain chain=X cutoff=6.0 add_
nbr_radius=true all_atom_mode=true minimize_
ligand=10/>
 <fi nal_sidechain chain=X cutoff=6.0 add_nbr_
radius=true all_atom_mode=true/>
 <fi nal_backbone chain=X cutoff=7.0 add_
nbr_radius=false all_atom_mode=true Calpha_
restraints=0.3/>

 </LIGAND_AREAS>
 <INTERFACE_BUILDERS>

3.3 Place the Ligand
into the Protein (See
 Notes 12 and 13)

3.4 Run
Rosetta Design

Design of Ligand Binding Sites With Rosetta

52

 <side_chain_for_docking ligand_areas=docking_
sidechain/>
 <side_chain_for_fi nal ligand_areas=fi nal_
sidechain/>
 <backbone ligand_areas=fi nal_backbone extension_
window=3/>

 </INTERFACE_BUILDERS>
 <MOVEMAP_BUILDERS>

 <docking sc_interface=side_chain_for_docking
minimize_water=true/>
 <fi nal sc_interface=side_chain_for_fi nal bb_
interface=backbone minimize_water=true/>

 </MOVEMAP_BUILDERS>
 <SCORINGGRIDS ligand_chain=X width=15> # see Note 20

 <vdw grid_type=ClassicGrid weight=1.0/>
 </SCORINGGRIDS>
 <MOVERS>

 <FavorNativeResidue name=favor_native bonus=
1.00 /> # see Notes 21 and 22
 <Transform name=transform chain=X box_size=
5.0 move_distance=0.1 angle=5 cycles=500
repeats=1 temperature=5 rmsd=4.0 /> # see
 Note 23
 <HighResDocker name=high_res_docker cycles=6
repack_every_Nth=3 scorefxn=ligand_soft_rep
movemap_builder=docking/>
 <PackRotamersMover name=designinterface score-
fxn=hard_rep task_operations=design_inter-
face/>
 <FinalMinimizer name=fi nal scorefxn=hard_rep
movemap_builder=fi nal/>
 <InterfaceScoreCalculator name=add_scores
chains=X scorefxn=hard_rep />
 <ParsedProtocol name=low_res_dock>
 <Add mover_name=transform/>
 </ParsedProtocol>
 <ParsedProtocol name=high_res_dock>
 <Add mover_name=high_res_docker/>
 <Add mover_name=fi nal/>
 </ParsedProtocol>
 </MOVERS>
 <PROTOCOLS>
 <Add mover_name=favor_native/>
 <Add mover_name=low_res_dock/>
 < Add mover_name=design_interface/> # see

 Note 24
 <Add mover_name=high_res_dock/>
 <Add mover_name=add_scores/>

 </PROTOCOLS>
 </ROSETTASCRIPTS>

 3. Prepare an options fi le (“design.options”). Rosetta options can
be specifi ed either on the command line or in a fi le. It is conve-
nient to put options which do not change run-to-run (such as

Rocco Moretti et al.

53

those controlling packing and scoring) into an options fi le rather
than the command line.
 -ex1
 -ex2
 -linmem_ig 10
 -restore_pre_talaris_2013_behavior # see Note 25

 4. Run the design application (see Notes 26 and 27). This will
produce a number of output PDB fi les (named according to the
input fi le names, see Note 28) and a summary score fi le
(“design_results.sc”).

 ${ROSETTA}/main/source/bin/rosetta_scripts.linuxgccre-
lease @design.options -parser:protocol design.xml -extra_
res_fa LIG.params -s "PDB_relaxed.pdb LIG_positioned.pdb"
-nstruct <number of output models> -out:fi le:scorefi le
design_results.sc

 1. Most Rosetta protocols are stochastic in nature. The output

structures produced will contain a mixture of good and bad struc-
tures. The large number of structures produced need to be fi l-
tered to a smaller number of structures taken on to the next step.

 A rule of thumb is that fi ltering should remove unlikely
solutions, rather than selecting the single “best” result.
Successful designs are typically good across a range of relevant
 metrics, rather than being the best structure on a single metric
(see Note 29).

 The metrics to use can vary based on the desired proper-
ties of the fi nal design. Good standard metrics include the pre-
dicted interaction energy of the ligand, the stability score of
the complex as a whole, the presence of any clashes [34], shape
complementarity of the protein/ligand interface [35], the
interface area, the energy density of the interface (binding
energy per unit of interface area), and the number of unsatis-
fi ed hydrogen bonds formed on binding.

 2. Prepare a fi le (“metric_thresholds.txt”) specifying thresholds to
use in fi ltering the outputs of the design runs. IMPORTANT:
The exact values of the thresholds need to be tuned for your
particular system (see Note 30).

 req total_score value < -1010 # measure of protein
stability

 req if_X_fa_rep value < 1.0# measure of ligand
clashes

 req ligand_is_touching_X value > 0.5# 1.0 if ligand
is in pocket

 output sortmin interface_delta_X# binding energy

 3. Filter on initial metrics from the docking run. This will produce
a fi le (“fi ltered_pdbs.txt”) containing a list of output PDBs
which pass the metric cutoffs.

3.5 Filter Designs

Design of Ligand Binding Sites With Rosetta

54

 perl ${ROSETTA}/main/source/src/apps/public/enzdes/
DesignSelect.pl -d <(grep SCORE design_results.sc) -c met-
ric_thresholds.txt -tag_column last > fi ltered_designs.sc

 awk '{print $NF ".pdb"}' fi ltered_designs.sc> fi l-
tered_pdbs.txt

 4. Calculate additional metrics (see Note 31). Rosetta’s
InterfaceAnalyzer [36] calculates a number of additional met-
rics. These can take time to evaluate, though, so are best run on
only a pre- fi ltered set of structures. After the metrics are gener-
ated, the structures can be fi ltered as in steps 3.5.1 and 3.5.2.
This will produce a score fi le (“design_interfaces.sc”) contain-
ing the calculated metric values for the selected PDBs.

 ${ROSETTA}/main/source/bin/InterfaceAnalyzer.
linuxgccrelease -interface A_X -compute_packstat -pack_
separated -score:weights ligandprime -no_nstruct_label
-out:fi le:score_only design_interfaces.sc -l fi ltered_
pdbs.txt -extra_res_fa LIG.params

 5. Filter on additional metrics. The commands are similar to those
used in step 3.5.2, but against the design_interfaces.sc score
fi le, and with a new threshold fi le.

 perl ${ROSETTA}/main/source/src/apps/public/enzdes/
DesignSelect.pl -d <(grep SCORE design_results.sc) -c
metric_thresholds.txt -tag_column last > fi ltered_
designs.sc

 awk '{print $NF ".pdb"}' fi ltered_designs.sc> fi l-
tered_pdbs.txt

 Example contents of metric_thresholds2.txt:

 req packstat value > 0.55 # packing metric; 0-1
higher better

 req sc_value value > 0.45# shape complementarity;
0-1 higher better

 req delta_unsatHbonds value < 1.5# unsatisfi ed hydro-
gen bonds on binding

 req dG_separated/dSASAx100 value < -0.5 # binding
energy per contact area

 output sortmin dG_separated# binding energy

 While automated procedures are continually improving and can
substitute to a limited extent [37], there is still no substitute for
expert human knowledge in evaluating designs. Visual inspection
of interfaces by a domain expert can capture system-specifi c
 requirements that are diffi cult to encode into an automated fi lter
(see Note 32).

 Improved results can be obtained by repeating the design protocol
on the output structures from previous rounds of design. The
number of design rounds depends on your system and how quickly

3.6 Manually Inspect
Selected Sequences

3.7 Reapply
the Design Protocol,
Starting at Step 3.4

Rocco Moretti et al.

55

it converges, but 3–5 rounds of design, each starting from the fi l-
tered structures of the previous one, is typical (see Note 33).

 ${ROSETTA}/main/source/src/python/apps/public/
pdb2fasta.py $(cat fi nal_fi ltered_pdbs.txt) > selected_
sequences.fasta

 Only rarely will the initial design from a computational protocol
give exactly the desired results. Often it is necessary to perform
iterative cycles of design and experiment, using information learned
from experiment to alter the design process (Fig. 2).

4 Notes

 1. While Rosetta can ignore chain breaks and missing loops far
from the binding site, the structure of the protein should be
complete in the region of ligand binding. If the binding pocket
is missing residues, remodel these with a comparative model-
ing protocol, using the starting structure as a template.

 2. Acceptable formats depend on the capabilities of your small
molecule handling program. OpenBabel can be used to con-
vert most small molecule representations, including SMILES
and InChI, into the sdf format needed by Rosetta.

3.8 Extract Protein
Sequences
from the Final
Selected Designs
into FASTA Format

3.9 Iteration
of Design

 Fig. 2 Protein/ligand interface design with RosettaLigand. (a) Comparison in improvements in Interface Score
and Total Score for top models from an initial placement, docking without sequence design, and docking with
design. (b) Sequence logo of mutation sites among the top models from a round of interface design [43]. For
most positions, the consensus sequence resembles the native sequence. Amino acids with sidechains that
directly interact with the ligand show a high prevalence to mutation as seen in the positions with decreased
consensus. (c) Example of a typical mutation introduced by RosettaLigand. The protein structure is represented
in cartoon (cyan). The native alanine (pink) is mutated to an arginine residue (green) to match ionic interactions
with the negatively charged ligand (green). Image generated in PyMol [44]

Design of Ligand Binding Sites With Rosetta

56

 3. High resolution experimental structures determined in com-
plex with a closely related ligand are most desirable, but not
required. Experimental structures of the unliganded protein
and even homology models can be used [38 , 39].

 4. The option “-relax:coord_constrain_sidechains” should be
omitted if the starting conformation of the sidechains are from
modeling rather than experimental results.

 5. Rosetta applications encode the compilation conditions in
their fi lename. Applications may have names which end with
*.linuxgccrelease, *.macosclangrelease, *.linuxiccrelease, etc.
Use whichever ending is produced for your system. Applications
ending in “debug” have additional error checking which slows
down production runs.

 6. It is important to add hydrogens for the physiological condi-
tions under which you wish to design. At neutral pH, for
example, amines should be protonated and carboxylates depro-
tonated. The “-p” option of OpenBabel uses heuristic rules to
reprotonate molecules for a given pH value. Apolar hydrogens
should also be present.

 7. Visually examine the produced conformers and manually
remove any which are folded back on themselves or are other-
wise unsuitable for being the target design conformation.

 8. It is unnecessary to sample hydrogen positions during rotamer
generation, although any ring fl ip or relevant heavy atom iso-
meric changes should be sampled.

 9. molfi le_to_params.py can take a number of options—run with
the “-h” option for details. The most important ones are: “-n”,
which allows you to specify a three letter code to use with the
PDB fi le reading and writing, permitting you to mix multiple
ligands; “-p”, which specifi es output fi le naming; “--recharge”,
which is used to specify the net charge on the ligand if not cor-
rectly autodetected; and “--nbr_atom”, which allows you to
specify a neighbor atom (see Note 10)

 10. Specifying the neighbor atom is important for ligands with off-
set “cores”. The neighbor atom is the atom which is superim-
posed when conformers are exchanged. By default the neighbor
atom is the “most central” atom. If you have a ligand with a
core that should be stable when changing conformers, you
should specify an atom in that core as the neighbor atom.

 11. LIG.params expects LIG_conformers.pdb to be in the same
directory, so keep them together when moving fi les to a new
directory. If you change the name of the fi les, you will need to
adjust the value of the PDB_ROTAMERS line in the LIG.
params fi le.

 12. Rosetta expects the atom names to match those generated in
the molfi le_to_params.py step. Even if you have a starting

Rocco Moretti et al.

57

structure with the ligand correctly placed, you should align the
molfi le_to_params.py generated structure into the pocket so
that atom naming is correct.

 13. Other methods of placing the ligand in the pocket are also pos-
sible. Notably, Tinberg et al. [8] used RosettaMatch [40] both
to place the ligand in an appropriate scaffold and to place key
interactions in the scaffold.

 14. Other pocket detection algorithms can also be used (see
Chapter 1 of this volume and [41] for a review).

 15. If you have a particularly large pocket, or multiple potential
pockets, save separate ligand structures at different positions
and perform multiple design runs. For a large number of loca-
tions, the StartFrom mover in RosettaScripts can be used to
randomly place the ligand at multiple specifi ed locations in a
single run.

 16. Being chain X residue 1 should be the default for molfi le_to_
params.py produced structures. Chain identity is important as
the protocol can be used to design for ligand binding in the
presence of cofactors or multiple ligands. For fi xed-location
cofactors, simply change the PDB chain of the cofactor to
something other than X, add the cofactor to the input protein
structure, and add the cofactors’ params fi le to the -extra_res_
fa command line option. For designing to multiple movable
ligands, including explicit waters, see Lemmon et al. [42].

 17. To refi ne the initial starting position of the ligand in the pro-
tein, you can do a few “design” runs as in step 3.4, but with
design turned off. Change the value of the design option in the
DetectProteinLigandInterface tag to zero. A good starting
structure will likely have good total scores and good interface
energy from these runs, but will unlikely result in ideal interac-
tions. Pay more attention to the position and orientation of
the ligand than to the energetics of this initial placement dock-
ing run.

 18. The exact resfi le to use will depend on system-specifi c knowl-
edge of the protein structure and desired interactions. Relevant
commands are ALLAA (allow design to all amino acids),
PIKAA (allow design to only specifi ed amino acids) NATAA
(disallow design but permit sidechain movement), and NATRO
(disallow sidechain movement). The AUTO specifi cation
allows the DetectProteinLigandInterface task operation to
remove design and sidechain movement from residues which
are “too far” from the ligand.

 19. Change the name of the resfi le in the XML script to match the
full path and fi lename of the resfi le you are using. The cut val-
ues decide how to treat residues with the AUTO specifi cation.
All AUTO residues with a C-beta atom within cut1 Angstroms

Design of Ligand Binding Sites With Rosetta

http://dx.doi.org/10.1007/978-1-4939-3569-7_2

58

of the ligand will be designed, as will all residues within cut2
which are pointing toward the ligand. The logic in selecting
sidechains is similar for cut3 and cut4, respectively, but with
 sidechain fl exibility rather than design. Anything outside of the
cut shells will be ignored during the design phase, but may be
moved during other phases.

 20. The grid width must be large enough to accommodate the
ligand. For longer ligands, increase the value to at least the
maximum extended length of the ligand plus twice the value of
box_size in the Transform mover.

 21. Allison et al. [20] found that a value of 1.0 for the
FavorNativeSequence bonus worked best over their bench-
mark set. Depending on your particular requirements, though,
you may wish to adjust this value. Do a few test runs with dif-
ferent values of the bonus and examine the number of muta-
tions which result. If there are more mutations than desired,
increase the bonus. If fewer than expected, decrease the bonus.

 22. More complicated native favoring schemes can be devised by
using FavorSequenceProfi le instead of FavorNativeSequence.
For example, you can add weights according to BLOSUM62
relatedness scores, or even use a BLAST-formatted position-
specifi c scoring matrix (PSSM) to weight the bonus based on
the distribution of sequences seen in homologous proteins.

 23. The value of box_size sets the maximum rigid body displace-
ment of the ligand from the starting position. The value of
rmsd sets the maximum allowed root mean squared deviation
from the starting position. Set these to smaller values if you
wish to keep the designed ligand closer to the starting confor-
mation, and to larger values if you want to permit more move-
ment. These are limits for the active sampling stage of the
protocol only. Additional movement may occur during other
stages of the protocol.

 24. The provided protocol only does one round of design and
minimization. Additional rounds may be desired for further
refi nement. Simply replicate the low_res_dock, design_inter-
face, and high_res_dock lines in the PROTOCOLS section to
add additional rounds of design and optimization. Alternatively,
the EnzRepackMinimize mover may be used for fi ner control
of cycles of design and minimization (although it does not
incorporate any rigid body sampling).

 25. Refi nement of the Rosetta scorefunction for design of pro-
tein/ligand interfaces is an area of current active research.
The provided protocol uses the standard ligand docking
scorefunction which was optimized prior to the scorefunction
changes in 2013, and thus requires an option to revert certain
changes. Decent design performance has also been seen with
the “enzdes” scorefunction (which also requires the -restore_

Rocco Moretti et al.

59

pre_talaris_2013 option) and the standard “talaris2013”
scorefunction.

 26. Use of a computational cluster is recommended for large pro-
duction runs. Talk to your local cluster administrator for
instructions on how to launch jobs on your particular cluster
system. The design runs are “trivially parallel” and can either
be manually split or run with an MPI-compiled version. If
splitting manually, change the value of the -nstruct option to
reduce the number of structures produced by each job, and
use the options -out:fi le:prefi x or -out:fi le:suffi x to uniquely
label each run. The MPI version of rosetta_scripts can auto-
matically handle distributing structures to multiple CPUs, but
requires Rosetta to be compiled and launched in cluster-spe-
cifi c ways. See the Rosetta documentation for details.

 27. The Rosetta option “-s” takes a list of PDBs to use as input for
the run. The residues from multiple PDBs can be combined
into a single structure by enclosing the fi lenames in quotes on
the command line. Multiple fi lenames not enclosed in quotes
will be treated as independent starting structures.

 28. The number of output models needed (the value passed to
-nstruct) will depend on the size of the protein pocket and the
extent of remodeling needed. Normally, 1000–5000 models is
a good sized run for a single starting structure and a single
protocol variant. At a certain point, you will reach “conver-
gence” and the additional models will not show appreciable
metric improvement or sequence differences. If you have addi-
tional computational resources, it is often better to run multi-
ple smaller runs (100–1000 models) with slightly varying
protocols (different starting location, number of rounds,
extent of optimization, native bonus, etc.), rather than have a
larger number of structures from the identical protocol.

 29. Relevant metrics can be determined by using “positive con-
trols”. That is, run the design protocol on known protein–
ligand interactions which resemble your desired interactions.
By examining how the known ligand–protein complexes
behave under the Rosetta protocol, you can identify features
which are useful for distinguishing native-like interactions
from non-native interactions. Likewise, “negative controls”,
where the design protocol is run without design (see Note 17)
can be useful for establishing baseline metric values and
cutoffs.

 30. The thresholds to use are system-specifi c. A good rule of
thumb is to discard at least a tenth to a quarter by each relevant
metric. More important metrics can receive stricter thresholds.
You may wish to plot the distribution of scores to see if there
is a natural threshold to set the cut at. You will likely need to
do several test runs to adjust the thresholds to levels which give

Design of Ligand Binding Sites With Rosetta

60

the reasonable numbers of output sequences. “Negative con-
trols” (the protocol run with design disabled, see Note 17) can
also be used to determine thresholds.

 31. Other system-specifi c metric values are available through the
RosettaScripts interface as “Filters”. Adding “confi dence = 0”
in the fi lter defi nition tag will turn off the fi ltering behavior
and will instead just report the calculated metric for the fi nal
structure in the fi nal score fi le. Many custom metrics, such as
specifi c atom–atom distances, can be constructed in this fash-
ion. See the Rosetta documentation for details.

 32. Certain automated protocol can ease this post-analysis. For
example, Rosetta can sometimes produce mutations which
have only a minor infl uence on binding energy. While the
native bonus (see Notes 21 and 22) mitigates this somewhat,
explicitly considering mutation-by-mutation reversions can
further reduce the number of such “spurious” mutations seen.
Nivon et al. [37] presents such a protocol.

 33. In subsequent rounds, you will likely want to decrease the
aggressiveness of the low resolution sampling stage (the box_
size and rmsd values of the Transform mover in step 3.4.2) as
the ligand settles into a preferred binding orientation. As the
output structure contains both the protein and ligand, the
quotes on the values passed to the “-s” option (see step 3.4.4
and Note 27) are no longer needed. Instead, you may wish to
use the “-l” option, which takes the name of a text fi le contain-
ing one input PDB per line. Each input PDB will each produce
“-nstruct” models. Reduce this value such that the total num-
ber of unfi ltered output structures in each round is approxi-
mately the same.

 Acknowledgements

 This work was supported through NIH (R01 GM099842, R01
DK097376, R01 GM073151) and NSF (CHE 1305874). RM is
further partially supported by grant from the RosettaCommons.

 References

 1. Leader B, Baca QJ, Golan DE (2008) Protein
therapeutics: a summary and pharmacological
classifi cation. Nat Rev Drug Discov 7(1):21–
39. doi: 10.1038/nrd2399

 2. Knudsen KE, Scher HI (2009) Starving the
addiction: new opportunities for durable sup-
pression of AR signaling in prostate cancer.
Clin Cancer Res 15(15):4792–4798.
doi: 10.1158/1078-0432.CCR-08-2660

 3. Baeumner AJ (2003) Biosensors for environ-
mental pollutants and food contaminants. Anal
Bioanal Chem 377(3):434–445. doi: 10.1007/
s00216-003-2158-9

 4. Morin A, Kaufmann KW, Fortenberry C, Harp
JM, Mizoue LS, Meiler J (2011) Computational
design of an endo-1,4-beta-xylanase ligand
binding site. Protein Eng Des Sel 24(6):503–
516. doi: 10.1093/protein/gzr006

Rocco Moretti et al.

http://dx.doi.org/10.1038/nrd2399
http://dx.doi.org/10.1158/1078-0432.CCR-08-2660
http://dx.doi.org/10.1007/s00216-003-2158-9
http://dx.doi.org/10.1007/s00216-003-2158-9
http://dx.doi.org/10.1093/protein/gzr006

61

 5. Morin A, Meiler J, Mizoue LS (2011)
Computational design of protein-ligand inter-
faces: potential in therapeutic development.
Trends Biotechnol 29(4):159–166.
doi: 10.1016/j.tibtech.2011.01.002

 6. Jackel C, Kast P, Hilvert D (2008) Protein
design by directed evolution. Annu Rev
Biophys 37:153–173. doi: 10.1146/annurev.
biophys.37.032807.125832

 7. Nannemann DP, Birmingham WR, Scism RA,
Bachmann BO (2011) Assessing directed evo-
lution methods for the generation of biosyn-
thetic enzymes with potential in drug
biosynthesis. Future Med Chem 3(7):809–
819. doi: 10.4155/fmc.11.48

 8. Tinberg CE, Khare SD, Dou J, Doyle L, Nelson
JW, Schena A, Jankowski W, Kalodimos CG,
Johnsson K, Stoddard BL, Baker D (2013)
Computational design of ligand-binding proteins
with high affi nity and selectivity. Nature
501(7466):212–216. doi: 10.1038/nature12443

 9. Feldmeier K, Hocker B (2013) Computational
protein design of ligand binding and catalysis.
Curr Opin Chem Biol 17(6):929–
933 doi: 10.1016/j.cbpa.2013.10.002

 10. Schueler-Furman O, Wang C, Bradley P,
Misura K, Baker D (2005) Progress in model-
ing of protein structures and interactions.
Science 310(5748):638–642. doi: 10.1126/
science.1112160

 11. Leaver-Fay A, Tyka M, Lewis SM, Lange OF,
Thompson J, Jacak R, Kaufman K, Renfrew
PD, Smith CA, Sheffl er W, Davis IW, Cooper S,
Treuille A, Mandell DJ, Richter F, Ban YE,
Fleishman SJ, Corn JE, Kim DE, Lyskov S,
Berrondo M, Mentzer S, Popovic Z, Havranek
JJ, Karanicolas J, Das R, Meiler J, Kortemme T,
Gray JJ, Kuhlman B, Baker D, Bradley P (2011)
ROSETTA3: an object- oriented software suite
for the simulation and design of macromole-
cules. Methods Enzymol 487:545–574.
doi: 10.1016/B978-0-12-381270-4.00019-6

 12. Kuhlman B, Dantas G, Ireton GC, Varani G,
Stoddard BL, Baker D (2003) Design of a
novel globular protein fold with atomic level
accuracy. Science 302(5649):1364–1368 doi:
 10.1126/science.1089427

 13. Koga N, Tatsumi-Koga R, Liu G, Xiao R,
Acton TB, Montelione GT, Baker D (2012)
Principles for designing ideal protein struc-
tures. Nature 491(7423):222–227.
doi: 10.1038/nature11600

 14. Ashworth J, Taylor GK, Havranek JJ, Quadri
SA, Stoddard BL, Baker D (2010)
Computational reprogramming of homing
endonuclease specifi city at multiple adjacent
base pairs. Nucleic Acids Res 38(16):5601–
5608 doi: 10.1093/nar/gkq283

 15. Sammond DW, Bosch DE, Butterfoss GL,
Purbeck C, Machius M, Siderovski DP,

Kuhlman B (2011) Computational design of
the sequence and structure of a protein-bind-
ing peptide. J Am Chem Soc 133(12):4190–
4192. doi: 10.1021/ja110296z

 16. Fleishman SJ, Whitehead TA, Ekiert DC,
Dreyfus C, Corn JE, Strauch EM, Wilson IA,
Baker D (2011) Computational design of pro-
teins targeting the conserved stem region of
infl uenza hemagglutinin. Science
332(6031):816–821. doi: 10.1126/science.
1202617

 17. Jiang L, Althoff EA, Clemente FR, Doyle L,
Rothlisberger D, Zanghellini A, Gallaher JL,
Betker JL, Tanaka F, Barbas CF 3rd, Hilvert D,
Houk KN, Stoddard BL, Baker D (2008) De
novo computational design of retro-aldol
enzymes. Science 319(5868):1387–1391.
doi: 10.1126/science.1152692

 18. Rothlisberger D, Khersonsky O, Wollacott
AM, Jiang L, DeChancie J, Betker J, Gallaher
JL, Althoff EA, Zanghellini A, Dym O, Albeck
S, Houk KN, Tawfi k DS, Baker D (2008)
Kemp elimination catalysts by computational
enzyme design. Nature 453(7192):190–195.
doi: 10.1038/nature06879

 19. Siegel JB, Zanghellini A, Lovick HM, Kiss G,
Lambert AR, St Clair JL, Gallaher JL, Hilvert
D, Gelb MH, Stoddard BL, Houk KN, Michael
FE, Baker D (2010) Computational design of
an enzyme catalyst for a stereoselective bimo-
lecular Diels-Alder reaction. Science
329(5989):309–313. doi: 10.1126/science.
1190239

 20. Allison B, Combs S, DeLuca S, Lemmon G,
Mizoue L, Meiler J (2014) Computational
design of protein- small molecule interfaces.
J Struct Biol 185(2):193–202. doi: 10.1016/j.
jsb.2013.08.003

 21. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch
EM, Khare SD, Koga N, Ashworth J, Murphy
P, Richter F, Lemmon G, Meiler J, Baker D
(2011) RosettaScripts: a scripting language
interface to the rosetta macromolecular model-
ing suite. PLoS One 6(6):20161. doi: 10.1371/
journal.pone.0020161

 22. Meiler J, Baker D (2006) ROSETTALIGAND:
protein- small molecule docking with full side-
chain fl exibility. Proteins 65(3):538–548.
doi: 10.1002/prot.21086

 23. Davis IW, Baker D (2009) RosettaLigand
docking with full ligand and receptor fl exibility.
J Mol Biol 385(2):381–392. doi: 10.1016/j.
jmb.2008.11.010

 24. Lemmon G, Meiler J (2012) Rosetta Ligand
docking with fl exible XML protocols. Methods
Mol Biol 819:143–155. doi: 10.1007/
978-1-61779-465-0_10

 25. DeLuca S, Khar K, Meiler J (2015) Fully
Flexible Docking of Medium Sized Ligand
Libraries with RosettaLigand. PLoS One

Design of Ligand Binding Sites With Rosetta

http://dx.doi.org/10.1016/j.tibtech.2011.01.002
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125832
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125832
http://dx.doi.org/10.4155/fmc.11.48
http://dx.doi.org/10.1038/nature12443
http://dx.doi.org/10.1016/j.cbpa.2013.10.002
http://dx.doi.org/10.1126/science.1112160
http://dx.doi.org/10.1126/science.1112160
http://dx.doi.org/10.1016/B978-0-12-381270-4.00019-6
http://dx.doi.org/10.1126/science.1089427
http://dx.doi.org/10.1038/nature11600
http://dx.doi.org/10.1093/nar/gkq283
http://dx.doi.org/10.1021/ja110296z
http://dx.doi.org/10.1126/science.1202617
http://dx.doi.org/10.1126/science.1202617
http://dx.doi.org/10.1126/science.1152692
http://dx.doi.org/10.1038/nature06879
http://dx.doi.org/10.1126/science.1190239
http://dx.doi.org/10.1126/science.1190239
http://dx.doi.org/10.1016/j.jsb.2013.08.003
http://dx.doi.org/10.1016/j.jsb.2013.08.003
http://dx.doi.org/10.1371/journal.pone.0020161
http://dx.doi.org/10.1371/journal.pone.0020161
http://dx.doi.org/10.1002/prot.21086
http://dx.doi.org/10.1016/j.jmb.2008.11.010
http://dx.doi.org/10.1016/j.jmb.2008.11.010
http://dx.doi.org/10.1007/978-1-61779-465-0_10
http://dx.doi.org/10.1007/978-1-61779-465-0_10

62

10(7):e0132508. doi: 10.1371/journal.
pone.0132508

 26. O'Boyle NM, Banck M, James CA, Morley C,
Vandermeersch T, Hutchison GR (2011)
Open Babel: an open chemical toolbox.
J Cheminform 3:33. doi: 10.1186/
1758-2946-3-33

 27. Kothiwale S, Mendenhall JL, Meiler J (2015)
BCL::Conf: small molecule conformational
sampling using a knowledge based rotamer
library. J Cheminform 7:47. doi: 10.1186/
s13321-015-0095-1

 28. Allen FH (2002) The Cambridge Structural
Database: a quarter of a million crystal structures
and rising. Acta Crystallogr B 58(Pt 3 Pt 1):380–
388 doi: 10.1107/S0108768102003890

 29. Hawkins PC, Skillman AG, Warren GL,
Ellingson BA, Stahl MT (2010) Conformer
generation with OMEGA: algorithm and vali-
dation using high quality structures from the
Protein Databank and Cambridge Structural
Database. J Chem Inf Model 50(4):572–584.
doi: 10.1021/ci100031x

 30. Labute P (2010) LowModeMD--implicit low-
mode velocity fi ltering applied to conforma-
tional search of macrocycles and protein loops.
J Chem Inf Model 50(5):792–800.
doi: 10.1021/ci900508k

 31. Ebejer JP, Morris GM, Deane CM (2012)
Freely available conformer generation meth-
ods: how good are they? J Chem Inf Model
52(5):1146–1158. doi: 10.1021/ci2004658

 32. Nivon LG, Moretti R, Baker D (2013) A
Pareto- optimal refi nement method for protein
design scaffolds. PLoS One 8(4), e59004.
doi: 10.1371/journal.pone.0059004

 33. Pettersen EF, Goddard TD, Huang CC,
Couch GS, Greenblatt DM, Meng EC, Ferrin
TE (2004) UCSF Chimera--a visualization sys-
tem for exploratory research and analysis.
J Comput Chem 25(13):1605–1612.
doi: 10.1002/jcc.20084

 34. Sheffl er W, Baker D (2009) RosettaHoles:
rapid assessment of protein core packing for
structure prediction, refi nement, design, and
validation. Protein Sci 18(1):229–239.
doi: 10.1002/pro.8

 35. Lawrence MC, Colman PM (1993) Shape
complementarity at protein/protein interfaces.
J Mol Biol 234(4):946–950. doi: 10.1006/
jmbi.1993.1648

 36. Stranges PB, Kuhlman B (2013) A comparison
of successful and failed protein interface designs
highlights the challenges of designing buried
hydrogen bonds. Protein Sci 22(1):74–82.
doi: 10.1002/pro.2187

 37. Nivon LG, Bjelic S, King C, Baker D (2014)
Automating human intuition for protein
design. Proteins 82(5):858–866. doi: 10.1002/
prot.24463

 38. Combs SA, Deluca SL, Deluca SH, Lemmon
GH, Nannemann DP, Nguyen ED, Willis JR,
Sheehan JH, Meiler J (2013) Small-molecule
ligand docking into comparative models with
Rosetta. Nat Protoc 8(7):1277–1298.
doi: 10.1038/nprot.2013.074

 39. Song Y, DiMaio F, Wang RY, Kim D, Miles C,
Brunette T, Thompson J, Baker D (2013)
High- resolution comparative modeling with
RosettaCM. Structure 21(10):1735–1742.
doi: 10.1016/j.str.2013.08.005

 40. Zanghellini A, Jiang L, Wollacott AM, Cheng
G, Meiler J, Althoff EA, Rothlisberger D,
Baker D (2006) New algorithms and an in
silico benchmark for computational enzyme
design. Protein Sci 15(12):2785–2794.
doi: 10.1110/ps.062353106

 41. Henrich S, Salo-Ahen OM, Huang B,
Rippmann FF, Cruciani G, Wade RC (2010)
Computational approaches to identifying and
characterizing protein binding sites for ligand
design. J Mol Recognit 23(2):209–219.
doi: 10.1002/jmr.984

 42. Lemmon G, Meiler J (2013) Towards ligand
docking including explicit interface water mol-
ecules. PLoS One 8(6), e67536. doi: 10.1371/
journal.pone.0067536

 43. Crooks GE, Hon G, Chandonia JM, Brenner
SE (2004) WebLogo: a sequence logo genera-
tor. Genome Res 14(6):1188–1190.
doi: 10.1101/gr.849004

 44. DeLano WL (2007) The PyMOL Molecular
Graphics System 1.0 edn. DeLano Scientifi c
LLC, Palo Alto, CA, USA

Rocco Moretti et al.

http://dx.doi.org/10.1371/journal.pone.0132508
http://dx.doi.org/10.1371/journal.pone.0132508
http://dx.doi.org/10.1186/1758-2946-3-33
http://dx.doi.org/10.1186/1758-2946-3-33
http://dx.doi.org/10.1186/s13321-015-0095-1
http://dx.doi.org/10.1186/s13321-015-0095-1
http://dx.doi.org/10.1107/S0108768102003890
http://dx.doi.org/10.1021/ci100031x
http://dx.doi.org/10.1021/ci900508k
http://dx.doi.org/10.1021/ci2004658
http://dx.doi.org/10.1371/journal.pone.0059004
http://dx.doi.org/10.1002/jcc.20084
http://dx.doi.org/10.1002/pro.8
http://dx.doi.org/10.1006/jmbi.1993.1648
http://dx.doi.org/10.1006/jmbi.1993.1648
http://dx.doi.org/10.1002/pro.2187
http://dx.doi.org/10.1002/prot.24463
http://dx.doi.org/10.1002/prot.24463
http://dx.doi.org/10.1038/nprot.2013.074
http://dx.doi.org/10.1016/j.str.2013.08.005
http://dx.doi.org/10.1110/ps.062353106
http://dx.doi.org/10.1002/jmr.984
http://dx.doi.org/10.1371/journal.pone.0067536
http://dx.doi.org/10.1371/journal.pone.0067536
http://dx.doi.org/10.1101/gr.849004

63

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_5, © Springer Science+Business Media New York 2016

 Chapter 5

 PocketOptimizer and the Design of Ligand Binding Sites

 Andre C. Stiel , Mehdi Nellen , and Birte Höcker

 Abstract

 PocketOptimizer is a computational method to design protein binding pockets that has been recently
developed. Starting from a protein structure an existing small molecule binding pocket is optimized for the
recognition of a new ligand. The modular program predicts mutations that will improve the affi nity of a
target small molecule to the protein of interest using a receptor–ligand scoring function to estimate the
binding free energy. PocketOptimizer has been tested in a comprehensive benchmark and predicted muta-
tions have also been used in experimental tests. In this chapter, we will provide general recommendations
for usage as well as an in-depth description of all individual PocketOptimizer modules.

 Key words Computational protein design , Protein–small molecule interaction , Ligand binding
design , Enzyme engineering , PocketOptimizer

1 Introduction

 Computational design of ligand binding pockets is related to the
 well-known fi eld of molecular docking. It aims at identifying muta-
tions in the binding pocket that establish or improve the affi nity
and specifi city of a given ligand. From a search space point of view,
it can be regarded as docking of a ligand against an ensemble con-
taining all allowed permutations of the binding pocket.

 In the last decade, the fi eld of computational protein design
has progressed considerably. However, the number of versatile and
robust algorithms (beyond training-set optimized specialized
cases) is still small. One reason might be that despite the large
number of new and innovative tools for computational design,
consistent benchmark sets and strategies for comparing algorithm
performance are lacking. For example, in prior studies we com-
pared the energy functions of CADD-Suite [1] and Autodock-
Vina [2] and could already identify individual strengths and
weaknesses [3]. Such data can be a fi rst step toward building better
energy functions. Another important topic is the implementation
of backbone fl exibility, especially with respect to ambitious design

64

tasks involving pronounced changes in the binding pocket. In
these cases, different sources of backbone ensembles should be
benchmarked including experimentally (e.g. native crystal struc-
tures, NMR structures) as well as computationally derived ones
(e.g. snapshots from molecular dynamics simulation, geometric
programs such as Backrub [4] or BRDEE [5]).

 Consequently, we developed PocketOptimizer, a tool for com-
putational binding pocket design [3]. The defi ning feature of this
program is its modularity. All components: sampling of the ligand
position and the binding pocket conformers, scoring of pairwise
and self-energies as well as calculation of solutions are crafted as
 individual modules relying on human-readable input- and output-
fi le formats. Within a single framework this allows the user to sub-
stitute sampling strategies, energy functions, or complete
algorithms, e.g. to compare techniques or to benchmark own
developments toward binding pocket design. Beyond that, a mod-
ular program easily allows the implementation of consensus scor-
ing which is likely to provide a more robust result than the use of
only one algorithm. PocketOptimizer has already been tested
against a benchmark set of 12 proteins and proofed to perform
similar to the design program Rosetta [6]. We hope that this addi-
tion to the family of programs provides a further step toward
addressing the comparability issues raised above.

 The present chapter consists of two parts: (1) An introduction
and guide to PocketOptimizer covering general strategic questions
(a complementary hands-on user guide is available in the manual
and the tutorial provided with the program). (2) A detailed mecha-
nistic description and tech-notes on all PocketOptimizer modules.
Apart from providing necessary information to exploit the modu-
larity of the program, this part will also aid the user in trouble-
shooting problems during general use.

2 Methods

 PocketOptimizer is comprised of seven main modules (Fig. 1)
(see Note 1): poseGenerator and createPocketSidechainCon-
formers provide the sampling capacity for the ligand and the
binding pocket residues. Scoring of the self-energies of the ligand
and the binding pocket residues is accomplished by calculateLi-
gandScaffoldScores* and sidechainScaffoldEnergyCalcula-
tor . The pairwise energies in the binding pocket are computed
via calculateLigandSidechainScore* and calculateSidechain-
PairEnergies for the interaction of the ligand with the binding
pocket residues and for the residues among themselves, respec-

2.1 PocketOptimizer
General Strategies
and Considerations

 * These programs are available in two versions utilizing CADD- Suite or Autodock-Vina as scoring algorithms: calcu-
lateLigandScaffoldBALLScores, calculateLigandScaffoldVinaScores, calculateLigandSidechainBALLScore, calculate-
LigandSidechainVinaScore

Andre C. Stiel et al.

65

ligand scaffold
sa

m
p
lin

g
sc

o
ri
n
g

p
ai

rw
is

e
se

lf

in
p
u
t

so
lv
in
g

prepareOptimizerEnergyFile

summary table of energies
all four energies merged into one

(weighted)

calculateDesignSolutions

design solutions
best energy combination: all ligand poses
& binding pocket rotamers incl. mutations

processSolutions

visualized design solutions
& energy tables

poseGenerator

ligand pose ensemble
rotational and translational moves

calculateLigandSidechain[BALL/Vina]Score

ligand poses vs binding pocket residues
pairwise-energies table

ligand conformer ensemble (.sdf)

createPocketSidechainConformers

rotamers of binding pocket sidechains
rotamer library & allowed mutations
(all other scaffold residues are fixed)

sidechainScaffoldEnergyCalculator

binding pocket vs fixed residues
pairwise-energies table

(conformer self-energy)

calculateSidechainPairEnergies

binding pocket residues vs each other
pairwise-energies table

scaffold structure (.pdb)

binding pocket residue definition

calculateLigandScaffold[BALL/Vina]Scores

ligand poses vs fixed residues
pairwise-energies table

(ligand self-energy)

 Fig. 1 Description of the PocketOptimizer workfl ow. User input is shown as ellipses , program modules as
 boxes , and module output as rounded and fi lled boxes . The elements are ordered by dependence on the input
ligand or the scaffold as well as by belonging to the sampling, scoring, or solving group of program modules

Design of Ligand Binding Sites with PocketOptimizer

66

tively. Finally, based on the calculated energies the module calcu-
lateDesignSolutions employs a linear programming algorithm
to identify the best energy solution(s). Below we describe consid-
erations regarding the different components.

 1. Ligand
 Based on the input ligand, poseGenerator builds a ligand pose
ensemble in the binding pocket employing user-defi ned trans-
lational and rotational movements with a subsequent fi ltering
for clashes. Some considerations are important: (1) poseGen-
erator does not sample internal degrees of freedom. Thus, if
the ligand has rotatable bonds an input conformer ensemble
has to be provided by the user. It can be generated by, e.g.
FROG [7] or confab [8]. (2) The coordinates of the input
ligand (“−”conformers) have to match those of the receptor
structure since the origin of the transformations applied by
poseGenerator is the initial ligand position. Please be aware
that manually created ligands or ligands derived from a chemi-
cal component library will have coordinates mostly centered at
the origin of the space (0,0,0). (3) Naturally, the completeness
of the pocket sampling is dependent on the initial placement of
the ligand and extent of movement (provided as parameters
maximum and step size). Thus, choosing the limits of the
movements slightly beyond the pocket boundaries ensures
complete coverage of the binding pocket and can rectify an
initial misplacement of the ligand (see point 2). (4) Especially
for larger pockets with unknown binding- mode it can be
worthwhile to fi rst scan the pocket relatively broadly (i.e. to
run PocketOptimizer based on a coarse ligand pose ensemble)
and, once a reasonable binding position is identifi ed, to use
fi ner sampling to identify the ideal binding pose and a most
convincing energy. (5) In general, the ligand should contain
hydrogens and proper charges: e.g. a ligand can be obtained as
“ideal instance” from the chemical component dictionary [9],
while the required charges can be calculated for example with
 antechamber (http://ambermd.org/antechamber/antecham-
ber.html). For further details on the input formats see
Subheading 2 . A script for automatic ligand preparation is part
of the PocketOptimizer program downloadable at our homep-
age [10].

 2. Receptor and binding pocket defi nition
 The receptor structure is given as a fi le in PDB format (.pdb).
It is recommended that the fi le is cleaned and standardized
since this simplifi es data analysis and troubleshooting: i.e. chain
breaks and special amino acids should be avoided, waters or
ions should be deleted or treated explicitly.

Andre C. Stiel et al.

http://ambermd.org/antechamber/antechamber.html
http://ambermd.org/antechamber/antechamber.html

67

 The binding pocket residues are defi ned in a plain text fi le
(.txt). Additionally, this fi le is used to specify mutagenesis posi-
tions and the range of allowed amino acids at this position. The
number of pocket residues or mutations is not limited, however,
the calculation time exponentially scales with the number of bind-
ing pocket residues.

 3. Waters, ions, and cofactors
 Heteroatoms other than the ligand (waters, ions, or other
cofactors) play a signifi cant role in binding events and can be
an essential part of the calculation. There are multiple
approaches to include these molecules in PocketOptimizer: (1)
They can be treated as extensions to the ligand. In this case
each member of the conformer ensemble has to be solvated
(e.g. using the leap program from the Amber package) before
being subjected to poseGenerator. (2) Alternatively, the addi-
tional heteroatoms can be treated in the same way as the main
ligand. That is: sampling of accessible positions, self- as well as
pairwise-energies to the binding pocket, the ligand and poten-
tially other accessory molecules. This option is computation-
ally very expensive since all combinations of poses and
conformers between the different ligands need a pairwise
energy calculation to be performed. (3) An intermediate solu-
tion is to only perform these calculations on manually identi-
fi ed positions for the additional heteroatoms and let
PocketOptimizer evaluate if they “improve” the binding or
not. To this extend PocketOptimizer defi nes these molecules
as two “conformers”: molecule is present at that position and
molecule is not present.

 Subheading 2.2 item 7 explains how additional molecules can
be invoked for the calculation of solutions. In principle there is no
limit to the number of additional molecules other than the increas-
ing computational complexity.

 4. PocketOptimizer run
 All modules of PocketOptimizer can be run individually by
 calling them, together with their specifi c keywords (see Note 2),
as arguments of the python script PocketOptimizer.py (see
 Note 3). This provides full fl exibility in the usage of the mod-
ules. However, if the modules are not used in a consecutive
manner, the input for each module must be otherwise pro-
duced by the user. Dependencies are visualized in Fig. 1 and
explained explicitly (including fi le formats) in Subheading 2.2 .
As an alternative to the step-by-step module calling, there is a
script, which runs through all modules automatically (see Note 4).
This script is part of the PocketOptimizer distribution and is

Design of Ligand Binding Sites with PocketOptimizer

68

explained briefl y at the end of the chapter. Based on a param-
eter fi le, input ligands and receptor structure as well as binding
pocket defi nition, the script runs all PocketOptimizer modules
with intermittent output checks in one go.

 5. Interpreting results
 As an output PocketOptimizer calculates binding-, packing-
and total-energy of the solution(s) as well as the respective
ligand pose and binding pocket conformers. The nature of the
linear programming algorithm of CalculateDesignSolutions
results in the single best solution; however, any arbitrary num-
ber of lower-value solutions can also be computed. This
approach differs from the heuristic Monte-Carlo strategy of
Rosetta, which provides a large number of design solutions
that have to be ranked and analyzed subsequently to derive the
“best” solutions.

 For a given question it is advisable to run PocketOptimizer
with multiple different parameters (ligand charge/protonation,
sidechain- rotamer library, backbone positions, weight set, and so
on) and compare the results numerically and structurally to retrieve
a more comprehensive and insightful solution.

 In this section every module is described in detail together with the
necessary input data and the output that is generated. Running the
script with the --help fl ag provides a brief description of each
module and its arguments.

 1. poseGenerator (C++)

 description: The module creates a ligand pose ensemble
employing translational (−− translation-step, −-max-
translation) and rotational movements (−− rotation-step,
−-max-rotation, −-axis- detail) of the supplied ligand
conformer library. The resulting ligand poses can be fi ltered
for proximity to the binding site (−− max- pocket- distance,
−-min-pocket-fraction) and potential clashes with the scaf-
folds’ backbone (−− vdw-cutoff). The module is build upon
functionalities of the BALL library (http://www.ball-project.
org/caddsuite).

 input : (1) a ligand rotamer library fi le (SDF format, .sdf) with
the associated data fi eld “ <AMBER TYPES> ” contains Amber
type naming of all atoms, (2) the scaffold structure (.pdb), (3)
plain text fi le indicating the binding pocket residues (posi-
tions.txt). The atom nomenclature needs to be provided in
the fi eld “ <AMBER TYPES> ”. Amber conform atom types can be
created using the antechamber program from the Amber-tools
package [11] with the atom-types option set to amber (“ -at
amber ”).

2.2 Module
Description

Andre C. Stiel et al.

http://www.ball-project.org/caddsuite
http://www.ball-project.org/caddsuite

69

 output: ligand_poses.sdf contains all poses delimited by
“ $$$$ ”, including the Amber type naming as described above.

 2. createPocketSidechainConformers (python)

 Description: This module creates rotamers for every binding
pocket residue position specifi ed and, if mutagenesis is per-
formed, for every possible amino acid type at the given posi-
tion. The rotamers are minimized and fi ltered for clashes with
scaffold residues based on the van der Waals (vdW) energy.
Internally, all calculations are done by TINKER [12]. A TINKER
key fi le (“ .key ”) that contains all minimization parameters will
be generated in the directory specifi ed with the --temp-dir
option. It is possible to edit this fi le allowing maximal control.
Based on the calculated energy rotamer, solutions are accepted
or rejected (−− energy-threshold). Possible rotamers are read
from a rotamer library directory (−− conformer-lib-dir) that
contains the rotamers for each amino acid in single .pdb and
single .sdf fi les. The employed force-fi eld can be changed via
 --ff-param-fi le .

 input : (1) the scaffold structure (.pdb), (2) plain text fi le indi-
cating the binding pocket residues (positions.txt).

 output: A folder (scaffold_rotamers) with sub-folders of all
binding pocket positions (format: [chain]_[residue_number]).
If mutations are performed, the sub-directory contains all
allowed residues, otherwise only the wild type residue. For
each residue there is one .pdb fi le with the rotamers separated
by “ TER ” cards. Entries are numbered consecutively and not as
in a multimodel pdb. Besides the .pdb fi le, there is a similar
structured .sdf fi le. If no suitable rotamer was found this is
indicated in the console output by “ No suitable conformers
found for [position] ”.

 3. calculateLigandScaffoldBALLScores (python), calculateLi-
gandScaffoldVinaScores (python)

 description: The module calculates pairwise energies between
the ligand poses and the fi xed residues of the scaffold (i.e. each
residue of the scaffold that is not specifi ed in positions.txt).
This can be interpreted as the self-energy of the ligand pose
in the binding pocket. The python script itself calls
 ReceptorDesignScorer.exe for every ligand pose–scaffold
combination. This step can be parallelized using the option -s .
Since the executable builds on BALL functionalities, several
docking parameters (e.g. vdW forces and electrostatic cut-off)
can be accessed by editing the fi le scoring_options.ini (in
 share/BALL_scorer/scoring_options.ini). Internally, the
calculations are split into batches of 50 ligand poses per run.
The program requires the poses as a single .sdf fi le together

Design of Ligand Binding Sites with PocketOptimizer

70

with the scaffold structure as a .sdf . The output of each run
contains the structure as described below and is eventually
combined with the other fi les to one fi nal output table (see
 Note 5).

 For the AutoDock-Vina implementation, the Autodock
executable (vina.exe) is called internally in a similar fashion as
described above. Autodock requires the presence of a pdbqt
(description) fi le, which is generated internally by the function
 prepareReceptorPDBQT in Autodock.py (py/Common).

 input : (1) a ligand pose ensemble fi le (ligand_poses.sdf)
with the associated data fi eld “ <AMBER TYPES> ” (c.f. 2.2.1), (2)
the scaffold structure (.pdb), (3) an ascii-text fi le indicating
the binding pocket residues (positions.txt)

 output: A tab formatted text fi le (ligand_energies/ligand/
ligand.dat) containing a matrix with the ligand poses as lines
and the residue energy terms as columns. For every residue fi ve
columns exist, corresponding to the fi ve energy terms: adv,
vdW, solvation, HB, and rotamer. “adv” represents the elec-
trostatics term in the BALL framework. For Autodock-Vina
the output follows the same format but includes: gauss1,
gauss2, repulsion, hydrophobic, and hydrogen (see Autodock
for details). Since in the current implementation of
PocketOptimizer (version 1.2.0) the individual energies are
simply added up, the different composition of the score terms
does not matter.

 4. sidechainScaffoldEnergyCalculator (C++)

 description: The program module calculates the energies of the
individual rotamers of all binding pocket residues with respect
to the scaffold. Various parameters for treatment of electrostat-
ics and vdW forces can be adjusted (−− es-scaling-factor,
−-es-distance- cutoff, −-dist-dep-dielectric, −-vdw-
distance-cutoff, −-vdw-softening- limit, −-vdw-
radius-scaling-factor, −-vdw-method). The module uses
components of the BALL framework.

 input : (1) Binding pocket residue rotamers in the format
described for the rotamer creation above. (2) The scaffold
structure (.pdb)

 output: Directory structure as described for the rotamer cre-
ation above. For every residue there is a tab delimited
text fi le (.out) that contains a matrix with rotamers for the resi-
due as rows and columns for vdW and electrostatic energies.

 5. calculateSidechainPairEnergies (C++)

 description: This part calculates pairwise energies between the
respective rotamers of all binding pocket residues. The scaling

Andre C. Stiel et al.

71

factors for electrostatics and vdW forces can be adjusted (−− es-
factor, −-vdw-radius-factor). Internally, for every combi-
nation sidechainPairEnergyCalculator- static.exe is
called. The module uses components of the BALL framework.

 input : Binding pocket residue rotamers in the format described
for the rotamer creation above.

 output: Files for every binding pocket residue combination
(naming: [res1]-[res2] with each res: [chain]_[residue_num-
ber]_[3-letter amino acid-type]) stored in a directory called
 scaffold_rotamers_pair_energies . The fi les contain a
matrix with rotamers of residue one as rows and two columns
for each rotamer of residue two that contain the vdW and elec-
trostatic energy, respectively.

 6. calculateLigandSidechainBALLScore (python), calculateLi-
gandSidechainVinaScore (python)

 description: This module calculates pairwise energies between
the respective rotamers of every binding pocket residue and all
ligand poses. For each combination of rotamer set and ligand
poses an instance of calcLigandSidechainScore.py is called
that executes ReceptorDesignScorer.exe in the same fashion
as described above for calculateLigandScaffoldBALLScores.
The batch size is 20 ligand poses per run. For the AutoDock-
Vina implementation computeVinaScores.py is called that
besides the pdbqt generation (see above for calculateLigand-
ScaffoldVinaScores) calls vina.exe . The script computeVi-
naScores.py also accepts weighting terms that cannot be
accessed in the main python module.

 input : (1) The binding pocket residue rotamers in the format
described for the rotamer creation above. (2) The ligand poses
in the format described for ligand pose ensemble creation.

 output: Files for every binding pocket residue and mutation
(format: [ligand]_[ligand]-[chain]_[residue_number]_[3-let-
ter amino acid-type]) stored in a directory called by default
 Ligand_Scaffold_Pair_E . The fi le is a tab delimited text fi le
containing a matrix with the ligand poses as rows and the resi-
due-rotamers energy terms as columns. The number of rows
should be equal to the number of ligand poses, while for the
columns there are fi ve energy terms per rotamer (adv, vdW,
solvation, HB, rotamer). For the AutoDock-Vina score terms
see description in calculateLigandScaffoldVinaScores .

 7. prepareOptimizerEnergyFile (python)

 description: The module creates one single energy table fi le
from the individual output of the various modules described
above. Furthermore, auxiliary fi les are created that defi ne the

Design of Ligand Binding Sites with PocketOptimizer

72

order of the energy fi le corresponding to the residues and
ligand. The readout of the previously generated energy fi les
distinguishes between self and pairwise energies (py/
Optimizer/energyReader.py). Energy tables with only two
energy terms are treated in the same way as tables with fi ve
terms by summing up the energies. The columns for the respec-
tive energy array (two or fi ve) are selected based on the recur-
ring header of the type “ [3-letter-residue-type]_[number
of e.g. rotamer]_ ”. All energies are negated, and the ligand
energies can be scaled (−− ligand-factor). Waters can be
included using the water fl ag (−− water) with their index as
argument (e.g. “ water180 ”, multiple waters can be invoked by
repeated calls of the water fl ag). The same works for metals
(−− metal, e.g. mg_ion:mg) and cofactors (−− cofactor).

 input : (1) The paths to all required energy fi les. (2) A text fi le
indicating the binding pocket residues (positions.txt)

 output : (1) The primary output is a space-separated text fi le
containing the complete energy table (lambdas.txt). The fi le
can be separated in four sections (although not visually): (a)
First the pairwise energies of the respective rotamers of all bind-
ing pocket residues with each other. Each line in this section is
dedicated to a residue combination and the line provides all
energies of all possible rotamer combinations. (b) The second
section stores the pairwise energies of the ligand with each
binding pocket residue. Each line represents the energies for all
combinations of ligand poses with rotamers at the respective
residue position. (c) The third section contains all self-energies
of the binding pocket residues. Each line provides the energies
for all rotamers of the given residue. (d) The fourth section
does the same for all ligand poses (i.e. only one line). (2) Two
additional identical fi les (regions.txt, intersects.txt)
describe the order of the energies in lambdas.txt based on the
numbering (order) of binding pocket residues given in posi-
tions.txt and the ligand as last entry. Consequently, the fi les
consist of two parts (a and b described in (1) above) with two
columns providing the pairwise combinations and two parts (c
and d) providing the numbering for the residues and ligand.
(3) Another fi le (region_intersects.txt) contains the same
information in another numbering scheme, starting with the
last sorting number of the combinations. Additionally, a frontal
third (or second for c and d) column provides a running num-
ber starting with one. (4) A text fi le (var_sizes.txt) contains
just the number of rotamers of the respective residue in a line,
with the number of ligand poses in the last line. (5) A summary
fi le (index.dat) contains all this information in a more read-
able format. This fi le contains the ligand scaling factor
(“ [SCALING] ”) at the very bottom. It can be used to scale the
energies regarding the ligand energies vs. packing energies.

Andre C. Stiel et al.

73

 8. calculateDesignSolutions (python)

 description: The module is used to call the MPLP solver[13]
(algo_triplet.exe) with arguments for the algorithm
(−− niter, −-niter- later, −-nclust_to_add, −-obj-
del-thr, −-int-gap-thr). The algorithm utilizes cluster-
based linear programming with belief propagation to effi ciently
identify the best energy combination of rotamers of binding
pocket residues and a ligand pose. If several amino acids at a
binding pocket position are allowed (mutations), the solution
helps to identify the energetically most favored mutations. The
number of output solutions (2nd best …) can be adjusted
(−− number-of-solutions).

 input: All fi les prepared by prepareOptimizerEnergyFile

 output : (1) A text fi le (all_solutions.txt) giving all solu-
tions with one solution per line in decreasing order. Each solu-
tion is represented by space-separated numbers, with each
number being the rotamer of the respective binding pocket
residue and the last number being the ligand pose. The num-
bering follows the one given in index.dat . (2) Individual fi les
for each solution with the same convention as for the all solu-
tions fi le (res00.txt …).

 9. processSolutions (python)

 description: This module can be used to present the solution found
by the calculateDesignSolutions as .pdb fi le with a detailed
energy contribution description. Prior to processing the solutions,
the solver fi le containing all solutions can be used to identify solu-
tions sharing same mutants, rotamers, or ligand poses. This pro-
vides a better overview over the possible results, their energies and
thus the confi dence regarding the top-score solution.

 input : (1) The solutions fi le. (2) All necessary fi les and directo-
ries allowing to build the representative .pdb and to compile
the solutions’ energy report from the individual energies.

 output: A directory named with the solution number contain-
ing .pdb and .pml fi les of the solution as well as the energy
report in .txt and .html format.

3 Notes

 1. Binary packages of PocketOptimizer can be obtained from
(https://webdav.tue.mpg.de/u/birtehoecker). For convenience
we provide PocketOptimizer also as a completely set-up image-
container which can be loaded using the Docker software [14].

 2. PocketOptimizer is able to work with fl ag fi les; with one fl ag/
argument per line. The only difference to the command line is

Design of Ligand Binding Sites with PocketOptimizer

https://webdav.tue.mpg.de/u/birtehoecker

74

that equal signs are required between the fl ags and the argu-
ments. Moreover, trailing spaces are not allowed (e.g. “ --
water water180 ” becomes “ --water=water180 ”).

 3. Version 1.2.0 of PocketOptimizer (as of 2016) provides a
wrapper script called PocketOptimizer.py . All functionalities
can be called via this script (see manual and tutorial for details).
 The modules can be still used as stand-alones but the user then
has to take care of setting proper paths to libraries and addi-
tional content (like CADD-Suite).

 4. Due to the modular nature of PocketOptimizer, we suggest to
process multiple structures in an automated fashion, since oth-
erwise all modules have to be started individually and their
appropriate output has to be checked. An adequate script
needs to check the proper termination of all modules by vali-
dating the individual output formats described above. For
example, the number of computed pairwise ligand versus bind-
ing pocket residue energies has to match with the number of
previously computed ligand poses and binding pocket rotam-
ers. For Ubuntu systems, a modifi cation of the PocketOptimizer
start script performing an automated multi-structure process-
ing is part of the PocketOptimizer distribution. The script has
to be called with a command-fi le specifying the individual
command line arguments for each module. The script is also
able to do an automatic alignment of the prepared ligand to
the binding pocket of the scaffold structure. For this, a special
input fi le has to be provided (static.txt) that should contain
three atoms that are linearly independent of each other (e.g.
not lie in one straight line) and that do not move between the
different conformers (e.g. an aromatic ring at the root of the
structure). This will result in the atoms listed in the static.
txt fi le to be aligned to each other and to the correct position
in the binding pocket.

 5. A temporary directory (−− temp-dir) with enough free space is
of importance especially when a large number of ligand poses
or large scaffolds are used. Temporary directories are used in
 the following modules: calculateLigandScaffoldScores, create-
PocketSidechainConformers, calculateSidechainPairEnergies,
calculateLigandSidechainScore, and calculateDesignSolutions.

 Acknowledgments

 Financial support from the German Research Foundation (DFG
grant HO 4022/2-3) is acknowledged. M.N. was supported by
the Erasmus+ mobility program. The authors like to thank Steffen
Schmidt for comments on the manuscript.

Andre C. Stiel et al.

75

 References

 1. Kohlbacher O (2012) CADDSuite – a
workfl ow- enabled suite of open-source tools
for drug discovery. J Cheminform 4:O2.
doi: 10.1186/1758-2946-4-S1-O2

 2. Trott O, Olson AJ (2010) AutoDock Vina:
improving the speed and accuracy of docking
with a new scoring function, effi cient optimi-
zation, and multithreading. J Comput Chem
31:455–61. doi: 10.1002/jcc.21334

 3. Malisi C, Schumann M, Toussaint NC et al
(2012) Binding pocket optimization by com-
putational protein design. PLoS One 7,
e52505. doi: 10.1371/journal.pone.0052505

 4. Smith CA, Kortemme T (2008) Backrub-like
backbone simulation recapitulates natural pro-
tein conformational variability and improves
mutant side-chain prediction. J Mol Biol
380:742–56. doi: 10.1016/j.jmb.2008.05.023

 5. Georgiev I, Keedy D, Richardson JS et al
(2008) Algorithm for backrub motions in pro-
tein design. Bioinformatics 24:i196–204.
doi: 10.1093/bioinformatics/btn169

 6. Richter F, Leaver-Fay A, Khare SD et al (2011) De
novo enzyme design using Rosetta3. PLoS One 6,
e19230. doi: 10.1371/journal.pone.0019230

 7. Leite TB, Gomes D, Miteva MA et al (2007)
Frog: a FRee Online druG 3D conformation
generator. Nucleic Acids Res 35:W568–72.
doi: 10.1093/nar/gkm289

 8. O’Boyle NM, Vandermeersch T, Flynn CJ
et al (2011) Confab - Systematic generation of
diverse low-energy conformers. J Cheminform
3:8. doi: 10.1186/1758-2946-3-8

 9. wwPDB (2008) Chemical Component
Dictionary. http://www.wwpdb.org/ccd.
html . Accessed 17 Feb 2016

 10. Höcker Lab (2015) Algorithms and software.
 https ://webdav.tue.mpg.de/u/bir te-
hoecker// . Accessed 17 Feb 2016

 11. AMBER (2015) The amber molecular dynam-
ics package. http://ambermd.org . Accessed
17 Feb 2016

 12. Jay Ponder Lab (2015) TINKER molecular
modeling package. http://dasher.wustl.edu/
tinker/ . Accessed 17 Feb 2016

 13. Sontag D, Choe DK, Li Y (2012) Effi ciently
searching for frustrated cycles in MAP infer-
ence. arXiv preprint arXiv:1210.4902

 14. DOCKER (2015) Docker software. http://
www.docker.com . Accessed 17 Feb 2016

Design of Ligand Binding Sites with PocketOptimizer

http://dx.doi.org/10.1186/1758-2946-4-S1-O2
http://dx.doi.org/10.1002/jcc.21334
http://dx.doi.org/10.1371/journal.pone.0052505
http://dx.doi.org/10.1016/j.jmb.2008.05.023
http://dx.doi.org/10.1093/bioinformatics/btn169
http://dx.doi.org/10.1371/journal.pone.0019230
http://dx.doi.org/10.1093/nar/gkm289
http://dx.doi.org/10.1186/1758-2946-3-8
http://www.wwpdb.org/ccd.html
http://www.wwpdb.org/ccd.html
https://webdav.tue.mpg.de/u/birtehoecker/PocketOptimizer/
https://webdav.tue.mpg.de/u/birtehoecker/PocketOptimizer/
http://ambermd.org/
http://dasher.wustl.edu/tinker/
http://dasher.wustl.edu/tinker/
http://www.docker.com/
http://www.docker.com/

77

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_6, © Springer Science+Business Media New York 2016

Chapter 6

Proteus and the Design of Ligand Binding Sites

Savvas Polydorides, Eleni Michael, David Mignon, Karen Druart,
Georgios Archontis, and Thomas Simonson

Abstract

This chapter describes the organization and use of Proteus, a multitool computational suite for the
 optimization of protein and ligand conformations and sequences, and the calculation of pKα shifts and
relative binding affinities. The software offers the use of several molecular mechanics force fields and sol-
vent models, including two generalized Born variants, and a large range of scoring functions, which can
combine protein stability, ligand affinity, and ligand specificity terms, for positive and negative design. We
present in detail the steps for structure preparation, system setup, construction of the interaction energy
matrix, protein sequence and structure optimizations, pKα calculations, and ligand titration calculations.
We discuss illustrative examples, including the chemical/structural optimization of a complex between the
MHC class II protein HLA-DQ8 and the vinculin epitope, and the chemical optimization of the comp-
statin analog Ac-Val4Trp/His9Ala, which regulates the function of protein C3 of the complement
system.

Key words Protein design, Ligand design, Monte Carlo, Implicit solvent, Generalized Born model

1 Introduction

Computational protein design (CPD) is a set of methods to
 engineer proteins (and ligands) and optimize molecular properties
such as stability, binding affinity, and binding specificity. Many suc-
cessful CPD examples have been reported in recent years [1–15],
and their impact will certainly increase with the continuous
improvement in CPD tools and computational hardware.

We have developed the Proteus (v. 2.1) software package for
computational protein and ligand design [16–18]. It consists of
(1) a modified version of the XPLOR program [19], which per-
forms the initial setup of the system under study, computes an
energy matrix used in the design, and re-assesses the conforma-
tions and sequences suggested by the design; (2) a library of scripts
in the XPLOR command language that control the calculations;
(3) the proteus program (v. 30.4), which conducts the actual

78

search in the protein and ligand’s structure and sequence space; (4)
a set of Perl scripts to help analyze the solutions provided by pro-
teus. Shell scripts that automate the whole procedure are also avail-
able. For the sake of clarity, in this chapter we describe a detailed
design protocol, so that new users can follow it step by step.

The concepts of stability or specificity design, as implemented in
Proteus, are illustrated in the thermodynamic cycles of Fig. 1. The
cycle on the left compares the stabilities of two sequences A and B.
The folding processes are depicted by the vertical legs; the hori-
zontal legs display the (unphysical) transformations from sequence
A into B, in the folded (N) and unfolded (U) states. The difference
between the free energy changes for the horizontal (or vertical)
legs yields the difference in stability between the two sequences:

DDG G P G P G P G Pf B

N
A
N

B
U

A
U= () - ()éë ùû - () - ()éë ùû

(1)

Stability calculations seek to minimize the above free energy differ-
ence ΔΔGf.

Specificity calculations are illustrated by the thermodynamic
cycle on the right of Fig. 1. The vertical legs represent the binding
of two ligands L1 and L2 to a protein P; the horizontal legs repre-
sent the (unphysical) chemical transformation between the two
ligands, either in the protein complex (top leg) or in solution (bot-
tom leg). If L1 is a reference ligand and L2 a modified analog, the
calculations seek to minimize the relative binding free energy

 DDG G P L G P L G L G Lb = () - ()éë ùû - () - ()éë ùû: :2 1 2 1 (2)

The above expression assumes that the protein relaxes to the same
state (P) upon dissociation of the two complexes (unlike some
MM-PBSA or MM-GBSA methods [20, 21]).

The free energies appearing in Eqs. 1–2 are computed via a physi-
cal energy function with the general form:

 G E E E E E E E E E= + + + + + + + +bond angle dihe impr vdW coul GB SA corr. . . (3)

1.1 Thermodynamic
Cycles

1.2 Energy Model

Fig. 1 Thermodynamic cycles employed in CPD of stability (a) and ligand
 specificity (b)

Savvas Polydorides et al.

79

The first six terms describe the internal and nonbonded contributions
to the potential energy of the protein or ligand under study, and
are borrowed from a molecular mechanics energy function. The
parameterizations currently available in Proteus are the Charmm19
force field [22] and the Amber ff99SB force field [23]. The next
two terms capture solvent effects via a generalized Born (GB)
approximation and an accessible surface area (SA) term. Simpler
energy functions that model solvent electrostatic screening via a
homogeneous (“cdie”) or distance-dependent (“rdie”) dielectric
constant are also available. The last term represents an optional
“correction” energy, whose interpretation depends on the design
criterion (see below).

The above free energies are functions of the atomic coordinates.
This poses a difficulty in the case of unfolded states, for which
structural models are not readily available. In stability calculations,
we make the assumption that the sidechains do not interact with
each other in the unfolded state, but only with nearby backbone
and solvent [24–26]. We implement this idea by considering any
sidechain X as a part of a tripeptide Ala-X-Ala. We compute the
average free energy for a large number of backbone conformations
of the tripeptide, using Eq. 3, and assign this value to chemical
type X. An empirical correction can be added to this value (see last
term of Eq. 3), chosen so that the resulting amino acid composi-
tions are reasonable during the design of whole protein sequences.
The calculation of this term can be done ahead of time and is
explained in Ref. 18. The total free energy of a given protein
sequence in its unfolded state is the sum of the individual contribu-
tions of its constituent residue types.

In the case of binding calculations, the contribution of the free
protein cancels out in relative binding free energies, as explained
above. The free energies of the unbound ligands can be averaged
over single or multiple structures, obtained from experiments or
simulations; alternatively, it may be assumed that the ligands (and
possibly the protein) maintain the same conformations in solution
and in the complexes. A correction (see last term of Eq. 3) can be
added to the energy of the unbound ligand L, to express the depen-
dence of binding free energies on the ligand concentrations:

 E k T Lcorr
L

B= + []ln (4)

with kB the Boltzmann’s constant, T the temperature, and [L] the
ligand concentration (set by the user). The ratio of concentrations
of two complexes obeys the equation

PL

PL
G k T L L2

1
2 1

[]
[]

= - - ()()éë ùûexp ln /b DD b B

(5)

1.3 Unfolded State

1.4 Ligand Titration

Design of ligand binding sites with Proteus

80

One can vary the ligand concentration ratio [L2]/[L1] progressively
during ligand design, and monitor the ratio of predicted concen-
trations [PL1], [PL2]; the binding free energy difference ΔΔGb is
then obtained as kBT ln([L2]/[L1]), for the concentration ratio
(L L2 1[] []/) that yields equal concentrations PL PL1 2[] = [] .

The thermodynamic cycle on the right of Fig. 1 can also describe
proton binding (or release) by titratable protein residues (e.g.,
Asp → AspH). This can be of use to determine sidechain proton-
ation states and prepare a system for design or other simulations.
Proton binding in the protein environment is described by the
upper horizontal leg, and in solution by the lower leg. The solu-
tion state is a model compound—typically a single amino acid X
with blocking terminal groups (ACE-X-NME). The free energy
change upon protonation in the protein, relative to the model
compound in solution, is:

 DDG G P XH G P X G XH G Xp = -() - -()éë ùû - () - ()éë ùû (6)

and corresponds to the pΚα difference between the sidechain in the
protein and the model compound. In titration calculations, as in
ligand optimization, we add a correction term to the free energy of
the model compound in its protonated state to account for the
proton concentration +éë ùû :

 E k T Kcorr
X

B a
modelpH p= -()2 303. (7)

where pKα
model is the experimental pKα value for model compound

[27, 28]. The fraction f of protonated states at different pH values
can usually be described by the following titration curve:

f

XH

X XH K
=

[]
[] + []

=
+ - ()()

1

1 10n pH p §–

(8)

To apply the above equation, titration calculations are conducted
for different pH values. The pKα of residue X is the pH for which
the protonated and unprotonated states are equiprobable. The
Hill coefficient n represents the maximum slope of the curve,
which occurs at the titration mid-point.

As described above, Proteus is a multitool CPD suite, which is
applicable to typical sequence/structure optimization calculations,
but also to more refined pKα and relative binding affinity calcula-
tions. Its physical scoring function, with the addition of appropri-
ate correction terms, can be easily adjusted to describe different
situations. Eqs. 1 and 2 can be decomposed into protein–ligand
intramolecular and intermolecular energy contributions, which
can be enhanced or diminished during energy minimization via
 appropriate weighting factors (positive, negative, or zero); and

1.5 Proton Binding

1.6 Multi-Objective
Optimization

Savvas Polydorides et al.

81

combined to produce more sophisticated, multi-objective energy,
or cost functions, as follows:

G w G P w G P L w G L w G P w G L= × () + × () + × () + × () + × ()1 2 3 4 5: dc dc (9)

The subscript “dc” denotes duplicate copies of the protein and
ligand groups, which share the same amino acid sequence, but
sample different conformations during exploration. Energy thresh-
old values can also be included in Eq. 9 to refine the sequence
optimization.

The design begins by separating the protein (and ligand, if present)
into groups (residues), which can contain backbone and sidechain
moieties. Part of the system, typically the backbone and selected
sidechains, is classified as “frozen”; i.e., it retains its conformation
and chemical composition during the calculation. Other parts can
change both their chemical identity and conformation (“active”),
or only their conformation (“inactive”). Sidechain conformations
are taken from a rotamer library [29]. Multiple backbone confor-
mations can also be specified (see Eq. 9). We then pre-compute and
store in a matrix the interaction energies for all intra- and intermo-
lecular residue pairs, taking into account all chemical types and
conformations compatible with the classification of each residue
(active or inactive). This calculation is done by XPLOR and a
library of command scripts, using the energy function of Eq. 3.
The GB and SA terms of the energy function are not rigorously
pairwise-additive; i.e., even though they can be expressed as con-
tributions from particular residue pairs, each contribution depends
on the geometry of the entire molecule. To solve this problem, we
employ a “Native Environment Approximation” (NEA) for the
GB term, and a “sum over atom pairs” approximation for the SA
term; more details are supplied below and in Ref. 30.

The entries of the resulting interaction matrix correspond to
distinct rotamer orientations of the active and inactive parts, and
to a given conformation of the “frozen” part. Often, it is desirable
to take into account multiple conformations of the frozen part
(e.g., several backbone conformations from an MD trajectory).
Separate interaction matrices can be constructed for each of these
conformations, and employed in the design.

The interaction energy matrices are read by the C program proteus,
which performs the exploration (or “optimization”) in structure
and sequence space. Three exploration methods are available in
proteus; a heuristic protocol, first introduced by Wernisch et al.
[26], a mean-field approach [31, 32], and a Monte Carlo (MC)
method [33, 34]. The Monte Carlo method can use a single
“walker”, exploring a single trajectory. Alternatively, it can use
multiple walkers, which have distinct temperatures, explore distinct

1.7 Energy Matrix

1.8 Sequence/
Structure Exploration

Design of ligand binding sites with Proteus

82

trajectories, and occasionally exchange their temperatures. The
multi-walker variant corresponds to a “replica exchange” Monte
Carlo simulation, which we refer to as REMC.

All the exploration methods output multiple “solutions”, sam-
pled along the MC trajectory or the heuristic exploration. Each
solution or time-step is described by a list of chemical types and
rotamers for all the active and inactive positions. Subsequently, the
corresponding conformations can be reconstructed and subjected
to energy minimization and/or MD simulations with the same
force field used in the design. Average binding free energies can be
obtained from the resulting trajectories, and/or post-processed
using a GBSA or PBSA approximation, as a further test of the
design.

The above calculations are summarized in the flowcharts of Fig. 2.
The left flowchart portrays a structure/sequence optimization of a
complex, which starts from an initial conformation taken from an
MD trajectory. A related example, described in the Methods sec-
tion, involves the redesign of the cyclic 13-residue peptide comp-
statin, which regulates the function of protein C3 of the complement
system. Binding of this molecule and related analogs has been the
subject of numerous experimental and computational studies in
recent years [35–39]. The right flowchart describes the prepara-
tion of an X-ray structure for MD simulations. A related example
in Methods describes the chemical and structural optimization of a
complex between the MHC class II protein HLA-DQ8 and the
vinculin epitope.

2 Materials: Software and Data Files

To carry out a complete protein design calculation with Proteus, the
user needs the Proteus 2.1 CPD package. The appropriate files can
be downloaded from http://biology.polytechnique.fr/biocomputing/

1.9 Flowcharts

Fig. 2 Calculation flowchart diagrams for the test cases: (a) ligand redesign, and (b) preparation of a structure
for MD simulations

Savvas Polydorides et al.

http://biology.polytechnique.fr/biocomputing/proteus.html

83

proteus.html. In what follows, we refer to specific files from this
 distribution. Furthermore, the user needs an initial structural model
for the molecule (or complex) under study.

3 Methods

 1. Split the PDB file into separate files for each protein segment
(e.g., multiple chains), the ligand, and the crystallographic
waters. Rename atoms and residues to match the Amber or
Charmm force field. Renumber residues of each segment start-
ing from 1000 for chain A, 2000 for chain B, etc., to ensure
unique residue numbers; name the various segments “PROA”,
“PROB”, “PROC” or “LIGA” and “XWAT” (see Note 1).

 2. Use the XPLOR script build.inp to generate a protein structure
file (system.psf) which describes the topology of the protein–
ligand system and a coordinate file (system.pdb) in XPLOR pdb
format (see Note 2).

 1. The XPLOR stream file parameters.str contains important
information about the energy calculation setup. Edit the file
to select between the Amber “ff99SB” [23] and Charmm
“toph19” [22] force fields. These two force fields are consis-
tent, respectively, with the GB/HCT [40] and GB/ACE [41]
implicit solvent models. Add a surface area term to the energy
function to account for the nonpolar contribution to the solva-
tion energy. Include X-ray sidechain conformations (“native
rotamers”) in the rotamer library, and choose the number
of minimization steps before the computation of pairwise
 interaction energies. Set the protein dielectric constant and
define parameters employed by the solvation model and the
corresponding nonbonded energy terms.

 2. Modify the XPLOR stream file sele.str to define the sequence and
conformation space. Select the modifiable residues (active), the
flexible sidechains (inactive), the ligand (active or inactive), and
the fixed part (backbone plus any glycines, prolines, cysteines in
disulfide bonds, and crystallographic waters/ions).

 3. The file mutation_space.dat lists the amino acid types available
for each active position. The mutation space includes up to 26
amino acid types, including all natural amino acids (except
 glycine and proline), three histidine tautomers (protonated on
Nδ, Nε, or both), and the minor protonation states of titratable
residues Lys, Asp, Glu, Tyr, Cys.

 4. The system setup is done via two XPLOR scripts. The first one,
setup.inp, prepares the system for residue pairwise energy
 calculations. The structure file setup.psf defines each active
 residue, including its crystallographic backbone and a set of

3.1 Structure
Preparation

3.2 System Setup

Design of ligand binding sites with Proteus

http://biology.polytechnique.fr/biocomputing/proteus.html

84

sidechains corresponding to all considered mutations (defined
in mutation_space.dat). Entries of these amino acid sidechains
at each modifiable position are included in the coordinate file
setup.pdb, with arbitrary coordinates x y z= = =()9999 0. . The
B-factor column of the coordinate file labels the corresponding
residue as active b =()2 00. , inactive b =()1 00. , or frozen
b =()0 00. . The Q-factor column labels buried q =()0 50. and

exposed q =()1 00. residues, with q = 0 00. for hydrogens. At
this point the GB solvation radii of the backbone atoms are
computed and stored in the file bsolv.pdb.

 5. The Perl script make_position_list.pl reads the file setup.pdb,
and lists in position_ list.dat the active, inactive, and ligand
positions, including the number of all possible pairwise inter-
actions to be computed at each position.

 6. The Shell script make_mutation_space.sh creates individual files
for each active, inactive, and ligand position, listing the com-
patible amino acid types at each position. These files are stored
locally and read later by the XPLOR scripts during the residue
pairwise interaction calculations.

 7. The second XPLOR script for system setup is setupI.inp. For
each position I, we loop over its allowed amino acid types
(depending on whether it is active, inactive, frozen, or part of
the ligand). For each amino acid type we loop over rotamer
states taken from a rotamer library [29]. We also include the
native orientation as a separate rotamer. At this stage, we com-
pute and store GB solvation radii for all residues, assuming the
Native Environment Approximation (NEA). In a standard GB
formulation, the GB energy function is not pairwise-additive,
since the solvation radius of each atom depends on the position
and chemical type of all other atoms in the molecule. To ren-
der the GB function pairwise-additive, we assume during the
solvation radii calculation that each residue is surrounded by
the native sequence and conformation. Thus, for each rotamer,
we compute the GB solvation radii in the presence of residue
I, the whole backbone (fixed part) and all remaining portions
of the molecule, further than 3.0 Å away from sidechain I,
considered in their native sequence and structure. The 3.0 Å
cutoff distance excludes native sidechain atoms that might
overlap with sidechain I in its new rotamer; this cutoff can be
adjusted to a different value in parameters.str. Importantly, to
alleviate possible clashes of a sidechain in a particular rotamer
with the backbone, we do Nmin =15 steps of Powell energy
minimization (see Note 3), keeping everything else (every-
thing but sidechain I) fixed. If a resulting solvation radius is
too large (e.g., due to overlap of the residue with the rest
of the molecule), it is reset to a maximum value (999.0 Å).
After the minimization, sidechain coordinates and solvation

Savvas Polydorides et al.

85

radii are stored in a local PDB file (matrix/local/Rota/1025.
pdb; 1025 is the residue number I) to be used in step 3 from
Subheading 3.3.

 1. First, we compute the diagonal terms of the interaction energy
matrix using the file matrixI.inp. This rather fast calculation is
usually run sequentially over all nonfrozen positions; it is also
possible to run the separate positions in parallel on multiple
cores. For each position I, we reread the solvation radii and
sidechain coordinates (matrix/local/Rota/1025.pdb). We loop
over the allowed amino acid types (depending on whether
position I is active, inactive, frozen, or part of the ligand) and
the corresponding rotamer states. For each rotamer, we com-
pute the energy due to interactions that sidechain I makes with
itself and with the backbone. The energy function includes
bond, angle, dihedral, improper, van der Waals, Coulomb, GB,
and SASA energies. The results are printed in local files
(matrix/dat/matrix_I_1025.dat), and can be displayed either
in standard or enriched format. The basic information for each
position is printed with the standard format: residue number
(1025), amino acid type (ARG), one letter code (R), rotamer
index number (5) followed by four energy values: the unfolded
state (or unbound ligand) energy (estimated by Eq. 3), the
bonded terms plus vdW, the electrostatic term, including GB,
and the surface area term. A further decomposition of indi-
vidual energy terms is displayed when the “enriched format” is
requested in parameters.str.

 2. Use the Shell script make_rotamer_space.sh to examine the
rotamer van der Waals energies and exclude those exceeding a
locally defined threshold value. Excluding “bad” rotamers for
each amino acid type at each position reduces the conforma-
tional space.

 3. The energy matrix calculation continues with the off-diagonal
terms, using matrixIJ.inp, which computes the interaction
between sidechains I and J. Only the lower triangle of the
matrix I J< is needed. The fastest approach for this part of the
calculation evaluates single residue pairs I J- simultaneously,
on multiple cores. It is also possible to calculate all the residue
pair interactions sequentially. For each residue pair, we loop
over the sidechain type/rotamer space of residue I; we retrieve
the coordinates and atomic solvation radii of the current side-
chain from the rotamer PDB file (matrix/local/Rota/1025.
pdb), created in step 7 from Subheading 3.2. For each rotamer
we loop over all residues J I< and apply a first distance filter.
Residues that are too far from I (e.g., C C† †- distance > 30 ¯)
are omitted. For each residue J within the first distance filter,
we loop over the sidechain type/rotamer space of residue J and

3.3 Interaction
Energy Matrix

Design of ligand binding sites with Proteus

86

read the coordinates and solvation radii from the correspond-
ing rotamer PDB files. For both residues I and J we employ
only the “good” rotamers, determined in the previous step.
With the current sidechains in place, we apply a second dis-
tance filter, where interactions between sidechains are ignored
if the minimum distance between the two sidechains exceeds
12 Å, say. The interaction energies of sidechain pairs that pass
the second distance filter are computed. Recall that the final
coordinates of two sidechains are produced via the indepen-
dent minimization of each sidechain in the presence of the
fixed backbone. Consequently, it is possible that the two side-
chains overlap for some rotamer combinations. If the mini-
mum sidechain–sidechain distance is smaller than a cutoff
(3 Å), we perform Nmin 15 50-() steps of Powell minimization
(see Note 3) to improve the sidechain geometry and alleviate
bad contacts. During this minimization, everything except the
two sidechains is kept fixed, and the two sidechains interact
with each other and the backbone. The results are stored
in local files (matrix/dat/matrix_IJ_1025_1022.dat). The
standard display format consists of a line indicating the residue
numbers and names of a given pair (1025 ARG 1022 VAL),
followed by a list of entries for each computed rotamer pair, for
the given pair of amino acid types. Each entry reports the two
rotamer numbers, the vdW interaction term, the sum of elec-
trostatic and GB terms, and the surface area term. Similarly to
step 1, an “enriched format” option is possible, which prints a
more detailed output.

 4. Finally, run the shell script concat_matrix.sh to join all the
energy elements in a global matrix file matrix.dat, to be read
by the proteus exploration program.

The sequence exploration is done by the proteus program, con-
trolled by setting various options in an input script, proteus.conf.

 1. One may want to use a protein dielectric constant that is differ-
ent from the one used in the energy matrix calculations (defined
in parameters.str). To use a different value, first use the Perl
script modify_matrix.pl to modify the original matrix accord-
ingly (see Note 4).

 2. During the energy matrix construction (see Subheading 3.3,
steps 1 and 3), a large set of active and inactive positions can
be defined. During sequence exploration, we may want to limit
ourselves to a smaller set. For this, in proteus.conf, the sequence/
conformational space of selected protein and/or ligand resi-
dues can be restricted to particular types and/
or rotamers. For example, in the redesign of the compstatin
peptide, in the energy matrix calculation, we set all 15 ligand

3.4 Protein Design

3.4.1 Sequence
Optimization

Savvas Polydorides et al.

87

positions to be active and all protein sidechains to be inactive;
subsequently, in proteus, we optimized the sequence of just a
two-residue extension; the other peptide positions were not
allowed to mutate. The default option corresponds to a full
scale exploration of all possible amino acid types and rotamers
for each active and inactive position (see Note 5).

 3. Choose among the mean field, heuristic, and Monte Carlo
sequence/structure exploration methods, and assign the rele-
vant parameters. For example, if the MC method is employed,
we might use a high initial temperature (given in kBT units) to
overcome local energy barriers, and run several long simula-
tions [millions of steps; (see Notes 5–7)]. By default, the simu-
lation starts from a random sequence/structure combination
and uses the Metropolis criterion to evaluate the successive
moves in sequence and rotamer space. The exploration is per-
formed using single and/or double moves, improving the
sampling of coupled sidechains. The frequency of each type of
move during the simulation is also controlled by the occur-
rence probability of each mutation type; a small sequence/
structure move ratio (1:10 or 2:10) allows the system to relax
its structure slightly in the presence of the new amino acid type
(see Note 6).

 4. All exploration parameters mentioned in steps 2 and 3 are set
up via a simple, user-editable configuration file (proteus.conf),
which is read as the standard input by the proteus executable.

 5. After the exploration step, proteus is run again in post- processing
mode, to convert the resulting solutions into a more readable
(fasta-like) format. The output file proteus.rich reports each solu-
tion by the sequence of: (a) amino acid types, (b) residue num-
bers, and (c) rotamer numbers. The Perl script analyze_ proteus_
sequences.pl sorts the solutions (combinations of sequences and
rotamers) by their frequency of occurrence and calculates the
minimum, maximum, and average folding free energies.

After large-scale sequence exploration, it can be desirable to do
more extensive rotamer exploration for selected sequences.

 1. Repeat the above steps for a chosen subset of designed
sequences. Keep each protein and ligand sequence invariant,
and explore its conformational space through rotamer optimi-
zation. Compute the statistical average of the folding free
energy over all sampled conformations, to improve the energy
estimate for the chosen sequences.

 2. Use the Perl script rot_distrib_proteus.pl to compute the rota-
mer distribution of all residues from the pseudo-trajectory
obtained during optimization, to characterize the flexibility of
each sidechain.

3.4.2 Structure
Optimization

Design of ligand binding sites with Proteus

88

 3. Cluster the protein and ligand conformations based on
selected sidechains, and reconstruct the minimum energy
 conformation of each cluster to get a set of “good”
conformations.

In some applications, we wish to determine sidechain protonation
states through pKα calculations. For each titratable sidechain, the
energy will include a pH-dependent term, Ecorr

X, where X is the
sidechain type.

 1. First, compute the correction energy term Ecorr
X at pH = 7

(see Eq. 7), by evaluating the energy GXmodel of the model
 compound in solution with Eq. 3, and replace the values rep-
resenting the unfolded state energy from the diagonal matrix
elements with -GX

model .
 2. Modify the proteus configuration file to restrain the mutation

space of each active-titratable residue to its two or three ioniza-
tion states (ASP/ASH, GLU/GLH, CYS/CYM, HID/HIE/
HIP, TYR/TYD, LYS/LYN); restrict the other positions to
their native type (or make them inactive during the energy
matrix calculation).

 3. Run a proteus MC simulation, to identify optimum combina-
tions of sequences (protonation states) and structures at the
specified pH. Start with one million equilibration steps at high
temperature k TB kcal mol=()1 / , extract the final state and con-
tinue with ten million production steps at room temperature;
use a relatively small sequence-to-structure move ratio (1:10),
to allow the system to relax after protonation moves.

 4. At the end of the MC simulation, compute the probabilities
of each protonated state at each active, titratable position
(see Note 8).

 5. Run a full pH scan by increasing progressively the pH from 0
to 15 and repeating steps 1–4.

 6. Fit the fractional occupancy of the protonated state to the
modified Hill equation (see Eq. 8) for each titratable sidechain
using the Perl script evalpka.pl; extract the pKα value with the
corresponding Hill coefficient at the mid-point of the sigmoi-
dal curve.
Table 1 (adapted from Ref. 42) shows pKα calculations for nine

proteins and 130 titratable groups with sufficient sidechain type
diversity (35 Asp, 34 Glu, 13 Tyr, 28 Lys, and 20 His). Overall,
the agreement with experiment is good, with an rms deviation of
just 1.1 pH units, for reasonable protein dielectric constants of
four and eight. For sidechains with large pKα shifts, ³ 2, the rms
error with our method is 1.8, compared to 2.6 with the Null model
(and 1.1 with the specialized PROPKA program).

3.5 pKα Calculations

Savvas Polydorides et al.

89

An application example involves the chemical and structural
optimization of a complex between the MHC class II protein
HLA-DQ8 and the vinculin epitope [43]. Since the structure of
the specific complex was not known, we started from the X-ray
structure of the HLA-DQ8 complex with an insulin peptide. MHC
class II proteins bind various peptides in the endosome, where the
pH ranges from 4.5 to 6.0; therefore, in the initial setup we deter-
mined the ionization state of titrating groups by pKα calculations
with Proteus. The binding site (residues within 8 Å of the peptide)
contains 23 titrating sidechains (3 Lys, 3 His, 2 Asp, 6 Glu and 9
Tyr residues, out of 98 residues). Arginines were excluded, since
they titrate well outside the pH range of interest (4 0 7 0. .£ £pH).
We focused on a group of residues near the first anchor position
(P1) of the binding groove, where αGlu31, βGlu86, αHis24, and
αArg52 form a strong interaction network. Between αGlu31,
αHis24, and P1 there is also an important crystallographic water.
The two gluatamic acids are 4.1 Å apart C C· ·-() and their titrat-
ing behavior is coupled. The net charge of this group of residues
could not be verified by X-ray crystallography [44], and was a mat-
ter of discussion in subsequent studies of HLA-DQ8 and MHC
class II proteins [45, 46]. We performed pKα calculations with two
dielectric constants, ep = 4 and 8, both in the absence and the
presence of the vinculin peptide; and compared our results with
the empirical Propka model. For extracellular pH values around 7,
Proteus calculations with ep = 4 and Propka predict a neutral his-
tidine and a protonated αGlu31. The pKα of the other glutamic
acid, βGlu86, is overestimated by Proteus, but becomes better at
ep = 8 . Similar pKα values are obtained for the complex and the
free protein. Figure 3 shows a superposition of the reconstructed
optimum conformation (vinculin) and the template X-ray struc-
ture (insulin). Setting the appropriate ionization state for αGlu31
promotes a successful sidechain placement of all key residues that
take part in binding (see Fig. 3). Structure preparation as performed
by preliminary pKα calculations and sidechain placement is an
important byproduct of Proteus.

Table 1
Comparing large and small pKα shifts

Experimental range Number of sidechains aNull model

aMC

aPROPKA3eep 4== eep 8==

DpKa < 1 85 0.5 0.9 1.0 0.6

1 2£ <DpKa 34 1.7 1.3 1.2 1.0

2 £ DpKa 11 2.6 1.8 1.8 1.1

All 130 1.1 1.1 1.1 0.8
aRms deviations between computed and experimental pKα shifts

Design of ligand binding sites with Proteus

90

In many applications, we want to discover sequences that favor one
ligand over another, and design for specificity. One approach is to
make two or more ligands compete for a single binding site. By
gradually increasing the concentration of one ligand, we gradually
displace the other(s), and can extract the relative binding free
energy from the titration curve. This can be done with the protein
sequence fixed or variable. Here, for simplicity, we describe an
application where the protein sequence is fixed, and we focus on
the relative binding strength of two ligands.

 1. Set all or part of the ligand to be active, with two or more
types; say, Xnat (natural ligand) and Xmut (alternative, or
“mutant” ligand). The protein and any remaining ligand posi-
tions are inactive. To speed up the calculation, constrain the
rotamer space of distant residues (further than 8 Å, say, from
the active position) to their native conformation (see Note 5).

 2. Assign a correction term to the mutant ligand (see Eq. 4), to
reflect a low initial, relative concentration. This term has two
parts. The first part is k T L LX XB mut nat

ln /(). The second part is
the energy difference between the two unbound ligands,
 computed with Eq. 3. The first contribution can be set to
-5 kcal mol/ ; this corresponds to the case where the native
ligand is represented in the mixture at a much higher concen-
tration than the mutant type, favoring the native ligand
binding.

 3. Run a short equilibration stage (500,000 steps) at high tem-
perature, followed by a long production stage (ten million
steps) at room temperature starting from the final state of
equilibration.

3.6 Specificity
Calculations by Ligand
Titration

Fig. 3 Superposition of the starting X-ray structure of the insulin complex (ball-and-stick view) and the opti-
mized conformation of the vinculin complex (thick lines)

Savvas Polydorides et al.

91

 4. Count the number of steps with the mutant ligand present and
deduce the population fraction with a bound mutant ligand.

 5. Repeat steps 1–4 while gradually increasing the relative con-
centration term of the mutant ligand from -5 to +5 kcal mol/
. As we increase the concentration, LXmut

 gradually replaces LXnat

in the binding site.
 6. Fit the data to the appropriate titration curve (adapted from

Eq. 5) and obtain the binding free energy difference from the
mid-point, where the populations of the bound mutant and
native ligands are equal.

A ligand titration example: This example involves the redesign of
the cyclic 13-residue peptide compstatin, which regulates the
function of protein C3 of the complement system. We and our
collaborators have studied extensively the binding of comp-
statin and its analogs to C3 by computational and experimental
methods [36, 37, 47, 48]. In recent work [38, 39], we explored
the addition of a two-residue extension [XY] to the N-terminal
end of the compstatin double mutant Ac-Val4Trp/His9Ala
([XY]W4A9). MD simulations had suggested that this exten-
sion may increase the number of contact residues with the pro-
tein. Using a snapshot from MD simulations of the C3 complex
with [RS]W4A9, we searched for extension sequences that
optimized ligand binding. To determine the amino acid type
preference of the two-residue extension of compstatin, we
computed the binding free energy difference (see Eq. 2) of
each amino acid type X with respect to Ala at each position of
the extension. Binding affinities (relative to Ala) for various
amino acid substitutions at positions −2 and −1 are summa-
rized in Table 2. Columns 2 and 6 contain the results from
design calculations at extension positions −2 and −1, respec-
tively, in which all amino acid types are allowed to compete
simultaneously; the resulting affinities are computed from the
individual amino acid frequencies in the resulting solutions.
Columns 3 and 7 contain the results of calculations in which
only one amino acid at a time competes with Ala; the corre-
sponding relative affinities are computed from Eq. 5. The
results of the two methods agree closely. Experimentally, posi-
tions −2 and −1 can tolerate various amino acid types, without
large differences in the corresponding binding free energies
[38]. The design favors a positively charged Arg residue at
position −2. MD simulations of the [RS]W4A9 complex with
C3 suggest that an Arg residue at position −2 forms a strong
electrostatic interaction with proximal residue Glu372 (see
Fig. 4a); this interaction is captured by the Proteus design.
Position −1 is predicted to not have a strong propensity for
one particular sidechain type; it somewhat disfavors 14 out of

Design of ligand binding sites with Proteus

92

18 types, especially bulky hydrophobic sidechains. This can be
explained by the fact that sidechains at position −1 are oriented
toward the solvent.

 7. It can be useful to reassess the designed sequences by addi-
tional calculations. In the compstatin redesign study, we per-
formed rotamer optimization on the designed sequences and
clustered the resulting conformations (based on the rotamer
states of all sidechains within 8 Å of the extension). For each
sequence, we reconstructed representative conformations from
the ten most populated clusters, and subjected them to 100
steps of energy minimization with the Powell conjugate gradi-
ent method. During minimization, we kept the backbone
fixed, to facilitate comparison with the raw design results. We
then computed the binding free energy of each conformation
at the end of minimization with the GBSA approximation, as
the difference between the free energy of the complex and the
isolated ligand and protein. The results, averaged over the ten
conformations, are included in columns 4 and 8 of Table 2; the
values are expressed relative to alanine. Some bulky amino acid
types (Trp, Lys, Met, His, Tyr, Leu, Val, Ile) become slightly
preferred at position −2 after minimization, due to enhanced
van der Waals interactions with Val375 (see Fig. 4b). At posi-
tion −1, Arg still represents the optimum sidechain after recon-
struction and minimization. These predictions may still change
after MD simulations of the same complexes.

4 Notes

 1. The ligand can be a polypeptide segment (chain C), like the
insulinB 14-mer bound to HLA-DQ8, which we treat in
the same way as the protein, or a nonpeptidic molecule like the
heme in hemoglobin. In that case, we need to define the topol-
ogy of the new molecule and specify the necessary parameters
and possibly rotamers. The new segment must be named
“LIGA”.

 2. The file build.inp must be modified to match the segment
names defined by the user. The file reads the amino acid seq-
uence of each chain according to its segment name and adds
disulfide bonds and terminal group patches, to generate the
corresponding molecular structure. The coordinates of any
missing hydrogens are assigned, and the structures are saved in
the system.psf and system.pdb files.

 3. The energy minimization steps done in steps 1 and 3 from
Subheading 3.3 balance to some extent the suboptimal orien-
tations available to the sidechains due to the discrete rotamer
space. The number of minimization steps can be adjusted for

Savvas Polydorides et al.

93

Table 2
Sequence optimization, affinity, and specificity calculations in the compstatin:C3 complex, targeting
the N-terminal extension of compstatin

Extension residues

Position −2 Position −1

ΔΔGa ΔΔGb ΔΔGc ΔΔGa ΔΔGb ΔΔGc

aa type (kcal/mol) aa type (kcal/mol)

R −0.9 −2.0 −1.4 R −0.4 0.0 −1.4

Y −0.1 0.0 −1.7 S 0.0 0.0 −0.4

A – – – A – – –

M 0.0 0.0 −1.9 N 0.0 0.0 −0.4

C 0.0 0.0 −0.6 C 0.1 0.0 −0.1

K 0.1 0.0 −1.1 T 0.3 0.5 0.2

N 0.1 0.0 −0.8 Q 0.4 0.8 −0.1

V 0.1 0.0 −0.8 M 0.5 0.9 −0.5

Q 0.1 0.0 −1.2 V 0.5 1.9 −0.3

S 0.2 0.0 0.0 K 0.5 1.3 0.0

I 0.2 0.3 −1.4 Y 0.6 1.0 −0.6

F 0.2 0.4 −0.3 W 0.7 1.5 −0.3

W 0.4 0.5 −3.4 H(Nε) 0.8 1.5 0.0

T 0.4 0.5 0.0 H(Nδ) 0.8 1.5 −0.2

H(Nδ) 0.4 0.5 −1.8 E 0.8 1.3 −0.1

H(Nɛ) 0.4 0.5 −0.7 D 0.8 1.3 −0.2

L 0.5 1.0 −1.3 F 2.0 0.9 −0.8

E 0.6 1.1 −0.8 I 1.1 2.0 −0.5

D 0.9 1.5 0.0 L 1.1 2.0 −0.3

All binding affinities computed relative to Alanine (A)
aEstimated from the frequency of the solutions with the corresponding amino acid in target position −2 or −1
bEstimated from the titration curves
cEstimated after reconstruction and minimization of the resulting solutions for a 100 steps with a fixed backbone. The
results are averaged over the ten most populated rotamer conformations, taking into account all sidechains within 8 Å
from the extension

specific cases. For several systems, extending the minimization
to more than 50 steps was shown to increase computational
cost without a significant improvement in the results.

 4. The protein dielectric constant is an empirical parameter. Its
value depends on the type of calculation and the solvation

Design of ligand binding sites with Proteus

94

model used. For CPD applications with a GBSA implicit
 solvent model, we found that low dielectric values of 4–8 give
 reasonable results. pKα calculations on a large data set of titrat-
ing sites showed good accuracy for ep = 8 [42]. For whole pro-
tein designs, a higher value such as e p =16 may give better
results [49, 50].

 5. To obtain adequate sampling, we restrict the sequence/
conformation space depending on the application. For the
compstatin redesign, we focused on the area surrounding the
peptide extension. The two extension residues are allowed to
sample all amino acid types and rotamers without any restric-
tions, while every other sidechain within 8 Å from any atom of
the extension changes only its conformation. The remaining
residues are held fixed, together with the backbone, in the
X-ray conformation. With these “local” space restrictions, the
exploration converged within ten million steps. The quality of
the sampling can be assessed by repeating the calculation with
different random number seed values, or by performing both
backward and forward pH or ligand concentration scans
(see Eqs. 4 and 7). The convergence of the method can also be
tested with additional simulations of increasing length.

 6. With MC exploration, the relative frequency of mutation and
rotamer moves (both single and double) can be adjusted by
the user in the proteus.conf configuration file to match the

Fig. 4 3D structure of the cyclic 13-residue peptide compstatin analog W4A9 (cyan) and a two-residue exten-
sion to the N-terminal end (white) in complex with the protein C3 (green). (a) Starting structure used by
Proteus, (b) minimized structure of a predicted mutant

Savvas Polydorides et al.

95

needs of a given calculation [51]. Conformational changes
are usually less drastic than amino acid type changes (i.e.,
Ala → Arg); therefore, it is generally preferred to allow more
rotamer than type moves, to allow the system to relax after a
mutation.

 7. With MC exploration, it is possible to run multiple simulations
in parallel, with different temperatures, such that the simula-
tions periodically exchange their temperatures. This method is
known as Replica Exchange, or REMC. It is activated in the
proteus.conf file by indicating the number of simulations (or
“walkers”), their temperatures, and the interval between tem-
perature swaps. Each walker then generates its own output
files. On a multi-core machine, the simulations will run in
 parallel if the OpenMP library is present.

 8. To calculate correctly the fractional occupancies from the
Monte Carlo simulation, both accepted and rejected moves
should be accounted for, since a move rejection signifies a pref-
erence for the previously occupied state.

Acknowledgements

GA, SP, and EM acknowledge financial support through a grant
offered by the University of Cyprus.

References

 1. Kortemme T, Baker D (2004) Computational
design of protein–protein interactions. Curr
Opin Chem Biol 8(1):91–97

 2. Floudas C, Fung H, McAllister SR, Monnigmann
M, Rajgaria R (2006) Advances in protein struc-
ture prediction and de novo protein design: a
review. Chem Eng Sci 61:966–988

 3. Boas EF, Harbury PB (2007) Potential energy
functions for protein design. Curr Opin Struct
Biol 17(2):199–204

 4. Lippow SM, Tidor B (2007) Progress in com-
putational protein design. Curr Opin Biotech-
nol 18:305–311

 5. Das R, Baker D (2008) Macromolecular
 modeling with Rosetta. Biochemistry 77(1):
363–382

 6. Karanicolas J, Kuhlman B (2009) Compu-
tational design of affinity and specificity at pro-
tein-protein interfaces. Curr Opin Struct Biol
13:26–34

 7. Damborsky J, Brezovsky J (2009) Compu-
tational tools for designing and engineering
biocatalysts. Curr Opin Struct Biol 19:
458–463

 8. Mandell DJ, Kortemme T (2009) Backbone
flexibility in computational protein design.
Curr Opin Biotechnol 20:420–428

 9. Suarez M, Jaramillo A (2009) Challenges in
the computational design of proteins. J R Soc
Interface 6:477–491

 10. Saven JG (2010) Computational protein
design: advances in the design and redesign of
biomolecular nanostructures. Curr Opin
Colloid Interface Sci 15:13–17

 11. Pantazes RJ, Greenwood MJ, Maranas CD
(2011) Recent advances in computational
 protein design. Curr Opin Struct Biol 21:
467–472

 12. Der BS, Kuhlman B (2013) Strategies to con-
trol the binding mode of de novo designed
protein interactions. Curr Opin Struct Biol
23(4):639–646

 13. Moal IH, Moretti R, Baker D, Fernandez- Recio
J (2013) Scoring functions for protein- protein
interactions. Curr Opin Struct Biol 23(6)

 14. Zanghellini A (2014) de novo computational
enzyme design. Curr Opin Biotechnol 29:
132–138

Design of ligand binding sites with Proteus

96

 15. Khoury GA, Smadbeck J, Kieslich CA, Floudas
CA (2014) Protein folding and de novo pro-
tein design for biotechnological applications.
Trends Biotechnol 32(2):9099–9109

 16. Schmidt am Busch M, Lopes A, Mignon D,
Simonson T (2008) Computational protein
design: software implementation, parameter
optimization, and performance of a simple
model. J Comput Chem 29:1092–1102

 17. Polydorides S, Amara N, Simonson T,
Archontis G (2011) Computational protein
design with a generalized Born solvent model:
application to asparaginyl-tRNA synthetase.
Proteins 79:3448–3468

 18. Simonson T, Gaillard T, Mignon D, Schmidt
am Busch M, Lopes A, Amara N, Polydorides
S, Sedano A, Druart K, Archontis G (2013)
Computational protein design: the Proteus
software and selected applications. J Comput
Chem 34:2472–2484

 19. Brünger AT (1992) X-plor version 3.1, A
System for X-ray crystallography and NMR.
Yale University Press, New Haven

 20. Srinivasan J, Cheatham T, Cieplak P, Kollman
P, Case DA (1998) Continuum solvent
studies of the stability of DNA, RNA, and
phosphoramidate- DNA helices. J Am Chem
Soc 120:9401–9409

 21. Simonson T (2013) Protein-ligand recogni-
tion: simple models for electrostatic effects.
Curr Pharm Des 19:4241–4256

 22. Brooks B, Bruccoleri R, Olafson B, States D,
Swaminathan S, Karplus M (1983) Charmm: a
program for macromolecular energy, minimi-
zation, and molecular dynamics calculations.
J Comput Chem 4:187–217

 23. Cornell W, Cieplak P, Bayly C, Gould I, Merz
K, Ferguson D, Spellmeyer D, Fox T, Caldwell
J, Kollman P (1995) A second generation force
field for the simulation of proteins, nucleic
acids, and organic molecules. J Am Chem Soc
117:5179–5197

 24. Pokala N, Handel TM (2005) Energy func-
tions for protein design: adjustment with pro-
tein–protein complex affinities, models for the
unfolded state, and negative design of solubil-
ity and specificity. J Mol Biol 347:203–227

 25. Dahiyat BI, Mayo SL (1997) De novo protein
design: fully automated sequence selection.
Science 278:82–87

 26. Wernisch L, Hery S, Wodak S (2000) Auto-
matic protein design with all atom force fields
by exact and heuristic optimization. J Mol Biol
301:713–736

 27. Pace CN, Grimsley GR, Scholtz JM (2009)
Protein ionizable groups: pKa values and their
contribution to protein stability and solubility.
J Biol Chem 284:13285–13289

 28. Aleksandrov A, Thompson D, Simonson T
(2010) Alchemical free energy simulations for
biological complexes: powerful but tempera-
mental. J Mol Recognit 23:117–127

 29. Tuffery P, Etchebest C, Hazout S, Lavery R
(1991) A new approach to the rapid determi-
nation of protein side chain conformations.
J Biomol Struct Dyn 8(6)

 30. Gaillard T, Simonson T (2014) Pairwise
decomposition of an mmgbsa energy function
for computational protein design. J Comput
Chem 35:1371–1387

 31. Koehl P, Delarue M (1994) Application of a
self-consistent mean field theory to predict
protein sidechain conformations and estimate
their conformational entropy. J Mol Biol
239:249–275

 32. Zou BJ, Saven JG (2005) Statistical theory for
protein ensembles with designed energy land-
scapes. J Chem Phys 123:154908

 33. Metropolis N, Rosenbluth AW, Rosenbluth
MN, Teller AH, Teller E (1953) Equation of
state calculations by fast computing machines.
J Chem Phys 21:1087–1092

 34. Frenkel D, Smit B (1996) Understanding
mole cular simulation. Academic, New York

 35. Qu H, Ricklin D, Lambris JD (2009) Recent
developments in low molecular weight com-
plement inhibitors. Mol Immunol 47(2):
185–195

 36. Tamamis P, Pierou P, Mytidou C, Floudas CA,
Morikis D, Archontis G (2011) Design of a
modified mouse protein with ligand binding
properties of its human analog by molecular
dynamics simulations: the case of c3 inhibition
by compstatin. Proteins 79(11):3166–3179

 37. Tamamis P, Lopez de Victoria A, Gorham RD,
Bellows ML, Pierou P, Floudas CA, Morikis D,
Archontis G (2012) Molecular dynamics in
drug design: new generations of compstatin
analogs. Chem Biol Drug Des 79(5):703–718

 38. Gorham RD, Forest DL, Tamamis P, Lopez de
Victoria A, Kraszni M, Kieslich CA, Banna CD,
Bellows ML, Larive CK, Floudas CA, Archontis
G, Johnson LV, Morikis D (2013) Novel
compstatin family peptides inhibit complement
activation by drusen-like deposits in human
retinal pigmented epithelial cell cultures. Exp
Eye Res 116:9096–9108

 39. Gorham RD, Forest DL, Khoury GA,
Smadbeck J, Beecher CN, Healy ED, Tamamis
P, Archontis G, Larive CK, Floudas CA, Radeke
MJ, Johnson LV, Morikis D (2015) New
compstatin peptides containing n-terminal
extensions and non-natural amino acids exhibit
potent complement inhibition and improved
solubility characteristics. J Med Chem 58(2):
814–826

Savvas Polydorides et al.

97

 40. Hawkins GD, Cramer C, Truhlar D (1997)
Parameterized model for aqueous free energies
of solvation using geometry-dependent atomic
surface tensions with implicit electrostatics.
J Phys Chem B 101:7147–7157

 41. Schaefer M, Karplus M (1996) A comprehen-
sive analytical treatment of continuum electro-
statics. J Phys Chem 100:1578–1599

 42. Polydorides S, Simonson T (2013) Monte
Carlo simulations of proteins at constant pH
with generalized born solvent. J Phys Chem B
34:2742–2756

 43. van Heemst J, Jansen DTSL, Polydorides S,
Moustakas AK, Bax M, Feitsma AL, Bontrop-
Elferink DG, Baarse M, van der Woude D,
Wolbink G-J, Rispens T, Koning F, de Vries
RRP, Papadopoulos GK, Archontis G,
Huizinga TW, Toes RE (2015) Crossreactivity
to vinculin and microbes provides a molecular
basis for HLA-based protection against rheu-
matoid arthritis. Nat Commun 6:1–11

 44. Lee K, Wucherpfennig K, Wiley D (2001)
Structure of a human insulin peptide-HLA-
 DQ8 complex and susceptibility to type 1 dia-
betes. Nat Immunol 2(6):501–507

 45. Yaneva R, Springer S, Zacharias M (2009)
Flexibility of the MHC class II peptide binding
cleft in the bound, partially filled, and empty
states: a molecular dynamics simulation study.
Biopolymers 91(1):14–27

 46. Henderson KN, Tye-Din JA, Reid HH, Chen
Z, Borg NA, Beissbarth T, Tatham A,
Mannering SI, Purcell AW, Dudek NL, van
Heel DA, McCluskey J, Rossjohn J, Anderson
RP (2007) A structural and immunological
basis for the role of human leukocyte antigen
DQ8 in celiac disease. Immunity 27(1)

 47. Bellows M, Fung H, Taylor M, Floudas C,
Lopez de Victoria A, Morikis D (2010)
New compstatin variants through two de novo
protein design frameworks. Biophys J 98(10):
2337–2346

 48. Tamamis P, Morikis D, Floudas CA, Archontis
G (2010) Species specificity of the complement
inhibitor compstatin investigated by all-atom
molecular dynamics simulations. Proteins
78(12):2655–2667

 49. Schmidt am Busch M, Mignon D, Simonson
T (2009) Computational protein design as
a tool for fold recognition. Proteins 77:
139–158

 50. Schmidt am Busch M, Sedano A, Simonson T
(2010) Computational protein design: valida-
tion and possible relevance as a tool for homol-
ogy searching and fold recognition. PLoS One
5(5):10410

 51. Mignon D, Simonson T (2015) Sequence
exploration in computational protein design
with stochastic, heuristic and exact methods (in
press)

Design of ligand binding sites with Proteus

99

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_7, © Springer Science+Business Media New York 2016

Chapter 7

A Structure-Based Design Protocol for Optimizing
Combinatorial Protein Libraries

Mark W. Lunt and Christopher D. Snow

Abstract

Protein variant libraries created via site-directed mutagenesis are a powerful approach to engineer improved
proteins for numerous applications such as altering enzyme substrate specificity. Conventional libraries
commonly use a brute force approach: saturation mutagenesis via degenerate codons that encode all 20
natural amino acids. In contrast, this chapter describes a protocol for designing “smarter” degenerate
codon libraries via direct combinatorial optimization in “library space.”

Several case studies illustrate how it is possible to design degenerate codon libraries that are highly
enriched for favorable, low-energy sequences as assessed using a standard all-atom scoring function. There
is much to gain for experimental protein engineering laboratories willing to think beyond site saturation
mutagenesis. In the common case that the exact experimental screening budget is not fixed, it is particu-
larly helpful to perform a Pareto analysis to inspect favorable libraries at a range of possible library sizes.

Key words Protein library design, Degenerate codon optimization, Rational mutagenesis, Saturation
mutagenesis, Regression, Cluster expansion

1 Introduction

Algorithms for searching large conformational spaces tend to be
iterative, evaluating one conformation at a time. Molecular dynam-
ics simulations and conventional Monte Carlo protein structure
prediction fall into this category, as do simulations that support the
refinement of models to fit nuclear magnetic resonance spectros-
copy or x-ray diffraction data. Even when each evaluation calcula-
tion is rapid, iterative methods are often unequal to the required
conformational sampling tasks. Several grand-challenge problems
in computational structural biology are intractable in part because
of the inability of current methods to efficiently search through the
space of protein conformations. For example, consider the prob-
lem of predicting the detailed structure of a protein, starting from
the structure of a homologous protein that happens to be 2 Å root

1.1 Expanding
Computational Protein
Design Horizons Using
Regression

100

mean square deviation (rmsd) from the target structure. Even
though the initial structure and the target are “close,” it is difficult
to find the target structure in part due to the vast number of simi-
lar protein conformations.

For some problems, including fixed-backbone protein design,
it is feasible to limit the search to the combinatorial placement of
discrete favored sidechain positions called rotamers [1]. In this
case, finding the optimal combination is still a challenging (i.e.
NP-hard) computational problem [2]. However, numerous pow-
erful combinatorial optimization algorithms have been developed
to optimize sidechain placement and protein design [3–8].
Predicting the energy for any given sequence requires a combina-
torial rotamer optimization calculation.

Regression-based approximate models provide a powerful
approach to circumvent this limitation. The basic strategy is to pre-
pare an approximate model that can be used to rapidly guide more
expensive search calculations to productive combinations. Much of
the recent research that adopts this strategy has been elucidated
and described as cluster expansion [9–14]. However, the use of
regression approaches to model experimental protein library data
belongs in the same category.

For example, Hahn et al. used regression to model experimen-
tal data for SH3 domains [13]. The ProteinGPS methodology of
DNA2.0 also quantifies protein properties in terms of sequence
variables [15]. Finally, the Arnold lab was repeatedly able to ratio-
nalize the thermostability of protein “chimeras” using only crude
regression models that account for 1-body contributions from
each sequence block [16–21]. A chimera is a protein composed of
fragments of parent proteins joined at sequence junctions called
crossover sites. Crossover sites are chosen with a variety of tech-
niques that are designed to minimize the disruption of coherent
and stable fragments within the protein [22–25]. The Arnold
results suggest that protein fragments can make surprisingly modu-
lar contributions to the overall protein structure and stability.
Johnson et al. recently provided an interesting exception to this
trend, by characterizing a library of enzyme chimeras in which sta-
bility affects were decidedly cooperative rather than modular [25].

Whereas traditional computational protein design (CPD) calcula-
tions yield a single sequence (and structure) with minimal energy,
the ultimate design target for this chapter is a library. Protein
library design is a highly practical calculation with diverse protein
engineering applications in industrial biotechnology, materials
development, and the development of therapeutic biomolecules.
To efficiently identify functional and/or optimized protein
sequences, protein engineers commonly work at the level of librar-
ies. Often, if structural information is absent and a suitable assay is
available, these libraries consist of randomly mutated variants.

1.2 Protein
Library Design

Mark W. Lunt and Christopher D. Snow

101

However, when a structure is available, there is a wide range of
design options.

At one end of the continuum, a structure may be used simply
to identify which residues are most likely to play an important role.
Saturation mutagenesis refers to the practice of mutating such tar-
get residues to all possible amino acids. For example, a protein
engineer working in the area of industrial biotechnology may seek
to alter the specificity of a substrate-binding pocket. Alternately, a
protein engineer working to optimize a therapeutic binding pro-
tein might wish to screen a library that diversifies the amino acids
at the protein–protein interface.

At the other end of the continuum, conventional CPD meth-
ods combine explicit modeling of the structure with combinatorial
optimization to predict a new low-energy sequence and structure
thereof. There is interest in methods that combine the practical
benefits of synthesizing a library of protein variants with benefits of
structure-guided design. For example, Voigt et al. described a self-
consistent mean field approach to identify low-energy amino acids
for subtilisin E and T4 lysozyme [26]. There are numerous routes
to merge these approaches. For example, the Arnold lab has often
used structure-guided design to optimize libraries of synthetic
enzymes derived via site-specific recombination [18].

Much of the effort has been to develop algorithms for the spe-
cific practical task of optimizing degenerate codons (see below). A
variety of algorithms that have been developed use as an input a list
of target sequences or a 20 × n matrix that indicates the target fre-
quency of each amino acid for each of the n design positions [27].
Enumeration, dynamic programming, and integer linear program-
ming methods have all been described for the selection of degener-
ate codons to cover the desired sequence space [28–32].

Here, three such algorithms are described briefly. The
LibDesign algorithm [28] begins with a set of aligned amino acid
sequences and then identifies favorable degenerate codons inde-
pendently for each position. A favorable degenerate codon encodes
the specified amino acids with minimal degeneracy, avoiding stop
codons if possible. Permutations of candidate codons are assessed
via the resulting library size and the number of recovered sequences
from the input alignment. Allen developed an algorithm called
“Combinatorial Libraries Emphasizing and Reflecting Scored
Sequences” (CLEARSS) that extends the conventional CPD
approach [29]. CLEARSS begins with a list of fixed-backbone
sequence designs. Possible degenerate libraries are sampled, given
a list of allowed amino acids and a range of allowed library sizes,
and are assessed using the ranked list of specific sequences. The
overall score of a candidate library is the sum of scores for each
design site, and the score for each design site is the sum of the
Boltzmann weights of the sequences in the ranked list that contain
a library-encoded amino acid. Finally, SwiftLib from the Kuhlman
group uses dynamic programming to optimize the placement of

Design of Optimal Combinatorial Protein Libraries

102

multiple degenerate codons, obtaining very efficient libraries [32].
Notably, SwiftLib is presented as a highly accessible web server.

One limitation of such algorithms is the neglect of 2-body inter-
actions. At the cost of significantly more difficult calculations
(NP-hard optimization), this was addressed by Bailey-Kellogg and
coworkers in the Optimization of Combinatorial Mutagenesis
(OCoM) algorithm [30]. Another limitation is the use of a pre-
calculated list of designs rather than a direct optimization in library
space. It is not clear that pre-calculated lists of designs offer a bal-
anced or thorough exploration of favorable sequence space; they may
instead reflect a shallow exploration of sequence space, may feature
diversity only at permissive sites, and could reflect systematic inaccu-
racies in the design potential. Treynor et al. performed combinatorial
optimization in library space, but the 2-body potential between
degenerate codons had significant drawbacks (amino acid:amino acid
scores were obtained without rotamer optimization) [33]. The final
relevant example is the Structure-based Optimization of
Combinatorial Mutagenesis (SOCoM) algorithm reported in 2015
[14]. This last report is highly suggested reading as the SOCoM
algorithm closely matches our independently developed approach.

There are several relevant figures of merit for candidate librar-
ies. First, since these tools are intended to assist with actual experi-
mental library design, the number of theoretical variants present in
the encoded library is a key parameter. Theoretical library size is
the starting point for selecting the number of clones that should be
experimentally screened to obtain a target library coverage [34].
Another key parameter for a candidate library is the mean energy
score (<E>) according to a design scoring function. Throughout
this chapter the energy function is an all-atom Rosetta energy func-
tion [35]. Scores for protein structures are reported in Rosetta
energy units (REU). One possible limitation of <E> is that the
folding and functionality of protein sequences is not a graded
response. Therefore, it may be more relevant to estimate the num-
ber of library members with E < Ecutoff, a threshold meant to flag
library members at an elevated risk of not folding.

A conventional approach to encode focused site diversity is to use
a degenerate codon, in which the synthesized DNA primer consists
of a mixture of nucleotides at particular positions. A single charac-
ter analogous to the pure bases (A, T, C, G) represents each mix-
ture of bases, with W → AT, S → CG, M → AC, K → GT, R → AG,
Y → CT, B → CGT, D → AGT, H → ACT, V → ACG, and
N → ACGT. A codon that includes at least one degenerate nucleo-
tide is a degenerate codon. Common degenerate codons for site
saturation mutagenesis are NNK and NNS, both of which encode
all 20 amino acids (with varying codon and amino acid frequency).
It is also important to note that 1/32nd of the codons that are
physically realized from the NNK and NNS degenerate codons
(assuming equimolar nucleotide mixtures) encode stop codons.

1.3 Degenerate
Codon Libraries

Mark W. Lunt and Christopher D. Snow

103

A key limitation of saturation mutagenesis is poor scaling to
multiple residue targets, due to combinatorial explosion of the size
of the resulting library. Fortunately, there are opportunities to
improve; NNK is only one of many possible degenerate codons, the
vast majority of which are underutilized. Since there are 15 possible
nucleotide mixtures (see above) at each of the three positions making
up a codon, there are 3375 legal degenerate codons. Ignoring codon
usage considerations (organism codon preferences that are the usual
target of codon optimization), there are 1482 degenerate codons
that encode different ratios of amino acid (and stop codon) out-
comes. To further simplify, degenerate codons that specify the same
sets of amino acids (with varying amino acid probability) can be
eliminated. Of these 840 degenerate codons, 115 can also be dis-
carded since they encode sets of outcomes that are redundant with
another degenerate codon except for the inclusion of stop codon
outcomes. Thus, there are 725 degenerate codons that encode
unique sense mixtures of amino acids. The specific computational
challenge addressed by this chapter is to select which of these 725
options to pick for each site within a design problem (see Note 1).

Several groups have developed methods for site-specific libraries
that rely on mixing primers rather than ordering standard degener-
ate oligonucleotides [32, 36–41]. By taking these alternate
approaches, the precise set of desired amino acids can be encoded at
each site. Can the computational design framework described here
be useful in such scenarios? In theory, the method should apply
equally well when selecting between arbitrary amino acid sets. The
critical challenge is that the unconstrained library search space is
much larger. Rather than the 725 mixtures of amino acids above,
any combination of the 20 amino acids might be used. The number
of possible amino acid sets is large enough (220 = 1,048,576) that
the current methods would likely be impractical due to memory
limitations or combinatorial optimization performance limitations.

Regression is a powerful tool to uncover the relationship between
a dependent variable and one or more independent variables. In
the current case, the dependent variable is the output value from a
calculation (particularly a computationally expensive calculation)
applied to a protein structure. Meanwhile, the independent vari-
ables correspond to the binary presence (1) or absence (0) of vari-
ous mutually exclusive options. For example, in a protein design
 calculation, the task is to select exactly one amino acid at each
design site. For a protein repacking problem, the task is to select
exactly one sidechain rotamer position. Necessarily, the regression
model only approximates the results from the more expensive cal-
culation. The benefit is the dramatic increase in speed, since the
predicted score for any discrete combination covered by the regres-
sion model can be computed nearly instantaneously [10]. Thus, if
the regression model has sufficient accuracy, it can be used to effec-
tively search enormous solution spaces.

1.4 Regression
and Energy Functions

Design of Optimal Combinatorial Protein Libraries

104

Energy functions are used to evaluate structures and test them
for plausibility. The Rosetta energy function is a well-known exam-
ple, as are the energy functions employed by molecular dynamics
simulations. Both of these are scoring functions, although there are
important differences. Rosetta includes “knowledge-based” terms
derived from protein structure statistics that are usually eschewed
by the “force fields” that contain only physics-based, molecular
mechanics terms. In either case, energy functions typically take the
form of a sum of terms that approximate various interactions
between atoms in a protein. The complexity of energy functions
used for protein design is often immense. Many mathematical terms
(e.g. electrostatic interactions, bond angles, solvation energy, etc.)
may be combined in an effort to improve the accuracy of an energy
function. Regression models can be used to approximate results
obtained with these more expensive calculations.

The use of regression to accelerate otherwise intractable protein
calculations has been popularized in recent years by Grigoryan,
Keating, and coworkers as cluster expansion [9, 10]. Cluster expan-
sion is a regression-dependent method that was initially made to
study alloys [42]. Cluster expansion techniques have now been
used to generate useful approximations for a variety of protein-
related problems. At heart, cluster expansion relies on regression
to fit an expensive calculation (e.g. the stability of a protein evalu-
ated via repacking calculations). The terms may be 1-body (e.g.
is-residue-10-an-arginine), 2-body (e.g. are-both-arginine-10-
and-glutamate-18- present), 3-body, or higher-order. Regression is
used to determine the value of the terms. A key benefit is that the
dependent variable, the expensive calculation, can be arbitrarily
sophisticated.

Commonly, the expensive calculation includes combinatorial
optimization. In the case of protein design, cluster expansion
serves to “integrate out” the sidechain placement problem, provid-
ing a model that predicts the post-repack energy for any sequence.
Given a model with only sequence variables, new design possibili-
ties become feasible. For example, Grigoryan et al. used integer
linear programming in conjunction with the cluster expansion
model to directly incorporate negative design into the design of a
family of coiled coils with orthogonal specificity [11]. In the cur-
rent case (protein degenerate codon library design), a sequence-
level model that predicts the energy of any sequence is converted
into a library-level model that predicts the mean energy of any
degenerate codon library (Fig. 1). A recent report from Verma
et al. demonstrates an equivalent approach, direct optimization of
degenerate codons via cluster expansion [14] (see Note 2).

One drawback of cluster expansion in particular, and regres-
sion in general, is the necessity of training the model with a large
set of initial calculations; typical training sets for protein design

1.5 Cluster
Expansion

Mark W. Lunt and Christopher D. Snow

105

Fig. 1 At each design site, the first layer (a) consists of a combined sequence/structure search space with
discrete alternative positions for the sidechains (rotamers). Each rotamer gets a 1-body energy due to interac-
tions with immobile groups and 2-body energy terms due to interactions with neighboring mobile groups.
These might be particularly favorable (green edges) or unfavorable (orange edges). (b) Integrating out the
structure degrees of freedom, we arrive at a regression model that only contains sequence variables. Favorable
and unfavorable 1-body terms are represented with green or red tint, while 2-body terms are again repre-
sented as edges. Finally, by applying Eqs. 5 and 6, we can construct another energy graph (c) in which the
numerous vertices correspond to degenerate codons. Depending on the constituent amino acids, the degener-
ate codons may be favorable (green tint) or unfavorable (orange tint). Edges may likewise carry favorable
(green) or unfavorable (orange) effects

Design of Optimal Combinatorial Protein Libraries

106

problems contain tens of thousands of calculations. The aggregate
computational expense is significant but necessary. To save compu-
tational time, a training set of minimum feasible size is preferable,
but large training sets are needed to avoid over-fitting large free
parameter collections. Eventually, increasing the size of the train-
ing set will not lead to improved accuracy; at this point it has been
saturated, and adding additional terms to the regression model is
more likely to lead to an improvement.

Perhaps surprisingly, Apgar et al. found that a more expensive
calculation (with a flexible backbone) was easier to approximate
than a less expensive calculation (rigid backbone) [12]. It was sug-
gested that allowing the backbone to move minimized steric
clashes between individual residues. Removing steric clashes is
helpful because such interactions are unlikely to be physically real-
istic, and because the large amplitude of such interactions can be
difficult to fit.

Ng and Snow found that lower-order terms were sufficient for
the prediction of multi-body energy function scores [43].
Specifically, the AMOEBA polarizable energy function [44], which
is not pairwise decomposable, was approximated for combinatorial
sidechain optimization. Lower-order (1-body, 2-body, and 3-body)
terms were shown to be sufficient to accurately approximate the
multi-body polarization effects. In addition, sets of lower-order
terms could be used to predict which higher-order terms are rele-
vant. If the 2-body terms for amino acids at three positions had
significant magnitude, it was worth attempting to add a third-
order term for those three amino acids. Snow and Ng's work
revealed that one could filter out (i.e. ignore) almost 80 % of
3-body terms and thereby reduce the complexity of the regression
with this simple check.

The generality of the regression/cluster expansion approach is
a key feature. Many hard problems in CPD benefit from an accu-
rate model that predicts energy directly from the sequence. The
current chapter describes open-source, permissively licensed soft-
ware for expanding the combinatorial optimization approach to
problems that may not be pairwise decomposable. To take advan-
tage of this flexibility, Python scripts are presented for computing
 regression- based approximate models with the robust combinato-
rial optimization capacity of the open source SHARPEN software
platform [45].

2 Methods

In broad strokes, the steps to take to apply the regression tools are
the same regardless of the exact goal. First, an initial set of discrete
combinations is “instantiated,” a process that varies depending on
the problem but always includes an assessment or scoring of the

2.1 Overview

Mark W. Lunt and Christopher D. Snow

107

combination in question. For the current case studies, the discrete
combination is the protein sequence, and the instantiation consists
of a combinatorial optimization of sidechain rotamer positions. The
set of instantiated combinations is divided into two subsets: one to
train the regression model and another to test the resulting approxi-
mation. The resulting trained regression model provides a rapid
approximation to the more expensive instantiation operation.

The SHARPEN package [45] provides convenient data struc-
tures to store and apply regression approximations. Specifically,
EnergyGraphs efficiently store 1-body and 2-body terms in a con-
ventional graph structure consisting of nodes and edges (a thin
wrapper around the underlying Boost Graph type). More unusually,
SHARPEN also provides EnergyHyperGraph data structures that
can also accommodate higher-order terms such as 3-body, 4-body,
or N-body effects. Either EnergyGraphs or EnergyHyperGraphs
can be used with a variety of independent combinatorial optimiza-
tion routines for identifying favorable combinations. Therefore, it is
easy to efficiently identify discrete combinations, “targets,” that are
predicted to minimize the instantiated score according to the cur-
rent approximation.

The value of the entire scheme is predicated on the utility of the
approximation to allow the combinatorial search process to more
rapidly explore enormous swaths of a combinatorial search space,
and to do so with enough accuracy to discover favorable combina-
tions. Given the astronomical search size of typical combinatorial
problems, and the rapidity of search methods using the regression
approximation, accelerating the sampling is likely assured. The
more challenging aspect is ensuring that the regression-based
approximation is sufficiently accurate. Fortunately, this chapter
illustrates that 2-body regression models appear to be largely suffi-
cient to approximate the favorable portions of the combinatorial
search space, and that such approximations can be used to facilitate
the optimization of degenerate codons directly in library space.

The routines described below are implemented in a set of
python scripts that use methods provided by a python module,
dgen_design. These tools use the open source SHARPEN soft-
ware, and are therefore provided via the www.sharp-n.org website
wiki. Other useful scripts for practical protein design calculation,
described by Johnson et al. [25], are also hosted on this site.

 1. The only requirement for an instantiation method is that it
accepts a combination and produces a score. Any algorithm
that can be applied to a candidate protein and produces a num-
ber could be an instantiation method. Instantiation for this
work involves combinatorial optimization of the sidechains
(“repacking”) for a particular sequence variant to minimize the
model score according to an all-atom Rosetta energy function
[35]. The outcome is the score E in Rosetta energy units

2.2 Instantiation:
Combinatorial
Optimization
of Sidechain Positions

Design of Optimal Combinatorial Protein Libraries

http://www.sharp-n.org/

108

(REU). Structures with lower Rosetta energy scores are more
plausible protein conformations.

From the standards of CPD, the case studies presented herein
are small problems (Table 1). The FasterPacker combinatorial
optimization object mimics the “singles” routine from the Desmet
and Lasters FASTER algorithm [4]. The FasterPacker works some-
what like a traditional Monte Carlo trajectory, except that the
moves that are accepted or rejected are “batch” moves. Candidate
batch moves are generated by temporarily fixing a perturbing rota-
mer change and then sequentially relaxing interacting sidechains to
their low energy rotamer.

 2. FasterPacker typically yields optimal or near optimal solutions
for problems of this size. To demonstrate, 600 sequences for
case B.1 (see below) were solved to optimality using the mixed
integer linear programming program CPLEX [46] via a
CplexPacker wrapper provided by SHARPEN. Because these
problems are reasonably small, the CplexPacker is able to iden-
tify the global minimum energy combination (GMEC) rela-
tively quickly (an average time of 3.7 s). In 552 of 600 cases
FasterPacker found a solution within 1E-6 REU of the GMEC,
but did so in an average of only 0.14 s. Notably, CplexPacker
was used to optimize the sidechain rotamer positions of the
initial protein model prior to any other calculations.

Table 1
The reported best low-energy testset rmsd values (rmsdLET) correspond to the lowest value
encountered for varying training set sizes. Where applicable, the best-case exponential weight (τ)
and regularization parameter (k) are also noted

Site
Active
design sites

Other
mobile sites

Seq
space
size

Lib
space
size

Seq/str
search
size Figures

Best
LET
rmsd τ k

A.1 Core 5, 30, 43 52, 54 8000 3.8E8 1.5E11 4,6,7,8 1.8 – 1e–7

A.2 4.9E7 4,6,13 1.7 – 0.01

A.3 5,6 1.5 125 1e–6

B.1 Core 5, 30, 43,
52, 54

3, 7, 16, 45 3.2E6 2.0E14 3.9E20 9 5.0 – 0.1

B.2 4.1 50 1e–7

B.3 2.5E13 10,13 14.4 – 1

B.4 10 8.4 75 1

C.1 Surf 2, 4, 6, 8,
13, 15, 17,
19, 42, 44,
46, 48, 49,
51, 53, 55

None 6.6E20 5.8E45 1.8E35 11,13,
14

9.9 – 10

C.2 6.5E45 12 4.8 – 1

Mark W. Lunt and Christopher D. Snow

109

 3. A pool of random combinations is instantiated via FasterPacker
at the outset of the campaign. This pool serves as the source of
training and test combinations. A training batch is used to kick
off the regression, while the test batch (all other members of
the initial pool) is held in reserve to quantify regression model
quality.

For the case study problems here, combinatorial optimization
is quite rapid since there are a limited number of mobile residues
(Table 1). For example, the 5-site library (case B), with the default
(non-minimal) rotamer generation scheme has a structure-
sequence search space size of 3.9 × 1020. Only 20 min are required
to instantiate 50,000 random sequences using a 2.8 GHz Intel
Core i7 CPU.

 1. The ability of regression to produce accurate approximations is
predicated on the ability of terms to stand in for more compli-
cated processes. It is desirable to be selective when adding
terms, since adding an excessive number of terms will result in
overfitting. To recapitulate most physical problems, it is neces-
sary to include at least 1-body and 2-body terms. A free con-
stant (i.e. a 0-order term) can also be helpful, allowing the
remaining parameters to adopt smaller values without degrad-
ing the overall fit. Alternately, to shrink the absolute value of
the free constant, a reference energy (Eref) can be subtracted
from each element within the instantiated score vector (Y).

 2. In the particular case of approximating the energy of protein
sequences, our general recommendation is to consider the
wild- type (WT) or initial protein sequence as the reference
state (with E = Eref). Then, each individual mutation at an
active design site gets a 1-body parameter. WT amino acids at
the design positions do not get parameters, as their contribu-
tion is subsumed within the reference state. Similarly, only
interactions between two mutations serve as 2-body parame-
ters, since a WT:mutant pair is already accounted for in the
1-body parameter for that mutant. Ideally, regression will drive
the free constant parameter toward the score of the reference
state. All of the problems described below include a free con-
stant, all 1-body terms, and all possible 2-body terms (Fig. 1).
For larger problems, it could become useful to skip 2-body
terms that are not likely to correspond to physical effects. For
example, one could require physical proximity or more direct
evidence of energetic coupling between the particular sites
before adding terms.

 3. Similarly, it could also be useful to identify higher-order terms
(i.e. 3-body terms) to improve the accuracy of the model in
recapitulating low-energy combinations. A tricky aspect to this
is that sizable 3-body effects for protein design can be “frustra-
tion” effects in which three pairs of amino acids can each coexist

2.3 Term Selection

Design of Optimal Combinatorial Protein Libraries

110

nicely, but the combination of all three induces an unavoidable
steric clash. Modeling this effect requires a large 3-body term,
which breaks the typical approximation paradigm that higher-
order effects will have lower magnitude than lower-order effects.

 4. A more sophisticated (and lengthy) approach to term selection
was described by Hahn et al. who developed an iterative fea-
ture selection scheme with rapid cross-validation [13].
Candidate terms are individually considered and included if
they make a statistically significant improvement. For the
degenerate codon design problem described here, one can
avoid using 3-body terms and lengthy term selection proce-
dures due to the sufficient accuracy of the 2-body models and
the technical feasibility of modeling all possible 2-body terms.

 1. After the training batch is instantiated, and fitting terms are
selected, regression can proceed. The regression model will
ascribe values to the fitting terms so that summing the appro-
priate terms can approximate any combination. For the case
study problems here, there are thousands of one-body and
two-body terms, and thousands of training set members.

 2. Each of the training set members will have a relatively small
number of applicable terms, depending on which amino acids
(potential 1-body terms) and pairs of amino acids (potential
2-body terms) are present at the variable sites. To tackle the
resulting large sparse regression problems, our approach relies
on two solvers that work with sparse matrices and are conve-
nient for use from Python. Specifically, the CVXopt software
package [47] provides a sparse matrix structure, an interface to
the Cholesky factorization routines of the CHOLMOD pack-
age [48], and functions for solving sparse sets of linear equa-
tions. Alternately, one can use the LSMR package [49], which
is integrated into scipy [50]. For the following code snippets, Y
is the vector of instantiation scores, k is a regularization param-
eter (see below, Eq. 1), and spX is a sparse matrix that encodes
which terms apply to which training set combinations.
import scipy.sparse.linalg
results = scipy.sparse.linalg.lsmr(spX, Y, damp=k)
or
import cvxopt
from cvxopt import spmatrix, spdiag, cholmod
B = spX.T * cvxopt.matrix(Y)
XT_X = spX.T * spX
ridge = k * cvxopt.spdiag([1] * len(B))
cvxopt.cholmod.linsolve(XT_X + ridge, B)

 3. Given the large number of fitting parameters that arise when
2-body or 3-body terms are included, overfitting is a serious
concern. To combat the tendency for overfitting, use regular-
ized regression. In both code snippets above the core calcula-

2.4 Solving Large
Regularized
Regression Problems

Mark W. Lunt and Christopher D. Snow

111

tion consists of regularized regression, also known as ridge
regression (Eq. 1) or Tikhonov regression [51]. This tech-
nique penalizes terms that deviate from zero. The regulariza-
tion parameter, k, serves to restrain the magnitude of the fitting
parameters, β. The matrix X specifies which fitting terms con-
tribute to each combination, with the vector Y holding instan-
tiated scores and I as the diagonal identity matrix.

 X X kI X YT T†+() = (1)

Ridge regression can be useful to suppress overfitting. It is impor-
tant, however, to setup the problem so that the value of the terms
should indeed be small numbers.

 1. Weighting is a useful optional strategy to increase the accuracy
of the regression model for some of the combinations.
Typically, the performance of the approximation is much more
important for favorable combinations than unfavorable combi-
nations. It is recommended to sacrifice the overall fit in favor of
higher accuracy for the favorable combinations. A matrix W
has weights along the diagonal, wi, that are selected using the
following scheme intended to resemble Boltzmann weighting.
The adjustable parameter τ sets the energy scale that defines
the favorable sequences of interest.

 X WX X WYT T† = (2)

wi

y yi

=
é

ë
ê
ê

ù

û
ú
ú

-
- ()()

min , .
min

e t 0 02

(3)

 2. If the exponential weighting parameter τ = 100, then training
set combinations that are 10, 25, 50, 100, and 200 REU less
favorable than the minimum REU combination in the training
set will have weights of 0.90, 0.78, 0.61, 0.37, and 0.14.
Equation 3 assumes that the more important combinations
have the lower scores. If necessary, the sign of the scores can be
flipped. The use of a minimum weight (0.02 above) ensures
that the regression model cannot entirely neglect high-energy
combinations.

 1. To quantify the performance of a regression model, one can
compute the root mean square deviation (rmsd) between the
predicted E scores for the testset with the actual repacked E
scores. However, also consider the possibility that the regres-
sion model predictions may have a systematic bias (e.g. a slope
of 1.5 or a non-zero intercept). If such a bias is consistent, it
could be corrected by fitting a line. Therefore, before comput-
ing rmsd one should correct systematic deviations using the
scipy.stats.linregress function to compute the slope and
intercept.

2.5 Weighted
Regression

2.6 Quantifying
Regression Model
Performance

Design of Optimal Combinatorial Protein Libraries

112

 2. It is not recommended to equally favor all combinations. The
explicit goal is to maximize accuracy for the more favorable,
low- energy combinations. Rough prediction of high-energy
combinations is sufficient; clashes need not be precisely quanti-
fied if they can be avoided. Accordingly, one might quantify
accuracy for the favorable members of the test set, with
Ei < min(E) + 100 REU. Hereafter, this figure of merit will be
termed rmsdLET, the rmsd for the low-energy testset. One may
also use rmsd to quantify the extent to which library <E> pre-
dictions match directly sampled <E> values.

 1. Once a regression model has been trained, it can be used to
efficiently identify combinations that are predicted to be favor-
able upon instantiation. Such combinations are termed “tar-
gets.” If only 1-body terms are present in the model, optimal
targets are trivially easy to identify; one need only select the best
score for each mutually exclusive choice. More generally, a low-
scoring target combination is found using combinatorial opti-
mization routines, typically the FasterPacker described above,
or the SimulatedAnnealingPacker. A SimulatedAnnealingPacker
implements a Monte Carlo trajectory over combinations with a
gradually reducing temperature value.

 2. These combinatorial optimization methods are generally
intended to find individual favorable combinations, possibly
the GMEC. When target diversity is critical, the output combi-
nation from the SimulatedAnnealingPacker or FasterPacker
can serve as the initial combination for subsequent
MonteCarloPacker sampling. To ensure a diverse pool of tar-
get combinations, one can generate multiple Monte Carlo tra-
jectories at escalating temperature. Temperature is increased in
repeated Monte Carlo runs until a minimum number of dis-
tinct combinations are found. This method of target selection
is still effective if higher-order terms are present in the regres-
sion model. Also, the use of an escalating temperature should
render this protocol somewhat robust when applied to differ-
ent problems with varying intrinsic energy scales.

 3. A related strategy can come into play at the outset of a learning
process. In the case of building a training set to use regression
to approximate the AMOEBA energy function (Ng, 2011),
the model was trained using rotamer combinations that were
highly diverse, but not the purely random combinations that
usually result in van der Waal clashes. To do so, an initial
approximate energy model that included only strong van der
Waal clashes was built. Then, to generate a maximally diverse
pool of combinations, excluding unrealistic high-energy com-
binations, Ng ran a series of Monte Carlo trajectories with the
temperature set to zero. These trajectories began from random

2.7 Using
the Approximation
to Select Targets

Mark W. Lunt and Christopher D. Snow

113

combinations and executed a downhill walk, thereby preserv-
ing maximal diversity while attempting to avoid unphysical
clashes. This allowed the regression process to “learn” about
more interesting effects than the steric clashes.

 1. For small degenerate codon libraries (e.g. case A with three
design sites), it is feasible to enumerate the predicted E values
for each of the encoded sequences. Then, the expectation value
of the Rosetta energy for any library can be readily calculated
by computing the mean energy, <E>, of the constituent
sequences. However, for library design problems with more
sites, precise calculation of <E> can be overly time-consuming.
Therefore, our code instead estimates <E> by sampling the
value of n random combinations drawn from the library. One
can compute the standard error of the mean (σ〈E〉) given the
standard deviation of the E values in the sample (σ), using the
finite sample correction for libraries with N members:

s

s
E =

-
-n

N n

N 1
(4)

 2. Relatively modest samples (n = 400) are sufficient to assess the
correlation between the predicted library <E> from the regres-
sion model and the sampled <E>. To estimate the number of
library combinations with E below a threshold, compute the
fraction below the threshold for the sample and multiply by
the library size. The library size, Nlib, refers to the theoretical
number of distinct sequences and is calculated as the geometric
product of the number of amino acids Naasite encoded at each
design site: N Naalib

design sites

site= Õ .

 1. The technical details above cover the preparation, tuning, and
validation of regression models that map specific protein
sequences to predicted post-instantiation Rosetta energy scores.
However, a larger goal for this chapter is to demonstrate how
such models can be used to efficiently select degenerate codon
libraries. Specifically, the goal is to execute a search for favorable
degenerate codon libraries directly in “library space.” To enable
library design via the various combinatorial optimization algo-
rithms provided by SHARPEN (e.g. the Packers mentioned
above), one need only prepare an EnergyGraph or
EnergyHyperGraph in which the nodes no longer correspond
to mutually exclusive amino acid choices, but instead corre-
spond to mutually exclusive degenerate codon choices (Fig. 1).

 2. The regression models described above make this possible. In
the notation below, Ei

1-body is the 1-body regression term for
amino acid outcome i, and Eij

2-body is the 2-body regression term
for the simultaneous selection of amino acids i and j. First, com-

2.8 Calculating
the Properties
of Degenerate Codon
Libraries

2.9 Combinatorial
Design in Degenerate
Codon Library Space

Design of Optimal Combinatorial Protein Libraries

114

pute 1-body terms for each degenerate codon by computing the
expectation 1-body term for the constituent sense amino acids
according to the regression model (see Note 3). The relative
frequency of the constituent amino acids, pi, can serve as weights
to compute the expectation value. Alternately, pi values can be
set to model equally probable amino acid outcomes. The latter
approach is adopted here under the assumption that all variants
within the library might be isolated and characterized (ignoring
the different frequencies of encountering these variants).

E p E

aa i
i idgen A

body

A

body1 1- -= ×å

(5)

 3. Similarly, compute the expectation value for the 2-body inter-
action between two degenerate codons (A and B):

E p p E

aa i aa j
i j ijdgens A and B

body

A B

body2 2- -= × ×å å

(6)

 4. For a closer look at the calculation of an EnergyGraph that
embodies the library design landscape, see the M_score_dgen_
codon_sets.py script.

 1. Library size is a key consideration when it is time to select a
library for experimental testing. However, the feasible experi-
mental library size is rarely in practice a strict cutoff. Instead, it
is valuable to illustrate what candidate libraries look like as a
function of library size before making final decisions.

All other factors being equal, use libraries with a lower <E>,
since those libraries are the most likely to be highly folded, stable,
and functional. However, the global minimum energy library
(GMEL) will have exactly one sequence and that sequence will
correspond to the GMEC. This is true since each individual amino
acid is an option within the 725 amino acid sets that can be
encoded. If libraries are sampled thoroughly, the libraries with
minimal <E> are going to contain relatively few sequences. The
more useful task is to identify libraries with minimal <E> for every
library size. This will allow the protein engineers involved to select
the library size that offers the best <E> yet fits within the assay
screening budget. Therefore, when performing combinatorial
optimization directly in library space, an explicit bias favoring
larger libraries may help to sample diverse library options.

 2. To sample larger libraries, implement a bias favoring degener-
ate codons that encode more amino acids. First, compute
log(Naasite) for each degenerate codon. Then, when assessing
candidate degenerate codon combinations, the total library

size is e design sites

siteå ()
é

ë
ê
ê

ù

û
ú
ú

log Naa

. Each candidate degenerate codon choice
contributes additively to the predicted library E via its 1-body

2.10 Sampling
Diverse Libraries
via Combinatorial
Optimization

Mark W. Lunt and Christopher D. Snow

115

and higher- order regression terms, and contributes additively
to the library size (Nlib) via the log(Naasite). Iteratively perform
combinatorial optimization according to the energy model,
but in each round ri increment a cumulative 1-body bias favor-
ing degenerate codons that encode more amino acids:
r Naai

site× × ()e log , where ϵ is a small weight factor. For a closer
look at this iterative library sampling scheme, see the P_iter-
lib_sample.py script.

 3. Manually adjust ϵ so that libraries of the largest interesting size
are sampled by the end of 100 rounds of combinatorial optimi-
zation. The largest interesting library size is problem-depen-
dent. For three design sites, full NNK saturation may be worth
considering. Given more numerous design sites, the maximum
interesting library size will likely be limited by the screening
capacity. Even in vitro methods such as mRNA display or ribo-
some display have limits (e.g. 1014 variants) [52].

 1. Seek to identify libraries that are Pareto optimal [53] for minimal
<E> and large library size. In other words, if candidate library 1
has a higher <E> and a smaller size than candidate library 2, then
candidate library 1 can be discarded from consideration. To
accelerate this process, our code uses a divide and conquer
approach. See the Q_calc_pareto_stats.py script for more details.

Due to threshold protein stability effects, a library with 90 %
favorable sequences and 10 % very unfavorable sequences may be
preferable to a library consisting entirely of mediocre sequences.
Unfortunately, the <E> could be lower for the latter library. Therefore,
a preferable Pareto analysis scheme identifies libraries that have the
greatest (predicted) number of sequences with scores below a thresh-
old, while otherwise having the smallest total library size. Generally,
this threshold should be set to a value such that combinations exceed-
ing the threshold would be at risk of not being functional.

 2. After either Pareto analysis is complete, the remaining set of
libraries (the Pareto front) includes only the libraries that are
most worthy of consideration. Inspection of the resulting plots
should help when weighing the tradeoffs between selecting
small libraries with favorable energy statistics and larger librar-
ies with less favorable statistics.

3 Example Tests and Results

This section describes results for several illustrative degenerate
codon design problems (Fig. 2) using protein G (pdb entry 1pgb).
Table 1 defines which amino acids are design positions and which
other amino acids that are allowed to move.

2.11 Selecting
Advantageous
Degenerate Codon
Libraries via Pareto
Analysis

3.1 Model Design
Problems

Design of Optimal Combinatorial Protein Libraries

116

 1. Case A is intended to provide the smallest possible interesting
problem (Fig. 2a). In this case, by limiting the number of
design positions to 3, it is possible to optimize and score each
of the 8000 possible sequences via sidechain optimization.
Note, however, that even very rapid calculations become time-
consuming when applied to 381 million candidate degenerate
codon libraries (7253).

 2. Case B is intended to provide an example of a realistic use sce-
nario for these tools (Fig. 2b). For many experimental assays, it
would be impractical to experimentally screen a site saturation
library at 5 design positions. However, by using tailored degen-
erate codons it may be possible to obtain a library that is small
enough to screen, and will consist of a higher fraction of favor-
able sequences. Thus, by degenerate codon design, one could
make the most of the available screening capacity (e.g. ten
96-well plates). For example, consider a size constrained hydro-
phobic site. Rather than using all 20 amino acids, the degener-
ate codon “VTM” would provide just Ile, Leu, and Val, and
would help reduce combinatorial explosion of the library size.

 3. Case C is intended to demonstrate performance when apply-
ing the approach to a larger design problem (see Note 4). Case
C constitutes the redesign of an entire surface face of a beta
sheet (Fig. 2c). Saturation mutagenesis of such a 16-site library
is out of reach for experimental screening, but tailored codons
might be used to identify favorable libraries small enough to be
screened for binding properties via a high-throughput approach
(e.g. fluorescence- activated cell sorting).

Fig. 2 Case study design problems. Design position (gray) and mobile sidechains (white) are shown in sticks.
(a) Case A has three design sites in the hydrophobic core. (b) Case B has five design sites in the hydrophobic
core. (c) Case C has 16 design sites on the exposed surface of the beta sheet

Mark W. Lunt and Christopher D. Snow

117

 4. All three of these cases are suitable for conventional CPD. The
case A GMEC (wild-type Leu5, Phe30, and Trp43) was found
using SimulatedAnnealingPacker, FasterPacker, or CplexPacker
in 0.6, 13, or 87 s respectively. For case B.1, design results in a
double mutation W43T, V54I. The GMEC was found using
SimulatedAnnealingPacker, FasterPacker, or CplexPacker in
1.8, 104, or 795 s respectively. Finally, FasterPacker and
CplexPacker found the GMEC for case C.1, which had 15 sur-
face mutations (T2R, K4E, I6E, N8R, K13E, E15R, T17Y,
E19W, E42L, T44R, A48N, T49R, T51R, T53I, and T55I).
In this last case, the FasterPacker and CplexPacker required 5
and 803 s, respectively.

 5. To illustrate the performance determinants for the presented
methods, variant calculations were performed (Table 1) to
assess the effects of rotamer density and the use of weighting.
Specifically, for cases A.2, A.3, B.3, B.4, and C.1 rotamers were
reduced to base Dunbrack rotamer options [54]. For these
cases, the sequence/structure search space size was reduced
(Table 1) and combinatorial sidechain optimization was more
rapid. Cases A.3, B.2, and B.4 use weighted regression. Table
1 indicates which subsequent figures apply to each case and
highlights the best-case prediction accuracy (rmsdLET).

As described above, the first step for each of these model design
problems is to perform thousands of combinatorial sidechain opti-
mization calculations (instantiation) for random sequences. For
case A, all 8000 variant sequences were instantiated. For cases B
and C, 50,000 and 80,000 combinations were instantiated, respec-
tively. For all three cases, a large fraction of the sequence space
achieves a low score when optimized via FasterPacker. As expected,
the cases with more generous rotamer provisioning (Fig. 3abc)
reach lower energy values.

The score for the wild-type sequence with fully optimized side-
chain rotamers is −112.5 REU. For case A.1 the mean (median) E
is −70.9 (−99.6) REU. For case B.1 the mean (median) E is −75.8
(−104.6) REU. For case C.2 the mean (median) E is -58.7 (−93.0)
REU. The median values are lower than the mean values due to
the outsized influence of high-energy sequences on the mean.
Given these values, sequences with a predicted E above −105 REU
were flagged as having an elevated risk of being unfolded.

 1. Despite the close physical interaction of the design site residues
for case A, it was possible to very accurately fit the post-repack-
ing energy of the 8000 possible sequences via regression (Fig.
4a–c). There are 1141 fitting parameters in this case, consisting
of 1 free constant, 57 one-body terms (the 19 possible muta-
tions for each of the three sites), and 1083 two-body terms
(double mutations). If all 8000 sequences are fit, the rmsd is
only 1.9 REU. A better test, however, is to train the regression

3.2 Case A: High
Accuracy
Approximation
of a 3-Site Library

Design of Optimal Combinatorial Protein Libraries

118

model using portions of the 8000-sequence pool and to assess
the quality of the resulting approximate energy model using the
remaining sequences as a test set. To illustrate the effect of
training set size and regularization parameter, Fig. 4a shows
how approximation accuracy depends on these parameters.

 2. For case A.1, regularization was not critical. Scanning the
training set size and the regularization parameter (Fig. 4a), the
best rmsdLET was an impressively low 1.8 REU. The best per-
formance came when using a 7500-member training set with
the smallest test regularization parameter (k = 1E−7). Running
regression without regularization produced the same results.

Surprisingly, reducing the number of rotamers (case A.2) does
not reduce the performance of the regression model. Instead, rms-
dLET actually decreased from 1.8 to 1.7 REU. One difference
between case A.1 and case A.2 comes for small training sets
(approximately 1000 combinations) and low regularization pen-
alty (k < 1E−3). The slight shoulder in the case A.1 parameter scan

Fig. 3 Instantiated scores for random combinations. Black (orange) bars are combinations with E lower (higher)
than the median. (a) All 8000 sequences for case A.1. (b) All 8000 sequences for case A.2 (minimal rotamers).
(c) 50,000 random sequences for case B.1. (d) 50,000 random sequences for case B.3 (minimal rotamers). (e)
80,000 random sequences for case C.2. (f) 80,000 random sequences for case C.1 (minimal rotamers)

Mark W. Lunt and Christopher D. Snow

119

Fig. 4 Case A.1 and A.2 approximation performance. Training set combinations are partial transparent orange
points while test set combinations are black points. (a) rmsdLET versus training set size and the regularization
parameter for case A.1. The best performance from this scan is shown in (b), where a random training set
(7500 combinations) was used to fit 1141 parameters with regularization (k = 1e − 07) resulting in training set
recapitulation (rmsd = 1.8). Performance for low-energy combinations was excellent (rmsdLET = 1.8 REU) for
the 468 test set combinations within 100 REU of the minimum test set combination (−113.1 REU). The entire
test set (500 combinations) was predicted with rmsd = 3.0 REU (inset). (c) rmsdLET versus training set size and
the regularization parameter for case A.2 (minimal rotamers). (d) A random training set (7500 combinations)
was used to fit 1141 parameters with regularization (k = 0.01) resulting in training set recapitulation (rmsd = 4.2
REU). Performance for low-energy combinations was excellent (rmsdLET = 1.7 REU) for the 390 test set combi-
nations within 100 REU of the minimum test set combination (−103.9 REU). The entire test set (500 combina-
tions) was predicted with rmsd = 2.9 REU (inset)

Design of Optimal Combinatorial Protein Libraries

120

surface (Fig. 4a) becomes a distinct peak for case A.2 (Fig. 4c).
This peak represents a counterintuitive result; decreased prediction
performance for a larger training set. This result will be discussed
below in the Overfitting Trends section.

 3. Case A.3 attempts to improve the case A.2 performance with
weighting. Keeping the training set and regularization param-
eter fixed (7500 training set members and k = 1E−6), the expo-
nential weighting parameter τ was varied to determine which
value gave the lowest rmsdLET (Fig. 5a). τ = 125 was most effec-
tive (Fig. 5a). Compared to the non-weighted case A.2 (Fig.
4d), Fig. 5b demonstrates slightly improved rmsdLET (1.7 → 1.5
REU), with a significant concomitant sacrifice of global fit
rmsd (2.9 → 8.7 REU).

 1. The regression models described above predict the instantiated
Rosetta energy for any sequence within the 8000-sequence
search space. For each of the cases above, 1000 random degen-
erate codon libraries were selected. For each degenerate codon
library, the <E> was computed using the pre-calculated ener-
gies for constituent sequences.

 2. The library <E> predictions are quite accurate (Fig. 6), with
<E> prediction rmsd values lower than the rmsd for the predic-
tion of E for individual sequences. The rotamer-rich case A.1
accuracy was good globally (rmsd = 0.38 REU) and for the 559
libraries with predicted <E> within 30 REU of the −105.5
REU minimum (rmsd = 0.37 REU). The case A.2 accuracy was
comparable (0.5 REU globally, 0.35 REU for the 256 libraries
with predicted <E> within 30 REU of the −98.7 REU mini-

3.3 Predicting <E>
for Case A Libraries

Fig. 5 Case A.3. (a) Scanning the expweight parameter (τ in Eq. 3). Error bars
reflect the standard deviation from 20 trials with random 7500-member training
sets. (b) With τ = 125, a random training set (7500 combinations) was used to fit
1141 parameters with regularization (k = 1e − 06) resulting in training set reca-
pitulation (rmsd = 11.0). Performance for favorable test set combinations was
good (rmsdLET = 1.5 REU) for the 410 combinations within 100 REU of the mini-
mum test set combination (−103.7 REU). The entire test set (500 combinations)
was predicted with rmsd = 8.7 REU (inset)

Mark W. Lunt and Christopher D. Snow

121

mum). Finally, weighting (case A.3) degraded the <E> predic-
tion, with 2.6 REU rmsd for the global library <E> prediction,
and 0.73 REU for the 240 libraries within 30 REU of the
−99.0 REU minimum. Despite the counterproductive effect of
weighting, these levels of precision for library <E> prediction
performance are encouraging. It was particularly gratifying
that the minimal rotamer case A.2 performed so well, since all
8000 sequences can be instantiated in less than 4 s in this case.

 1. Random sampling is neither a systematic nor a satisfying solu-
tion for efficiently identifying libraries that are maximally
appealing for experimental testing. A systematic approach is
preferable. Since 1-body and 2-body scoring terms for the
degenerate codons are stored in a SHARPEN EnergyGraph, a
variety of combinatorial optimization algorithms are readily
available to assist with sampling.

For case A, the total library search space of 381 million is small
enough for enumeration, albeit via a relatively expensive calculation
(approximately 26 min and 8 Gb memory). Therefore, for a 3-site
library the BruteForcePacker object from SHARPEN is feasible.
The BruteForcePacker can be configured to retain a ranked queue
of the best combinations encountered. For case A, a large priority
queue was needed to retain the 4.6E5 libraries with a predicted <E>
< −105 REU (Fig. 7). For a closer look at this enumeration-based
sampling scheme, see the sample_libs_via_enum.py script.

 2. For larger libraries, enumeration is not going to be a practical
option. Instead, it would be better to identify the potentially
numerous low-<E> libraries with an inexpensive calculation.
Another example script launches and pools parallel Monte
Carlo trajectories to rapidly collect a set of unique libraries.
Almost 4E5 libraries predicted to be low energy were collected
in less than 5 min (Fig. 7b). For a closer look at this Monte
Carlo sampling scheme, see the sample_libs_via_MC.py script.

3.4 Sampling Case
A Libraries

Fig. 6 Predicted library <E> versus instantiated sample <E>. Vertical error bars reflect σ〈E〉 (Eq. 4). An identity
line is orange. Global (or best 30 REU) rmsd values for (a) Case A.1, (b) Case A.2, and (c) Case A.3 were 0.38
(0.37), 0.5 (0.35), and 2.6 (0.73) REU respectively

Design of Optimal Combinatorial Protein Libraries

122

 3. With so many candidate libraries there is a clear need for effec-
tive methods for identifying the most favorable options at a
range of library sizes. Iterative library design with an increasing
bias favoring larger libraries was used to compile a thorough
list of favorable case A.1 libraries. For each library, tabulated
energy values for all 8000 possible case A sequences were used
to compute the library <E> and the number of library mem-
bers with E < −105 REU.

 1. Pareto analysis helps identify interesting library candidates that
are worth consideration given two or more competing quality
metrics. For a given library size, libraries with lower <E> are pref-
erable. For a given <E>, libraries with larger size are preferable.
Several illustrative example libraries are described in Table 2.

 2. In the absence of a high-throughput assay, a library that is
highly enriched for stable sequences may be a superior option.
In this scenario, a strong case A candidate library consists of
the degenerate codons CTG:DVC:NNK (Table 2). These
encode a Leu for residue 5, Ala/Cys/Asp/Gly/Asn/Ser/
Thr/Tyr for residue 30, and all 20 amino acids (and a stop
codon) for residue 43. This library is a nice example of how the
design approach can end up providing suggestions that are
quite different from traditional saturation mutagenesis; only
residue 43 gets full amino acid diversity while residue 30 gets a
tailored amino acid palette and residue 5 is left as the wild-
type. This library has 1 × 8 × 20 = 160 sense outcomes and a
total library size of 168. The library <E> is −106 REU, and
136 of the sequences have E < -105 REU. The 24 less favorable
(E > −105) variants include Cys 30 paired with (Lys, Arg, Ile,
Gly, His, Cys, Asn, Asp, or Leu 43), Gly 30 paired with (His,

3.5 Selection of Case
A Libraries via Pareto
Analysis

Fig. 7 High density of low <E>-prediction libraries for Case A.1. (a) Distribution of predicted <E> for the 3-site
libraries with predicted <E> < −105 REU. (b) Discovery of libraries with predicted <E> -105 REU using parallel
MonteCarloPacker trajectories

Mark W. Lunt and Christopher D. Snow

123

Asn, Cys, Gly, Asp, or Leu 43), Thr 30 with Leu 43, and all 8
variants with Pro 43.

 3. Rather than asking what fraction of a library is predicted to be
low-energy, it may be helpful to turn the question around and
ask what fraction of the low-energy sequence space the library
captures. For case A, low-energy sequences could be identified
exactly via enumeration. The CTG:DVC:NNK library captures
only 18 % of the 761 case A sequences with instantiated
E < −105 REU.

 4. To capture a larger share of the low-energy sequence space, be
willing to test libraries with a larger risky sequence fraction. In
this latter scenario, the Pareto analysis can still provide guidance.
For example, the library encoded by VND:DND:NNK (Fig. 8a)
is likely a better choice than the next library on the Pareto front
(NNK:DHN:NNK), which only excludes Arg, Cys, Gln, Gly,
His, Pro, and Trp30 from full saturation mutagenesis.

 5. A second illustrative example of a tailored library is
TTA:THW:NDK (Fig. 8c). This library has a low <E> of −108,
and all 68 of its sense outcomes are low-energy variants (Table 2).
As with the other low-energy library described above, this one
uses most of the “diversity budget” for residue 43, fixes residue 5
as Leu, and uses a more tailored degenerate codon for residue 30.

The second Pareto analysis (Fig. 8b) identifies libraries with
the largest predicted number of sub-threshold sequences (E < −105
REU for case A.1) for a given library size. Full saturation muta-
genesis is required to capture all 761 of the low-energy sequences
(Fig. 8b). A close inspection of the smaller libraries (Fig. 8d) shows
that the fraction of the library that consists of low-energy sequences
drops dramatically as the library size exceeds 256. The
VND:TTC:VND library is an appealing option since 56 % of its
members consist of low-energy sequences and there are no stop
codons (Table 2).

Table 2
Library size refers to all distinct outcomes including genes that include stop codons. Stop codons are
encoded by DND, NNK, THW, and NDK

Degenerate
codons <E>, REU

#E < −105
REU # Sense

Library
size Amino acid outcomes

CTG:DVC:NNK −106 136 160 168 Just L: ACDGNSTY : All 20

VND:DND:NNK −90.2 665 5440 6048 All but CFWY: All but QHP: All 20

NNK:NNK:NNK −70.9 761 8000 9261 All 20: All 20: All 20

TTA:THW:NDK −108 68 68 90 Just L: FLSY: All but APT

VND:TTC:VND −94.7 143 256 256 All but CFWY: F : All but CFWY

Design of Optimal Combinatorial Protein Libraries

124

 6. Note that the calculated <E> values for these libraries weight
all constituent sequences equally, rather than reflecting the sta-
tistical likelihood of observing each sequence (see Note 5).

 1. The five-site library is intended to serve as a realistic model for
the kind of library where degenerate codon optimization is
valuable. Thorough sampling of five-site full saturation muta-
genesis libraries is beyond the reach of most experimental
assays. Thus, codon tailoring is advisable prior to undertaking
experimental construction and characterization of a library.

Several trends are consistent with the 3-site library (Table 1).
The best rmsdLET (4.1 REU) was for case B.2 with plentiful rotam-
ers and optimized exponential weighting (τ = 50, Eq. 3). The
choice of regularization penalty (k) was somewhat important when
using smaller training data sets (Fig. 9c). The best case B.2 rmsdLET
was obtained (Fig. 9d) when using a large training set (32,000

3.6 Case B:
The 5-site Core
Redesign Library

Fig. 8 Case A.1 library selection Pareto analysis. All 450838 libraries sampled by the iterative bias scan are
shown as orange dots. Pareto optimal libraries are black dots. (a) The Pareto front for those libraries that have
a low <E> and a high library size. (b) The Pareto front for libraries with a high estimated no. of sequences with
E < −105 REU and a low total library size (including nonsense members). (c) Small library close inspection of
panel a. (d) Small library close inspection of panel b

Mark W. Lunt and Christopher D. Snow

125

Fig. 9 Case B.1 and B.2 approximation performance. Training set combinations are partial transparent orange
points while test set combinations are black points. (a) Case B.1 rmsdLET versus training set size and the regu-
larization parameter k. The best prediction was (b), when a random training set (32,000 combinations) was
used to fit 3706 parameters with regularization (k = 0.1) resulting in training set recapitulation (rmsd = 5.95
REU). Performance for favorable test set combinations was reasonable (rmsdLET = 5.0 REU) for the 15,984
combinations within 100 REU of the minimum test set combination (−122.5 REU). The entire test set (18,000
combinations) was predicted with rmsd = 7.5 REU (inset). (c) rmsdLET versus training set size and the regular-
ization parameter k for Case B.2 (weighted regression with a tuned τ = 50 REU). The best prediction was (d),
when a random training set (32,000 combinations) was used to fit 3706 parameters with regularization
(k = 1e − 07) resulting in training set recapitulation (rmsd = 7.36 REU). Performance for favorable test set com-
binations was reasonable (rmsdLET = 4.1 REU) for the 15,984 combinations within 100 REU of the minimum
test set combination (−122.5 REU). The entire test set (18,000 combinations) was predicted with rmsd = 8.3
REU (inset)

Design of Optimal Combinatorial Protein Libraries

126

random combinations) with minimal regularization parameter
(k = 1E−7).

 2. Without the exponential weighting (case B.1), performance is
still good but the regularization parameter (k) is more impor-
tant still (Fig. 9a). The lowest rmsdLET (5.0 REU, Fig. 9b) was
obtained when using a large training set (32,000 random com-
binations) with a significant regularization parameter (k = 0.1).

 3. Pruning rotamers (cases B.3 and B.4) results in significant
 performance degradation. Given minimal rotamers, the effect
of exponential weighting was more dramatic. Without expo-
nential weighting (case B.3), rmsdLET was fairly high (14.4
REU, Fig. 10a). However, with minimal rotamers and expo-
nential weighting (case B.4), rmsdLET was greatly improved
(8.4 REU, Fig. 10b). This result highlights the potential utility
of weighting.

 1. Case C has 16 design positions. Unlike cases A and B, these
amino acids are on the protein surface which may significantly
change the roughness of the design energy landscape (see Fig.
3f versus d). Two specific scenarios are illustrated. In case C.1,
the 16 surface sites are provided only with base Dunbrack rota-
mers for all 20 possible amino acids resulting in a combinato-
rial search problem of 1.8E35 sequence/structures. In case
C.2, provision of standard rotamers increases the search size to
6.5E45.

 2. Broadly speaking, the regression performance trends are simi-
lar to the trends from the smaller libraries. Case C.1 prediction
performance suffers for overly large regularization parameter
(Fig. 11a, k ≫ 10), but a modest penalty of ten yields the best
prediction performance (rmsdLET = 9.9 REU). An eyecatching
feature of the regression model training performance plot
(Fig. 11a) is the large peak (poor prediction performance)

3.7 Case C.1:
A 16-Site Surface
Library

Fig. 10 Benefits of weighted regression. (a) Case B.3 versus, (b) Case B.4. Using
weighted regression (with an optimized parameter τ = 75) cut rmsdLET almost in
half, from 14.4 REU (case B.3) to 8.4 REU (case B.4)

Mark W. Lunt and Christopher D. Snow

127

when using a low regularization parameter (k < 0.01) and fairly
large training sets (30,000–50,000 combinations). This appar-
ent overfitting pathology is present to varying degree in the
previous cases (Figs. 4ac and 9ac). This phenomenon is inves-
tigated below in the Overfitting Trends section.

Fig. 11 Case C sequence and library approximation performance. (a) Test set rmsd versus training set size and
the regularization parameter k. (b) A random training set (60,000 combinations) was used to fit 43,625 param-
eters with regularization (k = 10) resulting in training set recapitulation (rmsd = 10.46 REU). Performance for
favorable test set combinations was reasonable (rmsdLET = 9.9 REU) for the 15,265 combinations within 100
REU of the minimum test set combination (−107.9 REU). The entire test set (20,000 combinations) was pre-
dicted with rmsd = 16.1 REU (inset). (c) 1000 random degenerate codon libraries were selected. From each,
either the full library or a sample of 400 sequences were optimized via sidechain repacking and scored. The
estimated <E> values of the sample sequences were fairly well predicted. Error bars reflect σ〈E〉 (Eq. 4). The
full range (inset) was predicted with rmsd = 5.5 REU, while the 257 libraries with predicted <E> within 30 REU
of the minimum (−98.1) had rmsd = 3.6 REU. (d) Pareto analysis of libraries sampled via the iterative combi-
natorial optimization with an escalating large-library bias. See below for library descriptions

Design of Optimal Combinatorial Protein Libraries

128

 3. Pareto analysis (Fig. 10d) suggests that it is easy to find large
case C libraries that are largely composed of low-energy mem-
bers (E < −105 REU). For example, the libraries that are
marked LIB1, LIB2, and LIB3 all are predicted to have an 83
% or greater low- energy fraction (Table 3). Notably, the pre-
dicted <E> for LIB1 is on par with the original wild-type
sequence (-112 REU). LIB2 is slightly smaller (8.6E9 total
variants) and has a higher low-energy fraction (88 %). To get a
library that is predicted to fall entirely below the threshold,
much smaller libraries are necessary (i.e. LIB3 with 8.96E6
sequences). The predicted <E> is well below the original wild-
type sequence (-127 REU) thanks to accrued mutations that
Rosetta assesses as stabilizing. Six sites are fixed while other
sites have up to eight amino acids. The encoded amino acid
sets for LIB3 are:

L:NT:G:R:GILRSV:DGHNRS:FSY:IKLMQR:FV:EGKMRV:F:CDGHNRSY
:H:DEGHKNQRS:S:EGIKLQRV

As the library size decreases further, it becomes easy to find
libraries that are predicted to fall entirely below the −105 REU
threshold. Almost all of the 288 sampled libraries with size below
two million sequences fall into this category. In principle, to dif-
ferentiate between these candidates it could be helpful to intro-
duce another evaluation criterion such as <E>, or to assess the
fraction of constituent sequences that meets a more stringent sta-
bility threshold (e.g. E < −120 REU).

 1. The largest combinatorial problem for this chapter is case C.2
(Table 1). As above, the additional rotamers make a significant
improvement in performance (Fig. 12). It may be surprising to
note that the rmsdLET is lower (4.8 REU) than the comparable
calculation for case B (rmsdLET = 5.0). This can be rationalized
by noting that the design positions for case C are all surface-
exposed sites, where it is easier for amino acid combinations to
avoid clashes (given sufficient rotamer flexibility). Thus, there
are fewer legitimate higher-order frustration effects encoun-
tered in this scoring landscape (Fig. 3), and it is possible to
obtain a high accuracy fit.

Presumably, this fit could be further improved using weighting
or perhaps the introduction of 3-body terms. However, the cur-
rent level of accuracy seems quite sufficient to assist with the design
of degenerate codon libraries (Fig. 12c). The rmsd between regres-
sion model <E> predictions and directly sampled <E> estimates
was only 4.1 (or 1.7) REU for all (or <E> < −76 REU) libraries.
When chasing high precision, it is important to recall that the
underlying scoring function is itself a fairly crude approximation of
the biophysical effects in play.

3.8 Case C.2:
With Additional
Rotamers

Mark W. Lunt and Christopher D. Snow

129

Ta
bl

e
3

Ex
am

pl
e

lib
ra

rie
s

of
 in

te
re

st
 fo

r C
as

e
C.

 L
ib

ra
ry

 s
iz

e
re

fe
rs

 to
 a

ll
di

st
in

ct
 o

ut
co

m
es

 in
cl

ud
in

g
ge

ne
s

th
at

 in
cl

ud
e

st
op

 c
od

on
s

Ca
se

Na
m

e
Co

do
ns

Li
br

ar
y

si
ze

<
E>

 [R
EU

]
%

 w
ith

E

<
 −

10
5

RE
U

C
.1

L
IB

1
C
N
T
:
K
Y
C
:
G
G
T
:
C
D
D
:
K
Y
A
:
A
S
C
:
T
B
S
:
A
B
G
:
R
Y
G
:
V
D
A
:
M
D
K
:
V
D
S
:
Y
D
Y
:
S
A
A
:
V
B
B
:
M
W
A

1.
4E

10
−1

12
84

C
.1

L
IB

2
W
T
G
:
D
S
G
:
G
G
T
:
V
D
G
:
W
Y
W
:
H
D
T
:
S
D
R
:
W
S
G
:
R
Y
G
:
K
N
T
:
T
T
C
:
V
D
W
:
G
V
A
:
G
V
A
:
V
D
G
:
C
R
S

4.
7E

9
−1

13
88

C
.1

L
IB

3
T
T
A
:
A
M
C
:
G
G
T
:
A
G
G
:
V
K
Y
:
V
R
T
:
T
H
Y
:
M
D
R
:
K
T
C
:
R
D
G
:
T
T
C
:
N
R
C
:
C
A
T
:
V
R
S
:
A
G
C
:
V
D
A

9.
0E

6
−1

27
10

0

C
.2

L
IB

4
B
B
G
:
T
A
C
:
W
Y
S
:
N
K
B
:
A
B
G
:
H
K
Y
:
S
A
A
:
M
W
A
:
V
K
Y
:
R
N
R
:
V
R
S
:
C
W
R
:
V
D
S
:
C
D
G
:
R
H
R
:
A
D
B

1.
1E

11
−1

10
88

C
.2

L
IB

5
B
B
G
:
T
A
C
:
W
Y
S
:
N
K
B
:
A
B
G
:
S
R
A
:
S
A
A
:
M
W
A
:
V
K
Y
:
R
N
R
:
V
R
S
:
C
W
R
:
V
D
S
:
C
D
G
:
R
H
R
:
A
D
B

7.
3E

10
−1

11
89

C
.2

L
IB

6
B
T
T
:
A
G
G
:
G
T
A
:
A
G
G
:
V
A
K
:
D
Y
R
:
R
H
S
:
A
R
S
:
A
H
H
:
A
A
D
:
R
H
S
:
A
M
C
:
A
G
G
:
R
B
H
:
R
D
G
:
V
K
Y

1.
6E

8
−1

19
10

0

C
.2

SA
T

N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K

6.
6E

20
−5

9
15

Design of Optimal Combinatorial Protein Libraries

130

 2. As above, use iterative bias sampling to collect optimized librar-
ies of varying size and proceed with Pareto analysis. Illustrative
Pareto analysis of 755,912 candidate case C.2 libraries (Fig.
12d) suggests that it is even easier to find large case C.2 libraries
that are highly enriched for low-energy members (Table 3).

Fig. 12 Case C.2 sequence and library approximation performance. (a) Test set rmsd versus training set size
and the regularization parameter k. (b) A random training set (60,000 combinations) was used to fit 43,625
parameters with regularization (k = 1) resulting in training set recapitulation (rmsd = 1.7 REU). The test set
(20,000 combinations) was predicted with rmsd = 6.6 REU. Performance for favorable combinations was rea-
sonable (rmsdLET = 4.8 REU) for the 16,996 test set combinations within 100 REU of the minimum test set
combination (−117 REU). (c) 1000 random degenerate codon libraries were selected. From each, either the
full library or a sample of 400 sequences were optimized via sidechain repacking and scored. The estimated
<E> values of the sample sequences were fairly well predicted (rmsd = 4.1 REU over the full range, inset).
Error bars reflect σ〈E〉 (Eq. 4). Performance for the 457 libraries with predicted <E> within 30 REU of the mini-
mum (−106.5 REU) was better still (rmsd = 1.7 REU). (d) Pareto analysis of libraries sampled via the iterative
combinatorial optimization with an escalating large-library bias. See below for LIB descriptions

Mark W. Lunt and Christopher D. Snow

131

This is not surprising since the additional rotamers result in
more highly optimized structures with lower Rosetta scores.
LIB6 is the largest library that is predicted to have 100 % low-
energy constituents. The encoded amino acid sets for LIB6 are:

FLV:R:V:R:DEHKNQ:AILMSTV:ADEIKMNTV:KNRS:IKNT:KN:ADEIKM
NTV:NT:R:AGIRSTV:EGKMRV:GILRSV

These libraries compare favorably to a brute force saturation
mutagenesis approach. For one, library size can be matched to the
available transformation and screening capacity whereas the size of
the NNK library exceeds feasible screening size. Also, the NNK
library has a high <E> (−59 REU) and a large fraction of the con-
stituent sequences are unfavorable (85 % have E > −105 REU).

 1. The purpose of this section is to investigate the counterintui-
tive overfitting behavior noted above. Inferior prediction per-
formance for models derived from larger training sets occurred
repeatably for varying input training sets and using either the
lsmr or cvxopt regression tools. This effect was most promi-
nent for three regression model variants (cases A.2, B.3, and
C.1) with negligible regularization (k = 1E−7) (Fig. 13a). The
effect was largest for case C.1. Therefore, to illustrate the fit-
ting pathology two regression models can be compared: the fit
for case C.1 with training sets of 24,000 (Fig. 13b) versus
45,000 (Fig. 13c).

3.9 Overfitting
Trends

Fig. 13 Overtraining. (a) Apparent overfitting with “free” regression (regularization k = 1E−7) was prominent for
training case A.2 with ~1000 combinations (black), case B.2 with ~4000 combinations (orange), and case C.1
with ~45,000 combinations (green). Error bars reflect the standard deviation among 5 random training set
replicates. We use case C.1 to further illustrate the degradation of prediction performance: (b) Prediction per-
formance (black) is reasonable (rmsdLET = 13.9 REU) when trained with 24,000 random combinations. The
training set (orange) is recapitulated exactly (rmsd = 0.0). (c) Prediction performance (black) is degraded (rms-
dLET = 21.2 REU) when trained with 45,000 random combinations. The training set (orange) is still recapitulated
nearly exactly (rmsd = 1.4 REU)

Design of Optimal Combinatorial Protein Libraries

132

 2. First, a random training set (24,000 combinations) is used to fit
43,625 parameters with regularization (k = 1e−07). Given the
over-abundance of fitting parameters, it was not surprising that
the training set was recapitulated exactly (rmsd = 0.00, orange
dots). In contrast, the entire test set was predicted with
rmsd = 20.7 REU (Fig. 13b). The 42,745 test set combinations
within 100 REU of the minimum test set combination (−107.9
REU) could be predicted with rmsdLET = 13.9 REU (Fig. 13b).

 3. For comparison, a larger random training set (45,000 combi-
nations) was used to fit 43,625 parameters with regularization
(k = 1e−07) resulting in near exact training set recapitulation
(rmsd = 1.4 REU, orange dots). In contrast, the entire test set
was predicted with rmsd = 42.4 REU (Fig. 13c). The 26,756
test set combinations within 100 REU of the minimum test set
combination (-107.8 REU) were only predicted with rmsd-
LET = 21.2 REU.

 1. Scenarios with fewer rotamers (e.g. cases A.2, B.3, and C.1)
have a greater tendency to experience overfitting.

 2. Overfitting can be suppressed by regularization (e.g. Fig. 11a)
 3. The best regularization parameter seems to grow with the

problem size (k = 0.01, 1, and 10 for cases A.2, B.3, and C.1).
 4. Prediction performance is most degraded when the fit has a

certain number of training examples: ~1000 for A.2, ~4000
for B.3, and ~45,000 for C.1 (Fig. 13a). These numbers are
similar to the number of fitting parameters: respectively 1141,
3706, and 43,625.

 5. Despite training the case C.1 model with 45,000 combina-
tions, the training set combinations (orange points) are still
clearly being overfit (compare to Fig. 11)

 6. Given these observations, it may be that having a small number
of training instances (relative to the number of fit parameters)
serves to restrain the magnitude of the fit parameters, much as
the regularization process penalizes large fit parameter magni-
tude. When the number of training instances is comparable to
the number of parameters, fit parameters are more likely to
adopt large magnitude values to fit the training set data.
Meanwhile, minimal rotamer cases make the energy landscape
rougher (compare Fig. 3bdf to Fig. 3acd). The rougher train-
ing set energy landscape will also result in more extreme fit
parameters that degrade the testset prediction performance.
The effectiveness of regularization, which attempts to keep
parameters near 0, supports the idea that the fitting pathology
is tied to the magnitude of the fitting terms.

To investigate, examine the fit parameters for the two case C1
regression models (Fig. 13bc). The superior model trained with

3.10 Recap
the Pertinent
Observations

Mark W. Lunt and Christopher D. Snow

133

24,000 sequences has a sum of absolute parameter values of
60,831, while the inferior model trained with 45,000 combina-
tions has a sum of absolute parameter values of 301,104.

 7. The dramatic fivefold shift in the magnitude of the fit parameters
also appears in histograms of the fitting parameter values (Fig.
14). There is some qualitative consistency between the two mod-
els. For example, the most unfavorable term for both models is
the 1-body effect of T51P (unsurprising since T51 is within a
beta strand), and the most favorable term is the 2-body effect of
I6G:T53Y which can be rationalized as a bump/hole interaction
between these adjacent residues on the beta sheet surface.
However, it is important to note that the actual values of the
coefficients are not stable; attempts to glean additional insight
from inspection of the fit coefficients may be problematic.

One take home lesson is that regression model performance can
be difficult to anticipate (and may be strongly dependent on regu-
larization) unless the training set size significantly exceeds the num-
ber of fitting parameters. Any scientist preparing a regression model
of this type should carefully scan the training set size and regulariza-
tion parameter to ensure optimal model quality (see Note 6).

The three design problems discussed here can be framed as con-
ventional CPD calculations. Searching the sequence-structure
space directly, optimal solutions can be found using either CPLEX
or FasterPacker (see above). However, the 725 possible mixtures of
amino acids possible at each site dwarfs the 20 possible amino
acids. Sampling in library space, therefore, is significantly more
challenging. With the exception of case A, it is impractical to tabu-
late the instantiated energy of all the sequences encoded by each
library. A brute force search instantiating all sequence combina-
tions (assuming generous rotamers) requires only 38 seconds for
case A.1 to a projected 8E11 years for case C.2.

3.11 Computational
Time

Fig. 14 Comparison of Case C.1 fit coefficients. (a) The superior model was
trained with 24,000 sequences (see also Fig. 13b) and had parameters of lesser
magnitude, while (b) the inferior model was trained with 45,000 combinations
(see also Fig. 13c) and had fit parameters of greater magnitude

Design of Optimal Combinatorial Protein Libraries

134

Table 4
This Table summarizes the Python scripts used for the calculations. Time represents the elapsed wall
clock time in seconds necessary to complete the calculations on a single CPU

Time (s) Script name Script purpose

3 A_prep.py Process the input PDB model and save as a
CHOMP System

219 B_fill_energy_graph.py Setup the design problem, fill, and save the
EnergyGraph

10 C_pick_initial_set.py Select a set of combinations to serve as an initial
pool

3077 D_score_initial_set_multi.py Instantiate: run repacking calculations on the
initial pool

5 E_split_to_training_samples.py Randomly divide the initial pool into training and
test sets

nd F_try_regression.py Do a quick regression test to ensure things are
working so far

2190 G_scan_training_params.py Repeatedly run regression varying the training set
size and regularization parameter

nd H_gen_figure_trainsize_vs_
ridgeparam_vs_testrmsd.py

Illustrate test set performance versus training
parameters

nd I_gen_fig_example_train_test.py Illustrate the training set and test set fit for the best
case parameters

1978 M_score_dgen_codon_sets.py Convert the amino acid level regression model to
a degenerate codon level model

13,563 N_sample_random_libraries.py Randomly select a set of random degenerate
codon libraries and perform the requisite
instantiation (repacking)

nd O_lib_predictE_vs_actualE.py Illustrate the correlation between predicted and
actual (sampled) <E> for each library

1490 P_iterlib_sample.py Collect libraries by 100 rounds of combinatorial
optimization for low <E> with an escalating bias
favoring larger libraries.

22,918 Q_calc_pareto_stats.py First lookup or predict the energy for a sequence
sample from each candidate library. Then
calculate <E> and the expected number of
variants with E < a threshold. Finally, use a
divide and conquer approach to compute the
two Pareto fronts of interest.

nd R_plot_pareto_ok.py Plot the Pareto front (black) and other libraries
(orange)

Mark W. Lunt and Christopher D. Snow

135

In comparison, the aggregate calculation time for the steps
described above is attractive. All reported calculations could be
performed on a single 2.8 GHz Intel Core i7 machine over several
days (see Table 4 for case C.2 calculation time table). Most of the
time- consuming calculations were parallelized across 8 threads
using the Python multiprocessing module. Distributing bottleneck
calculations beyond the cores of a single CPU could easily further
reduce wall time.

One easy way to limit the CPU time while retaining the power
of the library-space optimization approach would be to prune the
set of degenerate codons considered at each design site. One prag-
matic approach might be to design a limited number of amino acid
sets, guided by biophysical intuition (e.g. hydrophobic, large
hydrophobic, small, large, charged, aromatic, etc.). Selecting sev-
eral hundreds of these useful amino acid sets would make the
library design code more efficient than the current search over 725
possibilities. Similarly, with repeated use of the current 725-mem-
ber design palette, it may be possible to identify which degenerate
codons are rarely useful and eliminate them from consideration.

4 Notes

 1. The presented methods are flexible, and amenable for modifi-
cation. One such modification that might be particularly desir-
able would be to enable optimization of amino acid bias. At
the outset, the degenerate codon search space was defined to
be the 725 degenerate codons that produce unique sense mix-
tures of amino acids. It is worthwhile to note, however, that
the formalism presented here would also work if the design
palette consists of the 1439 degenerate codons that produce
unique sense ratios of amino acids. If outcome amino acid
probabilities are included when creating the degenerate codon
energy model (Eqs. 5 and 6), the resulting optimization target
<E> will reflect the expectation REU score for clones pulled at
random from the experimental library. This additional level of
design could prove useful. Optimizing amino acid frequencies
could further increase library fitness by decreasing <E>. For
example, given a particular site that favors leucine over phenyl-
alanine, combinatorial library optimization might select a
degenerate codon like YTD that encodes a 5:1 ratio of Leu to
Phe rather than TTB that encodes a 1:2 ratio of Leu to Phe.

 2. The illustrative examples presented in this chapter provide
another example of regression-based approximations success-
fully capturing more expensive calculations with sufficient
accuracy to guide an otherwise infeasible search problem. By
“integrating out” the structure variables, and providing an
essentially instantaneous lookup of the predicted energy for

Design of Optimal Combinatorial Protein Libraries

136

any given sequence, it becomes feasible to execute a combina-
torial search directly in “library space.” This approach was
recently reported in the context of cluster expansion [14].
Readers of this chapter who are preparing to design a codon
library are therefore encouraged to review Verma et al.

 3. In principle, a penalty could also be levied for stop codons by
giving stop codon outcomes a large 1-body energy term. The
goal would be to ensure that non-sense outcomes have large
unfavorable scores commensurate with other likely unfolded
sequences.

 4. It is worth noting that there are certain technical challenges to
performing library-space optimization for case C. With 725
possible degenerate codons and 16 design sites, the library
search space has 72516 combinations, or 5.8E45. Building a
graph of the codon:codon scores (Fig. 1) required 30 minutes.
Storing the graph in binary form on disk requires nearly a
gigabyte.

 5. In practice, some sequences will be more frequent than others.
For example, the MKD degenerate codon yields an arginine 5
times more frequently than a serine. If desired, it would be easy
to instead calculate the expectation value <E> for sequences
drawn from the library with the actual amino acid frequency
weights (Eqs. 5 and 6) rather than assuming equal representa-
tion. The former approach may be preferable if the planned
approach is to build a large experimental library and character-
ize only a random subset thereof.

 6. Additional caution and careful regularization parameter tuning
is recommended if pursuing high-accuracy regression models
including 3-body terms, since the high number of possible
3-body terms may make it difficult to prepare models with a
large excess of training data.

References

 1. Ponder JW, Richards FM (1987) Tertiary tem-
plates for proteins. Use of packing criteria in
the enumeration of allowed sequences for dif-
ferent structural classes. J Mol Biol 193:
775–791

 2. Pierce NA, Winfree E (2002) Protein design is
NP-hard. Protein Eng 15:779–782

 3. Desmet J, De Maeyer M, Hazes B, Lasters I
(1992) The dead-end elimination theorem
and its use in protein side-chain positioning.
Nature 356:539–542

 4. Desmet J, Spriet J, Lasters I (2002) Fast and
accurate side-chain topology and energy refine-
ment (FASTER) as a new method for protein
structure optimization. Proteins 48:31–43

 5. Canutescu AA, Shelenkov AA, Dunbrack RL
(2003) A graph-theory algorithm for rapid
protein side-chain prediction. Protein Sci
12:2001–2014

 6. Kingsford CL, Chazelle B, Singh M (2005)
Solving and analyzing side-chain positioning
problems using linear and integer program-
ming. Bioinformatics 21:1028–1039

 7. Allen BD, Mayo SL (2006) Dramatic perfor-
mance enhancements for the FASTER optimi-
zation algorithm. J Comput Chem 27:
1071–1075

 8. Hallen MA, Keedy DA, Donald BR (2012)
Dead- end elimination with perturbations
(DEEPer): A provable protein design algorithm

Mark W. Lunt and Christopher D. Snow

137

with continuous sidechain and backbone flexi-
bility., Proteins

 9. Zhou F, Grigoryan G, Lustig SR et al (2005)
Coarse-graining protein energetics in sequence
variables. Phys Rev Lett 95:148103

 10. Grigoryan G, Zhou F, Lustig SR et al (2006)
Ultra- fast evaluation of protein energies directly
from sequence. PLoS Comput Biol 2, e63

 11. Grigoryan G, Reinke AW, Keating AE (2009)
Design of protein-interaction specificity gives
selective bZIP-binding peptides. Nature 458:
859–864

 12. Apgar JR, Hahn S, Grigoryan G, Keating AE
(2009) Cluster expansion models for flexible-
backbone protein energetics. J Comput Chem
30:2402–2413

 13. Hahn S, Ashenberg O, Grigoryan G, Keating
AE (2010) Identifying and reducing error in
cluster- expansion approximations of protein
energies. J Comput Chem 31(6):2900–2914

 14. Verma D, Grigoryan G, Bailey-Kellogg C
(2015) Structure-based design of combinato-
rial mutagenesis libraries. Protein Sci 24:
895–908

 15. Liao J, Warmuth MK, Govindarajan S et al
(2007) Engineering proteinase K using
machine learning and synthetic genes. BMC
Biotechnol 7:16

 16. Otey CR, Landwehr M, Endelman JB et al
(2006) Structure-guided recombination cre-
ates an artificial family of cytochromes P450.
PLoS Biol 4, e112

 17. Li Y, Drummond DA, Sawayama AM et al
(2007) A diverse family of thermostable cyto-
chrome P450s created by recombination of
stabilizing fragments. Nat Biotechnol 25:
1051–1056

 18. Heinzelman P, Snow CD, Wu I et al (2009) A
family of thermostable fungal cellulases created
by structure-guided recombination. Proc Natl
Acad Sci U S A 106:5610–5615

 19. Heinzelman P, Snow CD, Smith MA et al
(2009) SCHEMA recombination of a fungal
cellulase uncovers a single mutation that con-
tributes markedly to stability. J Biol Chem
284:26229–26233

 20. Heinzelman P, Komor R, Kanaan A et al
(2010) Efficient screening of fungal cello-
biohydrolase class I enzymes for thermostabi-
lizing sequence blocks by SCHEMA
structure-guided recombination. Protein Eng
Des Sel 23:871–880

 21. Smith MA, Rentmeister A, Snow CD et al
(2012) A diverse set of family 48 bacterial glyco-
side hydrolase cellulases created by structure-
guided recombination. FEBS J 279:4453–4465

 22. Silberg JJ, Endelman JB, Arnold FH (2004)
SCHEMA-guided protein recombination.
Methods Enzymol 388:35–42

 23. Endelman JB, Silberg JJ, Wang ZG, Arnold
FH (2004) Site-directed protein recombina-
tion as a shortest-path problem. Protein Eng
Des Sel 17:589–594

 24. Pantazes RJ, Saraf MC, Maranas CD (2007)
Optimal protein library design using recombi-
nation or point mutations based on sequence-
based scoring functions. Protein Eng Des Sel
20:361–373

 25. Johnson LB, Huber TR, Snow CD (2014)
Methods for library-scale computational pro-
tein design. Methods Mol Biol 1216:
129–159

 26. Voigt CA, Mayo SL, Arnold FH, Wang ZG
(2001) Computational method to reduce the
search space for directed protein evolution.
Proc Natl Acad Sci 98:3778

 27. Wang W, Saven JG (2002) Designing gene
libraries from protein profiles for combinato-
rial protein experiments. Nucleic Acids Res
30:e120

 28. Mena MA, Daugherty PS (2005) Automated
design of degenerate codon libraries. Protein
Eng Des Sel 18:559–561

 29. Allen BD, Nisthal A, Mayo SL (2010)
Experimental library screening demonstrates
the successful application of computational
protein design to large structural ensembles.
Proc Natl Acad Sci 107:19838–19843

 30. Parker AS, Griswold KE, Bailey-Kellogg C
(2011) Optimization of combinatorial muta-
genesis. J Comput Biol 18:1743–1756

 31. Chen TS, Palacios H, Keating AE (2013)
Structure based re-design of the binding speci-
ficity of anti-apoptotic Bcl-xL. J Mol Biol
425:171–185

 32. Jacobs TM, Yumerefendi H, Kuhlman B,
Leaver- Fay A (2015) SwiftLib: rapid
degenerate-codon- library optimization
through dynamic programming. Nucleic Acids
Res 43:e34

 33. Treynor TP, Vizcarra CL, Nedelcu D, Mayo
SL (2007) Computationally designed libraries
of fluorescent proteins evaluated by preserva-
tion and diversity of function. Proc Natl Acad
Sci U S A 104:48–53

 34. Patrick WM, Firth AE, Blackburn JM (2003)
User- friendly algorithms for estimating com-
pleteness and diversity in randomized protein-
encoding libraries. Protein Eng 16:451–457

 35. Rohl CA, Strauss CEM, Misura KMS, Baker D
(2004) Protein structure prediction using
Rosetta. Methods Enzymol 383:66–93

Design of Optimal Combinatorial Protein Libraries

138

 36. Hughes MD, Nagel DA, Santos AF et al (2003)
Removing the redundancy from randomised
gene libraries. J Mol Biol 331:973–979

 37. Tang L, Gao H, Zhu X et al (2012)
Construction of “small-intelligent” focused
mutagenesis libraries using well-designed com-
binatorial degenerate primers. Biotechniques
52:149–158

 38. Kille S, Acevedo-Rocha CG, Parra LP et al
(2013) Reducing codon redundancy and
screening effort of combinatorial protein
libraries created by saturation mutagenesis.
ACS Synth Biol 2:83–92

 39. Ashraf M, Frigotto L, Smith ME et al (2013)
ProxiMAX randomization: a new technology
for non-degenerate saturation mutagenesis of
contiguous codons. Biochem Soc Trans
41:1189–1194

 40. Tang L, Wang X, Ru B et al (2014) MDC-
Analyzer: a novel degenerate primer design tool
for the construction of intelligent mutagenesis
libraries with contiguous sites. Biotechniques
56:301–302, 304, 306–308, passim

 41. Nov Y, Segev D (2013) Optimal codon ran-
domization via mathematical programming.
J Theor Biol 335:147–152

 42. Sanchez JM, Ducastelle F, Gratias D (1984)
Generalized cluster description of multicom-
ponent systems. Physica A 128:334–350

 43. Ng AH, Snow CD (2011) Polarizable protein
packing. J Comput Chem 32:1334–1344

 44. Ponder JW, Wu C, Ren P et al (2010) Current
status of the AMOEBA polarizable force field.
J Phys Chem B 114:2549–2564

 45. Loksha IV, Maiolo JR 3rd, Hong CW et al
(2009) SHARPEN-systematic hierarchical
algorithms for rotamers and proteins on an
extended network. J Comput Chem 30:
999–1005

 46. IBM ILOG CPLEX Optimization Studio
12.6.2. IBM

 47. Andersen MS, Dahl J, Vandenberghe L (2013)
CVXOPT: a python package for convex opti-
mization, version 1.1.6

 48. Davis TA (2009) User guide for CHOLMOD:
a sparse Cholesky factorization and modifica-
tion package

 49. Fong D, Saunders M (2011) LSMR: an itera-
tive algorithm for sparse least-squares prob-
lems. SIAM J Sci Comput 33:2950–2971

 50. Jones E, Oliphant T, Peterson P, others
(2001) SciPy: open source scientific tools for
Python

 51. Levine HA (1979) Review: A. N. Tikhonov
and V. Y. Arsenin, solutions of ill posed prob-
lems. Bull Am Math Soc 1:521–524

 52. Amstutz P, Forrer P, Zahnd C, Plückthun A
(2001) In vitro display technologies: novel
developments and applications. Curr Opin
Biotechnol 12:400–405

 53. He L, Friedman AM, Bailey-Kellogg C (2012)
A divide-and-conquer approach to determine
the Pareto frontier for optimization of protein
engineering experiments. Proteins 80:
790–806

 54. Dunbrack RL Jr, Karplus M (1993) Backbone-
dependent rotamer library for proteins. J Mol
Biol 230:543–574

Mark W. Lunt and Christopher D. Snow

139

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_8, © Springer Science+Business Media New York 2016

 Chapter 8

 Combined and Iterative Use of Computational Design
and Directed Evolution for Protein–Ligand Binding Design

 Meng Wang and Huimin Zhao

 Abstract

 The advantages of computational design and directed evolution are complementary, and only through
combined and iterative use of both approaches, a daunting task such as protein–ligand interaction design,
can be achieved effi ciently. Here, we describe a systematic strategy to combine structure-guided computa-
tional design, iterative site saturation mutagenesis, and yeast two-hybrid system (Y2H)-based phenotypic
screening to engineer novel and orthogonal interactions between synthetic ligands and human estrogen
receptor α (hERα) for the development of novel gene switches.

 Key words Computational design , Directed evolution , Protein–ligand interaction , Gene switch

1 Introduction

 Protein–ligand interaction is a universal and key aspect of all bio-
logical processes ranging from feedback regulation of enzyme
 catalysis in metabolic pathways to ligand-mediated signal transmis-
sion [1]. In addition, protein–ligand interaction is the basic mode
of action of many pharmaceutical compounds, which has been
heavily explored by both academia and pharmaceutical industry.
Therefore, the ability to engineer protein–ligand interactions on
demand is a long- sought goal.

 There are two main strategies widely used to reach that goal,
including (1) alteration of the ligand specifi city of naturally occur-
ring protein–ligand interactions and (2) de novo computational
design of proteins to bind desired ligands. In the fi rst strategy,
directed evolution is one of the most powerful tools that enable
the creation and fi ne-tuning of novel protein–ligand interactions
that are orthogonal to the native protein–ligand pairs. However,
due to the vast search space and limited throughput of a screening
method, directed evolution by only using a random mutagenesis
library has its limitations. In the past decade, with increased avail-
ability of crystal structures of the native protein–ligand complexes

140

[2] and rapid development of computer programs that can analyze,
predict, and simulate protein–ligand interactions [3 , 4], the advan-
tages of computational design and directed evolution were com-
bined in an iterative fashion to signifi cantly improve the success
rate of the engineering of desired protein–ligand interactions. For
example, Arnold and coworkers used a structure-guided directed
evolution strategy to engineer a P450 enzyme to selectively bind
dopamine and serotonin, which could be used as magnetic reso-
nance imaging sensors [5 , 6]. Ligand-dependent bacterial regula-
tory proteins are another category that a combined computational
design and directed evolution strategy has been successfully used
to alter the native protein–ligand interactions to suit the research-
er’s demand [7 – 9]. For instance, the Ara-C regulatory protein of
the Escherichia coli ara operon was engineered to recognize
 d -arabinose instead of the native ligand l -arabinose [10], and XylS
from the TOL pathway of Pseudomonas putida mt2 was evolved to
increase the induction level toward benzoate ligands [11]. In addi-
tion, structure-guided directed evolution was also applied to
improve the binding affi nity of glucose and a glucose/galactose-
binding protein for the development of a glucose biosensor [12 ,
 13]. To take the full advantage of computational design, several
brilliant strategies have been developed to create and screen a
focused smart library in directed evolution. In particular, iterative
 saturation mutagenesis is a widely used strategy to improve the
effi ciency of directed evolution. Based on this strategy, Reetz and
coworkers developed the combinatorial active-site saturation test
(CAST) method to improve enzyme catalytic properties including
substrate specifi city, regioselectivity, and stereoselectivity [14] and
the B-factor iterative test (B-FIT) method to improve protein ther-
mal stability [15]. We also adopted a similar strategy to engineer
novel and orthogonal interactions between synthetic ligands and
human estrogen receptor α (hERα) for the development of novel
gene switches [16].

 On the other hand, de novo computational design of proteins
that bind to desired ligands has become possible in the recent years
[3 , 4]. Tinberg and coworkers developed a robust computation
method to create a steroid digoxigenin (DIG)-binding protein
[17]. However, existing computational design tools are far from
perfection. In most of such endeavors, directed evolution is still a
powerful and indispensable tool to improve the performance of
proteins generated by computational design [18 , 19]. The desired
goal can often be reached only through iterative cycles of compu-
tational design and directed evolution.

 Here we use structure-guided directed evolution of a specifi c
hERα–ligand pair as an example to illustrate the experimental pro-
cedures [16]. We provide a systematic strategy to engineer recep-
tor proteins with signifi cantly altered selectivity toward a target
synthetic ligand 4,4′-dihydroxybenzil (DHB). Structure-based

Meng Wang and Huimin Zhao

141

 computational design was fi rst employed for the identifi cation of
potential ligand-contacting residues (Fig. 1). Of the 21 identifi ed
residues, 14 were subjected to iterative site saturation mutagenesis,
accompanied by yeast two-hybrid system (Y2H)-based phenotypic
screening for variants with enhanced target ligand selectivity.
Finally, a random point mutagenesis library coupled with pheno-
typic screening was performed to further improve the target ligand
selectivity. The resulting gene switches were further evaluated in
 Saccharomyces cerevisiae and human endometrial cancer (HEC-1)
cells. This same strategy was successfully used to create orthogonal
receptor–ligand pairs in a single protein scaffold [20].

2 Materials

 1. Molecular Operating Environment (MOE) (Chemical
Computing Group, Montreal).

 1. 10× PCR reaction buffer.
 2. 25 mM MgCl 2 .
 3. 10 mM dNTP mix.
 4. Taq DNA polymerase.
 5. PfuTurbo DNA polymerase.
 6. PTC-200 thermocycler.
 7. Concentrated (50×) stock solution of TAE buffer: Weigh 242

g of Tris base (MW = 121.14), and dissolve it in approximately
750 mL of ddH 2 O. Carefully add 57.1 mL of glacial acetic acid
and 100 mL of 0.5 M EDTA, and adjust the solution to a fi nal

2.1 Molecular
Modeling

2.2 Library Creation
by Single- Site
 Saturation
 Mutagenesis

 Fig. 1 Two-dimensional depiction of DHB and its surrounding residues when
docked into the hERα ligand-binding pocket. Twenty-one residues were identi-
fi ed to be within 4.6 Å of DHB. The A ring and D ring analogues of DHB are indi-
cated. Dashed lines denote hydrogen bonds

Combined Design and Directed Evolution for Ligand Binding

142

volume of 1 L. This stock solution can be stored at room tem-
perature. The pH of this buffer is not adjusted and should be
about 8.5.

 8. Working solution (1×) TAE buffer: Dilute the stock solution
by 50-fold with ddH 2 O. Final solute concentrations are 40
mM Tris–acetate and 1 mM EDTA.

 9. 1 % agarose gel in 1× TAE buffer: Add 1 g of agarose into 100
mL of 1× TAE buffer, and microwave until agarose is com-
pletely melted. Cool the solution to approximately 70–80
°C. Add 5 μL of ethidium bromide into the solution, and mix
well. Pour 25–30 mL of solution onto an agarose gel rack with
a 2-well comb.

 10. DNA gel purifi cation kit.
 11. Dpn I restriction enzyme.
 12. 10× CutSmart buffer.

 1. 10× mutagenic buffer: Add 0.0569 g of MgCl 2 , 1.491 g of
KCl, 0.0485 g of Tris–HCl and 0.040 g of gelatin into 40 mL
of ddH 2 O. Adjust pH to 8.3 with 8 M HCl. Store at −20 °C
(see Note 1).

 2. 5 mM MnCl 2 : First make 250 mM MnCl 2 by dissolving 0.0495
g of MnCl 2 in 1 mL of ddH 2 O. Then dilute 30 μL of 250 mM
MnCl 2 solution into 1470 μl of ddH 2 O to make 5 mM MnCl 2 .

 3. 100 mM dCTP, 100 mM dTTP, 100 mM dATP, 100 mM
dGTP.

 4. 10× EPdNTP: Add 50 μL of dCTP, 50 μl of dTTP, 10 μL of
dATP, and 10 μL of dGTP into 380 μL of ddH 2 O.

 1. S. cerevisiae YRG2 (MATα ura3 - 52 his3 - 200 ade2 - 101 lys2 - 801
trp1 - 901 leu2 - 3 112 gal4 - 542 gal80 - 538 LYS2::UASGAL1-
TATAGAL1- HIS3 URA3::UASGAL4 17 mers(×3)-TATA
CYC1-lacZ).

 2. YPAD medium: Dissolve 6 g of yeast extract, 12 g of peptone,
12 g of dextrose, and 60 mg of adenine hemisulfate in 600 mL
of ddH 2 O. Autoclave at 121 °C for 15 min.

 3. Synthetic complete dropout medium lacking tryptophan (SC-
Trp): Dissolve 3 g of ammonium sulfate, 1 g of yeast nitrogen
source without ammonium sulfate and amino acids, 1.14 g of
synthetic complete (SC) dropout media minus tryptophan,
26 mg of adenine hemisulfate, and 12 g of dextrose in 600 mL
of ddH 2 O, and adjust the pH to 5.6 by NaOH. Autoclave at
121 °C for 15 min.

 4. SC-Trp-agar: SC-Trp medium and 20 g/L of agar.

2.3 Library Creation
by Random
 Mutagenesis

2.4 Yeast
Transformation

Meng Wang and Huimin Zhao

143

 5. 1 M lithium acetate: Dissolve 5.1 g of lithium acetate dihydrate
in 50 mL of ddH 2 O and fi lter-sterilize the solution.

 6. Lithium acetate (0.1 M LiAc): Add 5 mL of 1 M LiAc into 45
mL of ddH 2 O.

 7. 50 % w/v PEG MW 3350: Add 25 g of PEG 3350 to about 15
mL of ddH 2 O in a 100 mL beaker. Stir until it dissolves. Make
up the volume to 50 mL and mix thoroughly. Filter-sterilize
the solution (see Note 2).

 8. 2 mg/mL single-stranded carrier DNA: Dissolve 200 mg of
salmon sperm DNA in 100 mL of sterile TE (10 mM Tris–
HCl, 1 mM Na 2 EDTA, pH 8.0) using a magnetic stir plate at
4 °C. Aliquot 1 mL into 1.5 mL Eppendorf tubes and store at
−20 °C. Denature the carrier DNA in a boiling water bath for
5 min, and chill immediately in an ice/water bath before use.

 9. pGAD424-SRC1 plasmid [21].

 1. pBD-Gal4-Cam plasmid.
 2. EcoR I and Sal I restriction enzymes.
 3. S. cerevisiae YRG2 strain carrying pGAD424-SRC1 plasmid

(Subheading 3.4).
 4. Synthetic complete dropout medium lacking leucine and tryp-

tophan (SC-Leu-Trp): Dissolve 3 g of ammonium sulfate, 1 g
of yeast nitrogen source without ammonium sulfate and amino
acids, 1.06 g of synthetic complete (SC) dropout media minus
leucine and tryptophan, 26 mg of adenine hemisulfate, and 12
g of dextrose in 600 mL of ddH 2 O, and adjust the pH to 5.6
by NaOH. Autoclave at 121 °C for 15 min.

 5. SC-Leu-Trp agar plate: SC-Leu-Trp medium and 20 g/L of
agar.

 6. 4,4′-Dihydroxybenzil (DHB): Synthesized as described in
Ref. 22 .

 7. Synthetic complete dropout medium lacking histidine, leucine,
and tryptophan (SC-His-Leu-Trp): Dissolve 3 g of ammonium
sulfate, 1 g of yeast nitrogen source without ammonium sul-
fate and amino acids, 0.996 g of synthetic complete (SC) drop-
out media minus histidine, leucine, and tryptophan, 26 mg of
adenine hemisulfate, and 12 g of dextrose in 600 mL of
ddH 2 O, and adjust the pH to 5.6 by NaOH. Autoclave at 121
°C for 15 min.

 8. SC-His-Leu-Trp agar plate containing appropriately concen-
trated target ligand (DHB).

 1. Round-bottom 96-well plates.
 2. Sterile fl at-bottom 96-well microtiter plates.

2.5 Library Cloning
and Transformation

2.6 Y2H System-
Based Screening

Combined Design and Directed Evolution for Ligand Binding

144

 3. 17β-Estradiol (E 2).
 4. 1000× 17β-estradiol (E 2): Dissolve appropriate amount of E 2

in ethanol to make 1000× stock solution.

 1. 20× ligand stock solution.
 2. SpectraMax 340PC plate reader.

 1. pCMV5-ERα plasmid [23].
 2. Hind III, Kpn I, and BamH I restriction enzymes.
 3. 10× T4 ligation buffer and T4 DNA ligase.
 4. Chemically competent E. coli DH5α.
 5. LB medium: Add 20 g of LB broth into 1 L of ddH 2 O. Autoclave

at 121 °C for 15 min.
 6. Ampicillin stock solution: Dissolve 1 g of ampicillin powder in

10 mL of ddH 2 O and fi lter-sterilize the solution.
 7. LB-Amp + medium: LB medium plus 100 μg/mL ampicillin.
 8. LB-Amp + agar plates: LB-Amp + medium and 20 g/L agar.
 9. QIAprep Miniprep Kit.
 10. 14 mL round-bottom tube.

 1. HBSS: Hanks’ balanced salt solution.
 2. Pre-/post-transfection medium: Add 5 % (v/v) charcoal

dextran- treated calf serum into phenol red-free improved min-
imum essential medium (MEM).

 3. Transfection media: Serum-free improved MEM medium.
 4. 24-well plates.
 5. Transfection solution A (each well): Mix 5 μL of lipofectin, 16

μL of transferrin, and 54 μL of HBSS.
 6. Transfection solution B (each well): 0.5 μg of pCMV β-gal, 1

μg of 2ERE-pS2-Luc, 100 ng of ER expression vector, add
HBSS up to 150 μL.

 7. 1000× ligand stock solution.
 8. PBS.
 9. 5× reporter lysis buffer.
 10. Opaque 96-well plate.
 11. 1 M K 2 HPO 4 stock solution: Dissolve 87.09 g of K 2 HPO 4 into

0.5 L of ddH 2 O.
 12. 1 M KH 2 PO 4 stock solution: Dissolve 68.045 g of KH 2 PO 4

into 0.5 L of ddH 2 O.

2.7 Ligand Dose-
Response Assay
(Yeast Transactivation
Profi les)

2.8 Subcloning
of Evolved hERα LBDs

2.9 Mammalian
Transfection
and Luciferase Assays
(Mammalian Cell
Transactivation
Profi les)

Meng Wang and Huimin Zhao

http://www.sigmaaldrich.com/catalog/product/SIGMA/55021C?lang=en®ion=US

145

 13. 0.1 M potassium phosphate buffer, pH = 7.0: Mix 61.5 mL of
1 M K 2 HPO 4 stock solution with 38.5 mL of 1 M KH 2 PO 4
stock solution, and add ddH 2 O up to 1 L.

 14. 4 mg/mL ONPG (o -nitrophenyl-β- d -galactopyranoside) sub-
strate. Dissolve 80 mg of ONPG into 20 mL of 0.1 M potas-
sium phosphate buffer, pH = 7.0.

 15. 1 M sodium carbonate: Dissolve 105.99 g of sodium carbon-
ate in 1 L of ddH 2 O.

 16. Luciferase Assay Reagent.
 17. LJL Biosciences Analyst HT plate reader.
 18. CO 2 -containing incubator.

3 Methods

 1. Load the hERα-diethylstilbestrol (DES) structure (PDB ID
code: 3ERD) into Molecular Operating Environment (MOE)
(Chemical Computing Group, Montreal).

 2. Apply the force fi eld MMFF94s [24], then add hydrogen
atoms, and assign partial charges to all atoms. The structure is
subsequently energy-minimized by using a sequential combi-
nation of steepest descent, conjugate gradient, and truncated
Newton algorithms.

 3. Draw a docking box with a grid consisting of 47 × 30 × 27
points around the DES ligand to specify the boundaries for the
movement of the ligand to be docked. In this orientation, the
box includes the entire DES ligand and a few atoms of the
interacting residues. Delete the DES ligand subsequently from
the structure, and dock the 4,4′-dihydroxybenzil (DHB)
ligand (which has been assigned partial charges and minimized
by using the MMFF94s force fi eld) into the docking box by
using a simulated annealing algorithm [25] with the following
parameters: initial temperature 12,000 K, 25 runs involving six
cycles per run, and 20,000 iterations per cycle.

 4. Compare the fi ve structures with the best docking score (low-
est overall energy) from these docking runs, and ensure them
within a root-mean-square deviation (rmsd) of 0.5 Å from
each other. The lowest energy of these fi ve is then subjected to
energy minimization as described earlier, to determine the
most favorable conformation and orientation of DHB in the
ligand-binding pocket. Residues within 4.6 Å of the docked
DHB are considered to be in contact with the ligand for pur-
poses of receptor engineering.

 5. To gauge the individual role played by the A350M and M388Q
mutations, make the appropriate amino acid substitutions to

3.1 Molecular
Modeling

Combined Design and Directed Evolution for Ligand Binding

146

the docked DHB-hERα structure, and energy-minimize the
resulting structure.

 6. Superimpose the energy-minimized E 2 -hERα crystal structure
(PDB ID code: 1GWR) on the docked and energy-minimized
DHB- hERα structure by using the align function in MOE.

 1. PCR-amplify the 5′ portion and 3′ portion of the hERα ligand-
 binding domain (LBD) gene containing the NNS substitution
at the codon of interest. Four primers are involved in the
library creation. The two primers fl anking the hERα-LBD are
CamL-ERα, 5′-CGACATCATCATCGGAAGAG-3′, and
CamR-ERα, 5′-GCTTGGCTGCAGTAATACGA- 3′. Two
exactly complementary degenerate primers incorporate the
residue to be mutated (one primer for generating the sense
strand and the other for generating the antisense strand). The
two degenerate primers incorporating the randomized amino
acids substitute the codon corresponding to the target residue
with the sequence NNS (see Note 3) and contain 9–10 addi-
tional bases on either side (5′ and 3′). Standard PCR reaction:
5 μL of 10× PCR reaction buffer, 3 μL of 25 mM MgCl 2 , 1 μL
of 10 mM dNTP mix, 25 pmol forward primer, 25 pmol
reverse primer, 5 ng of template plasmid, 0.6 U of Taq DNA
polymerase, and 0.6 U of PfuTurbo DNA polymerase. Adjust
the volume to 50 μL with ddH 2 O.

 2. PCR condition: Fully denature at 94 °C for 30 s, followed by
25 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for
1 min, with a fi nal extension at 72 °C for 10 min.

 3. Load the 50 μL of PCR products onto 1 % agarose gels and
perform electrophoresis at 120 V for 20 min.

 4. Gel-purify PCR products.
 5. Dpn I digestion to remove any residual methylated template:

5 μL of 10× CutSmart buffer, 1 μg of PCR product, 1 μl of
 Dpn I, add ddH 2 O to 20 μL, incubate at 37 °C overnight.

 6. Gel-purify digestion products.
 7. Use overlap extension PCR [26] to combine the 5′ portion

and 3′ portion of the hERα LBD gene containing the NNS
substitution at the codon of interest to generate the full-length
gene. PCR reaction: 5 μL of 10× PCR reaction buffer, 3 μL of
25 mM MgCl 2 , 1 μL of 10 mM dNTP mix, 100 ng of 5′ por-
tion PCR product, 100 ng of 3′ portion PCR product, 0.6 U
of Taq DNA polymerase, and 0.6 U of PfuTurbo DNA poly-
merase. Adjust the volume to 50 μL with ddH 2 O.

 8. Overlap extension PCR condition: Fully denature at 94 °C for
30 s, followed by ten cycles of 94 °C for 1 min, 55 °C for 1
min, and 72 °C for 3 min, with a fi nal extension at 72 °C for
10 min.

3.2 Library Creation
by Single-Site
Saturation
Mutagenesis

Meng Wang and Huimin Zhao

147

 9. PCR-amplify the mutagenized full-length hERα LBD. Primers
used: CamL-ERα and CamR-ERα. Standard PCR reaction:
5 μL of 10× PCR reaction buffer, 3 μL of 25 mM MgCl 2 , 1 μL
of 10 mM dNTP mix, 25 pmol forward primer, 25 pmol
reverse primer, 5 μL of overlap extension PCR products from
 step 8 , 0.6 U of Taq DNA polymerase, and 0.6 U of PfuTurbo
DNA polymerase. Adjust the volume to 50 μL with ddH 2 O.

 10. PCR condition: Fully denature at 94 °C for 30 s, followed by
25 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for
1 min, with a fi nal extension at 72 °C for 10 min.

 11. Gel-purify PCR products.

 1. Generate randomly mutagenized hERα LBD genes using
error- prone PCR. Primers used: CamL-ERα and CamR-ERα.
PCR reaction: 10 μL of 10× mutagenic buffer, 3 μL of MnCl 2
(see Note 4), 20 ng of template plasmid, 5 U of Taq DNA
polymerase, 10 μL of 10× EPdNTP, 25 pmol forward primer,
and 25 pmol reverse primer. Adjust the volume to 100 μL with
ddH 2 O.

 2. PCR condition: Fully denature at 94 °C for 30 s, followed by
15 cycles of 94 °C for 30 s, 50 °C for 30 s, and 72 °C for
1 min, with a fi nal extension at 72 °C for 10 min.

 3. Gel-purify PCR products.

 1. Inoculate a single colony of S. cerevisiae YRG2 strain into 3 mL
of YPAD medium, and grow overnight in a shaker at 30 °C
and 250 rpm (see Note 5).

 2. Measure the OD 600 of the seed culture and inoculate the
appropriate amount to 50 mL of fresh YPAD medium to
obtain an OD 600 of 0.2.

 3. Continue growing the 50 mL of culture for approximately 4 h
to obtain an OD 600 of 0.8.

 4. Spin down the yeast cells at room temperature, 4000 × g for
5 min and remove the spent medium.

 5. Use 50 mL of ddH 2 O to wash the cells once and centrifuge
again.

 6. Discard water, add 1 mL of 0.1 M LiAc to suspend the cells,
and move them to a sterile Eppendorf tube.

 7. Spin down the cells using a benchtop centrifuge for 30 s at
4500 × g .

 8. Remove liquid and resuspend cells in 500 μL of 0.1 M LiAc
(for ten individual transformations).

 9. Transfer 50 μL resuspended cells to each sterile Eppendorf
tube for each transformation.

3.3 Library Creation
by Random
 Mutagenesis

3.4 Yeast
Transformation

Combined Design and Directed Evolution for Ligand Binding

148

 10. Spin down the cells using a benchtop centrifuge for 30 s at
4500 × g and remove the liquid.

 11. Add the following components in the following order: (1) 240
μL of 50 % w/v PEG, (2) 36 μL of 1 M LiAc, (3) 50 μL of 2.0
mg/mL SS- DNA, (4) X μL DNA, and (5) 34-X μL sterile
ddH 2 O.

 12. Vortex each tube vigorously until the cell pellet has been com-
pletely mixed.

 13. Heat shock in a water bath at 42 °C for 40 min.
 14. Spin down the cells using a benchtop centrifuge for 30 s at

4500 × g . Remove liquid by pipetting.
 15. Pipette 1000 μL of sterile water into each tube and resuspend

the pellet by pipetting it up and down gently.
 16. Plate 200 μl onto Sc-Trp agar plate.
 17. Incubate the plates at 30 °C for 2–3 days until colonies appear.

 1. Linearize pBD-Gal4-Cam by Eco RI and Sal I digestion.
Digestion condition: 1 μg of pBD-Gal4-Cam, 2 μL of 10×
buffer, 1 μL of Eco RI, 1 μL of Sal I, add ddH 2 O to fi nal volume
of 20 μL. Digest at 37 °C for 3 h.

 2. Gel-purify the linearized plasmid.
 3. Use S. cerevisiae YRG2 strain carrying pGAD424-SRC1 plas-

mid as a parental strain for library cloning. For individual site
 saturation mutagenesis library, 20 ng of linearized plasmid is
cotransformed with 20 ng of previously obtained mutagenized
hERα LBD PCR product (Subheading 3.2) by using the previ-
ously described transformation method (Subheading 3.4).

 4. Plate all saturation mutagenesis library transformants onto a
SC- Leu- Trp agar plate (see Note 6).

 5. For error-prone PCR libraries, cotransform 150 ng of linear-
ized plasmid with 150 ng of previously obtained error-prone
PCR product by using the previously described transformation
method (Subheading 3.4) (see Note 7).

 6. Plate error-prone PCR library transformants onto a SC-His-
Leu- Trp agar plate containing an appropriate concentration of
the target ligand (DHB) for screening.

 1. Add 50 μL of SC-Leu-Trp minimal liquid media in each well
of round-bottom 96-well plates.

 2. Pick transformants from the individual site saturation muta-
genesis library plates or the error-prone PCR library plates
with sterile toothpicks to individual wells of 96-well plates, and
incubate them overnight (16–20 h) at 30 °C.

3.5 Library Cloning
and Transformation

3.6 Y2H System-
Based Screening

Meng Wang and Huimin Zhao

149

 3. As a control, inoculate one well in every microtiter plate with
a yeast colony expressing the parental hERα LBD construct.

 4. After this overnight incubation, add 250 μL of sterile ddH 2 O
to every well. Mix well by pipetting.

 5. Add 200 μL of SC-His-Leu-Trp media with an appropriate
concentration of either target ligand (DHB) or E 2 to two iden-
tical sterile fl at-bottom 96-well microtiter plates.

 6. Transfer 5 μL of each diluted culture to the corresponding
wells of two identical 96-well plates.

 7. Incubate these ligand-containing microtiter plates at 30 °C for
24 h.

 8. Identify mutants with strengthened response toward the target
ligand (higher cell density than parental mutant control) and
weakened response toward E 2 (lower cell density than parent)
using visual check.

 9. Streak mutants that appear to be more selective for the target
ligand relative to E 2 onto SC-Leu-Trp agar plates, and incu-
bate at 30 °C for 2 days.

 10. Pick single colonies from these streaked plates and subject
them to a yeast ligand dose-response assay.

 1. Pick single colonies from the abovementioned streaked plates
into individual wells of round-bottom 96-well plates contain-
ing 50 μL of SC-Leu-Trp liquid medium, and grow at 30 °C
for overnight.

 2. After this overnight incubation, add 250 μL of sterile ddH 2 O
to every well. Mix well by pipetting.

 3. Transfer 5 μL of each diluted culture to sterile fl at-bottom
96-well microtiter plates containing 200 μL of SC-His-Leu-
Trp medium to obtain a diluted culture with fi nal OD 600 of
~0.002.

 4. Transfer 190 μl of each diluted culture to the corresponding
wells of fl at-bottom 96-well plates.

 5. Add 10 μl of 20× ligand stock solution.
 6. Incubate these ligand-containing microtiter plates at 30 °C for

24 h.
 7. Mix culture in each well by pipetting and determine their

OD 600 values by using a SpectraMax 340PC plate reader.

 1. PCR-amplify the evolved LBD genes using primers ERα-
pCMV5- 5KpnI (5′CCGGTACCCCATGACCATGAC-3′)
and ERα-BamHI-C (5′AGCTCTGGATCCTCAGACTGT
GGCAGGGAAAC-3′) (see Subheading 3.2).

 2. Gel-purify PCR products.

3.7 Ligand Dose-
Response Assay
(Yeast Transactivation
Profi les)

3.8 Subcloning
of Evolved hERα LBDs

Combined Design and Directed Evolution for Ligand Binding

150

 3. Linearize the pCMV5-ERα plasmid with Hind III using condi-
tions described in Subheading 3.5 .

 4. Gel-purify 1 kb fragment of the linearized plasmid.
 5. The two purifi ed DNA fragments share an overlap region of

approximately 100 bp. Perform overlap extension PCR to gen-
erate full-length mutant hERα genes. PCR reaction: 5 μL of
10× PCR reaction buffer, 3 μL of 25 mM MgCl 2 , 1 μL of 10
mM dNTP mix, 100 ng of PCR product, 100 ng of linearized
plasmid, 0.6 U of Taq DNA polymerase, and 0.6 U of PfuTurbo
DNA polymerase. Adjust the volume to 50 μL with ddH 2 O.

 6. Overlap extension PCR condition: Fully denature at 94 °C for
30 s, followed by ten cycles of 94 °C for 1 min, and 72 °C for
4 min, with a fi nal extension at 72 °C for 10 min.

 7. PCR-amplify the full-length mutant hERα genes. Primers
used: ERα-pCMV5-5KpnI and ERα-BamHI-C. Standard
PCR reaction: 5 μL of 10× PCR reaction buffer, 3 μL of 25
mM MgCl 2 , 1 μL of 10 mM dNTP mix, 25 pmol forward
primer, 25 pmol reverse primer, 5 μL of overlap extension PCR
products, 0.6 U of Taq DNA polymerase, and 0.6 U of
 PfuTurbo DNA polymerase. Adjust the volume to 50 μL with
ddH 2 O.

 8. Overlap extension PCR condition: Fully denature at 94 °C for
30 s, followed by 25 cycles of 94 °C for 1 min, and 72 °C for
4 min, with a fi nal extension at 72 °C for 10 min.

 9. Gel-purify PCR product.
 10. Digest PCR product with Kpn I- Bam HI using condition

described in Subheading 3.5 .
 11. Digest pCMV5-ERα plasmid with Kpn I- Bam HI using condi-

tion described in Subheading 3.5 .
 12. Ligation reaction: 100 ng of Kpn I- Bam HI digested pCMV5-

ERα, 180 ng of Kpn I- Bam HI digested PCR product, 1 μL of
10× T4 ligation buffer, 0.25 μL of T4 ligase. Incubate at 16 °C
overnight.

 13. Transform E. coli DH5α using a heat shock method: Add 4 μL
of ligation reaction mixture to 50 μL of E. coli DH5α chemi-
cally competent cells in a sterile Eppendorf tube.

 14. Heat shock E. coli DH5α at 42 °C for 30 s and add 1 mL of LB
medium.

 15. Transfer the suspended cells to a 14 mL round-bottom tube
and grow at 37 °C for 1 h.

 16. Spread 250 μL on a LB-Amp + plate and incubate at 37 °C
overnight.

 17. Inoculate single colonies to 4 mL of LB-Amp + medium and
grow with shaking at 37 °C overnight.

Meng Wang and Huimin Zhao

151

 18. Purify plasmids from each 4 mL of culture.
 19. Confi rm the identity of the plasmids by DNA sequencing.

 1. Seed human endometrial cancer (HEC-1) cells in 1 mL of
pre-/post-transfection medium in each well of the 24-well
plates. Incubate the plate at 37 °C for 24 h.

 2. Preheat transfection medium at 37 °C.
 3. In each well, add 75 μL of transfection solution A and 75 μL

of transfection solution B. Then add 350 μL of transfection
medium. Incubate at 37 °C in a 5 % CO 2 -containing incubator
for 5 h.

 4. Preheat pre-/post-transfection medium at 37 °C.
 5. Remove the medium in each well via vacuum and wash with

1 mL of pre-/post-transfection medium.
 6. Add 1 mL of pre-/post-transfection medium and 1 μL of

1000× ligand stock solution to each well. Incubate the plate at
37 °C in a 5 % CO 2 -containing incubator for 24 h.

 7. Wash cells with 500 μL of PBS twice.
 8. Add 100 μL of reporter lysis buffer and freeze at −70 °C.
 9. Thaw cells and transfer cells to a round-bottom 96-well plate.

Centrifuge at 4000 × g for 5 min at room temperature.
 10. For the β-galactosidase assay, transfer 20 μL of supernatant to

a fl at-bottom 96-well plate.
 11. Add 200 μL of ONPG substrate mixture to each well in 96-well

plates. Develop color at room temperature until a faint yellow
color appears.

 12. Stop the reaction by adding 150 μL of 1 M sodium carbonate.
Mix by pipetting the contents of each well.

 13. Read the absorbance of the samples at 405 nm in a SpectraMax
340PC plate reader.

 14. For the luciferase assay, transfer 20 μL of supernatant from
 step 9 to each well in an opaque 96-well plate.

 15. Add 100 μL of Luciferase Assay Reagent per well.
 16. Read samples with a plate reader.

4 Notes

 1. Aliquot 10× mutagenic buffer into Eppendorf tubes for stor-
age to avoid multiple cycles of freeze and thaw.

 2. Make sure the container of PEG solution is tightly sealed. The
transformation effi ciency is highly dependent on the PEG
concentration.

3.9 Mammalian
Transfection
and Luciferase Assays
(Mammalian Cell
Transactivation
Profi les)

Combined Design and Directed Evolution for Ligand Binding

152

 3. The choice of the substitution NNS allows the incorporation
of all 20 amino acids while keeping the total number of codon
possibilities low, at 32.

 4. Mutation rate can be adjusted via changing MnCl 2 concentra-
tion between 0.1 and 0.2 mM.

 5. S. cerevisiae competent cell need to be prepared freshly every
time.

 6. Plate a series of different amount of the transformation mix-
ture (10, 50, 100 μL) on different plates to determine the
transformation effi ciency.

 7. In order to obtain suffi cient transformants for the random
 mutagenesis library, it might be necessary to perform large-
scale transformation. In such case, components of transforma-
tion mixture and plasmids (Subheading 3.4 , step 11) can be
premixed and aliquoted (360 μl each) into Eppendorf tubes
containing S. cerevisiae cells to perform the heat shock step .

 References

 1. Weatherman RV, Fletterick RJ, Scanlan TS
(1999) Nuclear-receptor ligands and ligand-
binding domains. Annu Rev Biochem
68:559–581

 2. Anand P, Nagarajan D, Mukherjee S, Chandra
N (2014) PLIC: protein-ligand interaction
clusters. Database (Oxford) 2014:bau029

 3. Damborsky J, Brezovsky J (2014)
Computational tools for designing and engi-
neering enzymes. Curr Opin Chem Biol
19:8–16

 4. Feldmeier K, Höcker B (2013) Computational
protein design of ligand binding and catalysis.
Curr Opin Chem Biol 17:929–933

 5. Brustad EM, Lelyveld VS, Snow CD, Crook
N, Jung ST, Martinez FM, Scholl TJ, Jasanoff
A, Arnold FH (2012) Structure-guided
directed evolution of highly selective p450-
based magnetic resonance imaging sensors for
dopamine and serotonin. J Mol Biol
422:245–262

 6. Shapiro MG, Westmeyer GG, Romero PA,
Szablowski JO, Kuster B, Shah A, Otey CR,
Langer R, Arnold FH, Jasanoff A (2010)
Directed evolution of a magnetic resonance
imaging contrast agent for noninvasive imag-
ing of dopamine. Nat Biotechnol 28:264–270

 7. de Las HA, Carreno CA, Martinez-Garcia E,
de Lorenzo V (2010) Engineering input/out-
put nodes in prokaryotic regulatory circuits.
FEMS Microbiol Rev 34:842–865

 8. Collins CH, Arnold FH, Leadbetter JR (2005)
Directed evolution of Vibrio fi scheri LuxR for

increased sensitivity to a broad spectrum of
acyl-homoserine lactones. Mol Microbiol
55:712–723

 9. Scholz O, Kostner M, Reich M, Gastiger S,
Hillen W (2003) Teaching TetR to recognize a
new inducer. J Mol Biol 329:217–227

 10. Tang SY, Fazelinia H, Cirino PC (2008) AraC
regulatory protein mutants with altered effec-
tor specifi city. J Am Chem Soc
130:5267–5271

 11. Vee Aune TE, Bakke I, Drablos F, Lale R,
Brautaset T, Valla S (2010) Directed evolution
of the transcription factor XylS for develop-
ment of improved expression systems. Microb
Biotechnol 3:38–47

 12. Amiss TJ, Sherman DB, Nycz CM, Andaluz
SA, Pitner JB (2007) Engineering and rapid
selection of a low-affi nity glucose/galactose-
binding protein for a glucose biosensor.
Protein Sci 16:2350–2359

 13. East AK, Mauchline TH, Poole PS (2008)
Biosensors for ligand detection. Adv Appl
Microbiol 64:137–166

 14. Reetz MT, Bocola M, Carballeira JD, Zha D,
Vogel A (2005) Expanding the range of sub-
strate acceptance of enzymes: combinatorial
active- site saturation test. Angew Chem Int Ed
Engl 44:4192–4196

 15. Reetz MT, Carballeira JD, Vogel A (2006)
Iterative saturation mutagenesis on the basis of
B factors as a strategy for increasing protein
thermostability. Angew Chem Int Ed Engl
45:7745–7751

Meng Wang and Huimin Zhao

153

 16. Chockalingam K, Chen Z, Katzenellenbogen
JA, Zhao H (2005) Directed evolution of spe-
cifi c receptor-ligand pairs for use in the cre-
ation of gene switches. Proc Natl Acad Sci U S
A 102:5691–5696

 17. Tinberg CE, Khare SD, Dou J, Doyle L,
Nelson JW, Schena A, Jankowski W, Kalodimos
CG, Johnsson K, Stoddard BL, Baker D
(2013) Computational design of ligand-bind-
ing proteins with high affi nity and selectivity.
Nature 501:212–216

 18. Khare SD, Kipnis Y, Greisen P Jr, Takeuchi R,
Ashani Y, Goldsmith M, Song Y, Gallaher JL,
Silman I, Leader H, Sussman JL, Stoddard BL,
Tawfi k DS, Baker D (2012) Computational
redesign of a mononuclear zinc metalloen-
zyme for organophosphate hydrolysis. Nat
Chem Biol 8:294–300

 19. Giger L, Caner S, Obexer R, Kast P, Baker D,
Ban N, Hilvert D (2013) Evolution of a
designed retro- aldolase leads to complete active
site remodeling. Nat Chem Biol 9:494–498

 20. McLachlan MJ, Chockalingam K, Lai KC,
Zhao H (2009) Directed evolution of orthog-
onal ligand specifi city in a single scaffold.
Angew Chem Int Ed Engl 48:7783–7786

 21. Ding XF, Anderson CM, Ma H, Hong H, Uht
RM, Kushner PJ, Stallcup MR (1998) Nuclear

receptor- binding sites of coactivators gluco-
corticoid receptor interacting protein 1
(GRIP1) and steroid receptor coactivator 1
(SRC-1): multiple motifs with different bind-
ing specifi cities. Mol Endocrinol 12:302–313

 22. Katzenellenbogen JA, Johnson HJ, Carlson
KE, Myers HN (1974) Photoreactivity of
some light- sensitive estrogen derivatives. Use
of an exchange assay to determine their pho-
tointeraction with the rat uterine estrogen
binding protein. Biochemistry 13:
2986–2994

 23. Chen Z, Katzenellenbogen BS,
Katzenellenbogen JA, Zhao H (2004)
Directed evolution of human estrogen recep-
tor variants with signifi cantly enhanced andro-
gen specifi city and affi nity. J Biol Chem
279:33855–33864

 24. Halgren TA (1999) MMFF VI. MMFF94s
option for energy minimization studies.
J Comput Chem 20:720–729

 25. Hart TN, Read RJ (1992) A multiple-start
Monte Carlo docking method. Proteins
13:206–222

 26. Ho SN, Hunt HD, Horton RM, Pullen JK,
Pease LR (1989) Site-directed mutagenesis by
overlap extension using the polymerase chain
reaction. Gene 77:51–59

Combined Design and Directed Evolution for Ligand Binding

155

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_9, © Springer Science+Business Media New York 2016

Chapter 9

Improving Binding Affinity and Selectivity
of Computationally Designed Ligand-Binding Proteins
Using Experiments

Christine E. Tinberg and Sagar D. Khare

Abstract

The ability to de novo design proteins that can bind small molecules has wide implications for synthetic
biology and medicine. Combining computational protein design with the high-throughput screening of
mutagenic libraries of computationally designed proteins is emerging as a general approach for creating
binding proteins with programmable binding modes, affinities, and selectivities. The computational step
enables the creation of a binding site in a protein that otherwise does not (measurably) bind the intended
ligand, and targeted mutagenic screening allows for validation and refinement of the computational model
as well as provides orders-of-magnitude increases in the binding affinity. Deep sequencing of mutagenic
libraries can provide insights into the mutagenic binding landscape and enable further affinity improve-
ments. Moreover, in such a combined computational–experimental approach where the binding mode is
preprogrammed and iteratively refined, selectivity can be achieved (and modulated) by the placement of
specified amino acid side chain groups around the ligand in defined orientations. Here, we describe the
experimental aspects of a combined computational–experimental approach for designing—using the soft-
ware suite Rosetta—proteins that bind a small molecule of choice and engineering, using fluorescence-
activated cell sorting and high-throughput yeast surface display, high affinity and ligand selectivity. We
illustrated the utility of this approach by performing the design of a selective digoxigenin (DIG)-binding
protein that, after affinity maturation, binds DIG with picomolar affinity and high selectivity over structur-
ally related steroids.

Key words Computational design, Rosetta macromolecular modeling, Affinity optimization, Binding
selectivity, Steroid binding, Protein-small molecule interactions

1 Introduction

Computational de novo design of protein function has seen remark-
able success in recent years, enabling, for example, the construction
of enzymes for catalyzing reactions that are not natively catalyzed
by natural enzymes [1, 2], protein binders against pathogenic pro-
teins [3], and, more recently, the design of small-molecule binding
proteins with high affinity and programmable selectivity [4]. In all
cases, the initial hits obtained from the computational design

156

approach were weakly active, and the use of high-throughput
experimental characterization to screen and improve designed pro-
teins was critical for success. Many of the limitations of computa-
tional design methodology, including force field inaccuracies, lack
of explicit modeling of solvent and properties such as protein solu-
bility, and, more generally, our limited understanding of protein
sequence–function relationships [5], were, at least in part, over-
come by screening tens of computationally designed proteins using
sensitive experimental assays, identifying weakly active hits and
subsequently improving their efficacies using mutagenic screening
or selection techniques [6]. Conversely, the directed evolution
methods used to improve activities in these efforts could be made
more efficient, compared to random mutagenesis approaches, by
virtue of being guided by an atomic-resolution (but partially accu-
rate) computational model of the bound state. This iterative, com-
bined computational–experimental strategy builds upon the
strengths of these complementary methods and will continue to be
a key component of various protein design applications [7].

Here, we describe the experimental strategy and protocols
used in our efforts to de novo design small-molecule binding sites
in proteins—these computationally designed and subsequently
laboratory- evolved proteins feature affinities and selectivities that
rival those of natural small-molecule binding proteins. On the
computational end, we developed and used a computational design
approach, in the context of the Rosetta macromolecular modeling
suite, to transplant idealized binding sites for a chosen ligand—the
steroid digoxigenin (DIG)—into a set of protein scaffolds. The
scaffolds were remodeled to accommodate predefined interactions
to DIG, and then Rosetta Design [8] was used to optimize the
binding site amino acid sequences for ligand-binding affinity. A
more complete description of the computational strategy and pro-
tocols used to obtain the binders can be obtained elsewhere [4]. As
mentioned above, the initial hits were weak affinity binders and
could be detected only with a sensitive and relatively high-through-
put yeast surface display assay that conveniently allowed testing
tens of computationally designed proteins (referred to as designs
hereafter) and their mutagenic libraries. We focus here on the
experimental assays and methods for subsequent affinity matura-
tion as well as selectivity modulation. Results from these experi-
mental strategies (impact of point mutations on binding) were
used to both validate (or invalidate) and refine initial designs, and
models of mutagenized proteins were then used to guide further
optimization, for instance, by the model-guided enumeration of
ligand-proximal residue positions for which mutagenic libraries
were constructed and tested. The experimental data-guided design
model of one of our designs was subsequently validated by the
observed atomic-resolution agreement with X-ray crystallographic

Christine E. Tinberg and Sagar D. Khare

157

structures of a series of its variants [4]. Below, we describe our
approach and offer some practical suggestions for the choices that
are made while performing various steps.

2 Materials

Streptavidin–phycoerythrin (SAPE).
Yeast strain EBY100.
pCTCON2 or pETCON vector.
Highly avid ligand–biotin conjugate.
Monovalent ligand–biotin conjugate.
Monovalent ligand–fluorophore conjugate.

3 Methods

The overall goals of the approach are (1) to detect (initially weak)
binding of the designed proteins and (2) to improve binding affin-
ity and selectivity of the designed proteins. In the latter case, the
choice of residue positions to mutate is based on the spatial prox-
imity of these positions to the ligand in the computational model
of the bound state. Typically, first-shell positions are chosen for
site–saturation mutagenesis, beneficial mutations are combined
(combinatorially), and these experimentally identified amino acid
substitutions are used to refine or invalidate initial design model.
For the optimized variant, a single-site mutagenic library at both
first- and second- shell residue positions is generated, and high-
throughput sequencing of screened libraries is used to guide fur-
ther affinity improvements. The experimental data-guided
computational model is then used to design mutations to predic-
tively modulate the selectivity of designed proteins for the small
molecule over a series of congeners.

 1. Designed proteins are tested for ligand binding using yeast
surface display [9]. We used the vector pETCON and the
NdeI/XhoI restriction sites in this vector to clone synthetic
genes of the designs. Standard yeast surface display materials
and protocols were used for growth and induction unless
stated otherwise below.

 2. For hydrophobic ligands (such as DIG) and designed proteins
that are expected to have low affinities, it is important to guard
against false-positives as exposed hydrophobic patches in pro-
teins can nonspecifically bind the ligand with low affinity. To
control for nonspecific binding, we used proteins that are both
structurally and functionally unrelated to designed proteins as
controls. Negative controls for binding were two tandem Z

3.1 Overview
of Approach

3.2 Initial Screen
of Computationally
Designed Proteins

Experimental Ptimization of Ligand Binding Affinity and Specificity

158

domains of protein A (ZZ domain) [10, 11] and a mutagenic
library of HIV glycoprotein (gp120) variants developed for an
unrelated project.

 3. The genes for the “negative control” proteins as well as designs
cloned into the pETCON vector are transformed into cells of
the yeast strain EBY100 using lithium acetate and polyethylene
glycol [12]. Transformants are plated on selective media (C –
ura –trp) that select for both the strain and the vector.

 4. Freshly transformed cells are inoculated into 1 mL of SDCAA
media [9] and grown at 30 °C, 200 rpm. After ~12 h, 1e7 cells
are collected by centrifugation at 1700 × g for 3 min and resus-
pended in 1 mL of SGCAA media to induce protein
expression.

 5. Following induction for 24–48 h at 18 °C, 4e6 cells are col-
lected by centrifugation and washed twice by incubation with
PBSF (PBS supplemented with 1 g/L of BSA) for 10 min at
room temperature. Induction times and temperatures required
to obtain the highest expression levels of displayed proteins
can vary and need to be empirically determined. For our sys-
tem, 24–48 h at 18 °C was optimal.

 6. For proteins expressed from their gene in the pETCON vec-
tor, yeast surface protein expression can be monitored by the
binding of anti-cmyc-FITC antibody to the C-terminal myc-
epitope tag of the displayed protein (Fig. 1a).

 7. Small-molecule (in our case, DIG) binding is assessed by quan-
tifying the phycoerythrin (PE) fluorescence of the displaying
yeast population following incubation with small-molecule-
biotinylated protein conjugates: DIG-BSA-biotin, DIG-
RNase- biotin (Fig. 1b, c), or DIG-PEG3-biotin (Fig. 1d) in
our case, and streptavidin–phycoerythrin (SAPE). See Note 1.

 8. Following a 2–4-h incubation at 4 °C in the dark on a rotator,
cells are collected by centrifugation at 1700 × g for 3 min and
washed with 200 μL of PBSF at 4 °C.

 9. Cell pellets are resuspended in 200 μL of ice-cold PBSF imme-
diately before use. For detecting weak affinity binders, it is
important to keep the samples on ice until resuspension and
resuspend immediately before use.

 10. Cellular fluorescence is monitored on an Accuri C6 flow
cytometer using a 488 nm laser for excitation and a 575 nm
band pass filter for emission. Phycoerythrin fluorescence is
compensated to minimize bleed-over contributions from the
FITC fluorescence channel.

 11. While negative controls are important (see Subheading 3.2,
step 3), positive controls of varying affinities, if available,
should be used to validate, and tune the sensitivity of, the assay.

Christine E. Tinberg and Sagar D. Khare

159

In our case, two positive controls having different affinities for
digoxigenin were used in the binding assay: a previously engi-
neered steroid binding protein DigA16 [13] and a commer-
cially available anti-DIG monoclonal antibody 9H27L19 (Fig.
2). Experiments using DigA16 were conducted in an identical
fashion to design DIG1-17. For those employing the anti-DIG
antibody, an Fc-region-binding protein, the ZZ domain (see
Subheading 3.2, step 3), was displayed on the yeast cell sur-
face, and washed cells were resuspended in 20 μL of PBSF with
2 μL of rabbit anti-DIG mAB 9H27L19. Following a 30-min
incubation at 4 °C on a rotator, excess antibody was removed
by washing the cells with 200 μL of PBSF. Labeling reactions
were then performed as above.

Fig. 1 Outline of assay used for detection and evolution of binding affinity of designed proteins. (a) Designs are
expressed on the surface of yeast using the plasmid pETCON as described by Wittrup and co-workers. A c-myc
tag is attached at the C-terminus of the protein to enable detection using an anti-c-myc antibody that is con-
jugated to a fluorophore (e.g., FITC, green). Binding can detected in a high-avidity format to identify initial hits
(top) or low-avidity format to enable more sensitive detection of affinity increase during affinity maturation
(bottom). (b, c) NHS esters of DIG and biotin that are used for conjugation to a carrier protein (e.g., BSA or
RNase) in the high-avidity format. (d) The DIG-biotin conjugate that was used in the low-avidity format

Experimental Ptimization of Ligand Binding Affinity and Specificity

160

 12. To test if the hits identified above are not false-positives on
account of binding to other assay components (such as SAPE),
it is important to perform competition experiments with the
free ligand (Fig. 2a). See Note 2.

 13. To further ensure specific binding to the small molecule,
knockout mutagenesis of key interacting residues is performed.
Residues that interact with the ligand in the computational
model are mutated to amino acids that disfavor binding. This
step serves to confirm that the ligand and not other assay com-
ponents are binding the design as well as confirm the design
model.

 1. Based on the identified hits in Subheading 3.2, affinity matura-
tion is performed using single site–saturation mutagenesis
(SSM) library constructed by Kunkel mutagenesis [14] using
degenerate NNK primers (Fig. 3).

 2. Positions for mutagenesis are chosen based on the computa-
tional design model. Positions are chosen from the model
based on the following requirements: (1) they have Cα within

3.3 Affinity
Improvement Using
Yeast Surface Display
Selections
and Fluorescence-
Activated Cell Sorting
of Mutagenic Libraries

Fig. 2 Typical assay results for hits obtained in a set of computationally designed proteins. (a) Example results
and validation experiments carried out for a hit identified from the binding assay showing no binding signal for
negative control (ZZ (−)), high binding signal for positive control (Ab (+)), binding signal for the design (DIG10),
no binding signal for design incubated with excess unlabeled DIG (DIG10 + 1 mM DIG), no binding signal for the
wild-type scaffold protein on which the design DIG10 is based (scaffold), and similar binding signal (as DIG10)
when an alternative carrier protein, RNase, is used (DIG10*). (b) Binding signals for controls and all 17 tested
designs. Designs DIG10 showed reproducible binding signals with both carrier proteins, DIG5 and DIG8 showed
high signals with RNase carrier protein but not BSA, and DIG15 showed high signals with BSA but not RNase.
Tests described in (a) identified DIG10 and DIG5 as being specific binders to DIG. These were used for further
affinity maturation

Christine E. Tinberg and Sagar D. Khare

161

7 Å of any ligand heavy atom, and/or (2) they have Cα within
9 Å of any ligand heavy atom and Cβ closer to any heavy atom
in the ligand than Cα. The theoretical library size can be calcu-
lated (in our case, we chose 34 positions for design DIG10
yielding a size of 1088 clones).

 3. Kunkel mutagenesis of each position using mutagenic oligo-
nucleotides is carried out independently. DNA from each reac-
tion is dialyzed into dH2O using a 0.025 μm membrane filter,
and then the dialyzed reaction mixtures are pooled, concen-
trated to a volume of <10 μL using a Savant SpeedVac centrifu-
gal vacuum concentrator, and transformed into yeast strain
EBY100 using the method of Benatuil [15]. Typical yields are
1E7–1E8. See Note 3.

 4. After transformation, cells are grown in 250 mL of SDCAA
media for 36 h at 30 °C. Cells (5e8) are collected by centrifu-
gation at 1700 × g for 4 min, resuspended in 50 mL of SGCAA
media, and induced at 18 °C for 24 h.

Fig. 3 Directed evolution of computational designs. (a) Outline of scheme used for site-directed mutagenesis
of designs for affinity improvement. Several rounds of single site–saturation mutagenesis followed by combi-
natorial mutagenesis using identified beneficial single mutations are performed to obtain affinity improve-
ments. (b) Comparison of the binding properties of the initial hit (DIG10) with the affinity matured variant
(DIG10.1). High binding signals are detectable at ~6 orders-of-magnitude lower labeled ligand concentrations
after affinity maturation

Experimental Ptimization of Ligand Binding Affinity and Specificity

162

 5. Cells are subjected to multiple (we used three) rounds of per-
missive cell sorting to enrich for improved variants. During
each round of sorting, cells are washed and then labeled with a
preincubated mixture of 2.66 μM DIG-BSA-biotin, 644 nM
SAPE, and anti-cmyc-FITC as noted above for single clones.
During each round, the top ~10 % of cells in the PE channel
are collected. It is important to sort 10–100 times the library
transformation efficiency to ensure that each clone in the
library is sampled during the sort. See Note 4.

 6. After each round of sorting, cells are grown in SDCAA for 24
h and then induced in SGCAA for 24 h before the next sort. It
is important to recover the cells in this way so that low repre-
sentation clones are allowed to amplify.

 7. After the final sort, an increase in the mean compensated PE
fluorescence of the expressing population of the sorted cells
compared to that of the original design indicates the presence
of a point mutant(s) with increased binding affinity.

 8. After each sort, a portion of cells are plated and grown at 30
°C. Plasmids from individual colonies are harvested and the
gene is amplified by PCR. Sanger sequencing is used to
sequence at least ten colonies from each population to identify
mutations that increase affinity.

 1. Beneficial mutations identified in the SSM library (Subheading
3.3) are combined by Kunkel mutagenesis [14] using degener-
ate primers. At each mutagenized position, the original DIG10
amino acid and chemically similar amino acids to those identi-
fied in the first round of directed evolution are also allowed,
resulting in a combinatorial library.

 2. Four independent Kunkel reactions using different mutagenic
oligonucleotide concentrations ranging from 36 to 291 nM
during polymerization are performed to minimize sequence-
dependent priming bias. For the same reason, oligonucleotides
encoding native substitutions contain at least one codon base
change.

 3. Library DNA is pooled, prepared as above, and transformed
into electrocompetent E. coli strain BL21(DE3) cells (1800 V,
200 Ω, 25 μF). Library plasmid DNA is isolated from expanded
cultures. Gene insert is amplified from 10 ng of library DNA
by 30 cycles of PCR (98 °C 10 s, 61 °C 30 s, 72 °C 15 s) using
Phusion high-fidelity polymerase with the pCTCON2r and
pCTCON2f primers. See Note 5.

 4. Yeast EBY100 cells are transformed with 4.0 μg of PCR-
purified DNA insert generated in the previous step and 1.0 μg
of gel- purified pETCON digested with Nde1 and Xho1 using
the method of Benatuil [15], yielding 1E7–1E8 transformants.

3.4 Combinatorial
Mutagenesis Using
Identified Beneficial
Single-Point Mutations

Christine E. Tinberg and Sagar D. Khare

163

After transformation, cells are grown in 150 mL of low-pH
SDCAA media supplemented with Pen/Strep for 48 h at 30
°C. Cells (~5e8) are collected by centrifugation at 1700 × g for
4 min, resuspended in 50 mL of SGCAA media, and induced
at 18 °C for 24 h.

 5. Cells are subjected to several rounds of cell sorting (we per-
formed seven rounds). For the first four rounds, cells are
washed and then labeled with a preincubated mixture of small-
molecule BSA- biotin, SAPE, and anti-cmyc-FITC as noted
above for single clones. Small-molecule-label concentrations
can be decreased progressively in every round to increase the
selection stringency. It is important to maintain a 4:1 (biotin/
SAPE) ratio. For example, our concentrations for rounds one
through four were (1) 1 μM DIG- BSA- biotin and 250 nM
SAPE, (2) 750 nM DIG-BSA-biotin and 187.5 nM SAPE, (3)
50 nM DIG-BSA-biotin and 12.5 nM SAPE, and (4) 5 nM
DIG-BSA-biotin and 1.25 nM SAPE. Selection stringency is
increased in each round by dropping the label concentration or
decreasing the avidity of the label. Note that these concentra-
tions in this example refer to the concentration of carrier pro-
tein molecules, not DIG molecules.

 6. To ensure that the identified mutations do not select for bind-
ing to the carrier protein (e.g., BSA in our case) or a specific
linkage between small molecule and carrier protein or other
assay components (e.g., SAPE), it is important to use an unre-
lated protein for labeling with small molecule (Fig. 3b). For
rounds five through seven, we used DIG-RNase-biotin in a
multistep labeling procedure to minimize selection for carrier
protein (BSA) binding. The use of RNase also allowed a larger
dynamic range in several control experiments. DIG-RNase-
biotin label concentrations were 10, 5, and 5 pM (concentra-
tions referenced to RNase) for rounds five through seven,
respectively.

 7. At least ten clones from each round are sequenced as noted for
the SSM library. After several rounds, the library typically con-
verges to a small number of sequences differing by a single or
a few point substitutions.

 1. Paired-end 151 Illumina sequencing is used to simultaneously
assess the effects of mutation on binding.

 2. A number of mutagenic libraries are designed, based on the
distribution of mutagenized positions in and length of the
gene under consideration and the optimal read length of the
deep- sequencing approach being used (Fig. 4). In our case,
two libraries were constructed to allow optimal probing of the
mutagenic landscape using 151-bp paired-end sequencing on
an Illumina MiSeq.

3.5 Mutagenic
Libraries and Deep
Sequencing

Experimental Ptimization of Ligand Binding Affinity and Specificity

164

 3. For each library, the full-length protein gene having additional
pETCON overlap fragments at either end for yeast homolo-
gous recombination is assembled via recursive PCR. To intro-
duce mutations, degenerate PAGE-purified oligos are used in
which selected positions within the binding site are doped with
a small amount of each nonnative base at a level expected to
yield 1–2 mutations per gene. For this study, we ordered cus-
tom-doped oligos. See Note 6.

 4. For each library assembly, overlapping oligonucleotides,
including overlapping regions with the ends of the pETCON
plasmid, are combined with dNTPs, 5× Phusion buffer HF,
DMSO, and Phusion high-fidelity polymerase. Full-length
products are assembled by PCR, and correctly assembled PCR
products are amplified by a second round of PCR using oligo-
nucleotides that overlap with the pETCON plasmid. Correct
length PCR products are isolated using agarose gel electro-
phoresis and are purified using a Qiagen PCR cleanup kit and
eluted in ddH2O.

 5. Yeast EBY100 cells are transformed with 5.4 μg of library
DNA insert and 1.8 μg of gel-purified pETCON digested with
Nde1 and Xho1 using the method of Benatuil [15], yielding
~1e6 transformants.

Fig. 4 Preparation for the deep sequencing-based illumination of the mutagenic landscape of binding. A muta-
genic library is synthesized (see main text) and is screened first for expression and then binding. Harvested
DNA at both stages is deep sequenced, and the relative frequency of individual mutations in the selected and
unselected pools is used to compute the landscape

Christine E. Tinberg and Sagar D. Khare

165

 6. After transformation, cells are grown for 24 h in 100 mL of
low- pH SDCAA media supplemented with Pen/Strep at 30
°C, passaged once, and grown for an additional 24 h under the
same conditions. Cells (~5e8) are collected by centrifugation,
resuspended in 50 mL of SGCAA, and induced overnight at
18 °C.

 7. Induced cells (3e7) ware labeled with 4 μL of anti-cymc-FITC
in 200 μL of PBSF for 20 min at 4 °C to label cells expressing
full- length protein variants. Then, labeled cells are washed
with PBSF and sorted. In this first round of sorting, all cells
showing a positive signal for protein expression are collected.

 8. Cells were recovered overnight in ~1 mL of low-pH SDCAA
supplemented with Pen/Strep at 30 °C, pelleted by centrifu-
gation at 1700 × g for 4 min, resuspended in 5 mL of low-pH
SDCAA supplemented with Pen/Strep, and grown for an
additional 24 h at 30 °C.

 9. Cells (~2e7) are collected by centrifugation, resuspended in 2
mL of SGCAA, and induced overnight at 18 °C.

 10. Induced cells from expression-sorted libraries and two refer-
ence samples of the template protein (5e6 cells per sample)
prepared similarly are washed with 600 μL of PBSF and then
labeled with a chosen concentration of the small-molecule-
biotin complex (100 nM of DIG-PEG3-biotin in our case) in
400 μL of PBSF for the libraries or 200 μL of PBSF for the
reference samples for >3 h at 4 °C. The concentration of the
label should be sufficient to observe a binding signal with the
parent clone. Labeled cells are washed with 200 μL of PBSF
and then incubated with a secondary label solution of 0.8 μL
of SAPE (Invitrogen) and 4 μL of anti-cymc- FITC in 400 μL
of PBSF for 8 min at 4 °C. Cells are washed with 200 μL PBSF,
resuspended in either 800 μL of PBSF for the libraries or 400
μL of PBSF for the reference samples, and sorted.

 11. Clones having binding signals higher than that of the parent
reference sample are collected using FACS. Collected cells are
recovered overnight in ~1 mL of low-pH SDCAA supple-
mented with Pen/Strep at 30 °C, pelleted by centrifugation at
1700 × g for 4 min, resuspended in 2 mL of low-pH SDCAA
supplemented with Pen/Strep, and grown for an additional 24
h at 30 °C. Cells (2e7) are resuspended in 2 mL of SGCAA
and induced overnight at 18 °C.

 12. To reduce noise from the first round of cell sorting, the sorted
libraries are labeled and subjected to a second round of cell
sorting using the same conditions and gates as in the first
round. Collected cells are recovered and grown as described
above.

 13. One hundred million cells from the expression-sorted libraries
and at least 2e7 cells from doubly sorted library are pelleted by

Experimental Ptimization of Ligand Binding Affinity and Specificity

166

centrifugation at 1700 × g for 4 min, resuspended in 1 mL of
freezing solution (50 % YPD, 2.5 % glycerol), transferred to
cryogenic vials, slow-frozen in an isopropanol bath, and stored
at −80 °C until further use.

 1. Library DNA is prepared as detailed previously [16]. Illumina
adapter sequences and unique library barcodes are appended
to each library pool through PCR amplification using
population- specific HPLC-purified primers.

 2. The library amplicons are verified on a 2 % agarose gel stained
with SYBR Gold and then purified using an Agencourt AMPure
XP bead-based purification kit. Each library amplicon is dena-
tured using NaOH and then diluted to 6 pM. A sample of
PhiX control DNA is prepared in the same manner as the
library samples and added to the library DNA to create high
enough sample diversity for the Illumina base-calling algo-
rithm. The final DNA sample is prepared by pooling 300 μL of
6 pM PhiX control DNA (50 %), 102 μL of 6 pM expression-
sorted library, and 33 μL of 6 pM sorted libraries each.

 3. DNA is sequenced in paired-end mode on an Illumina MiSeq
using a 300-cycle reagent kit and custom HPLC-purified
primers.

 4. Data from each next-generation sequencing library is demulti-
plexed using the unique library barcodes added during the
amplification steps. For example, in our experiment, of a total
5,630,105 paired-end reads, 2,531,653 reads were mapped to
library barcodes. For each library, paired-end reads are fused
and filtered for quality (Phred ≥ 30).

 5. The resulting full-length reads are aligned against the relevant
segments of the template gene sequence using scripts from the
software package Enrich [17].

 6. For single mutations having ≥7 counts in the original input
library, a relative enrichment ratio between the input library and
each selected library is calculated [16, 18, 19]. This cutoff value
is used to establish statistical significance in the final data set.

 7. A pseudocount value (0.3 in our case) is added to the total
reads for each selected library mutation, to allow calculation of
enrichment values for mutations that disappeared completely
during selection.

 1. To verify binding and to measure binding dissociation con-
stants, fluorescence polarization assays are using purified pro-
tein and fluorescent ligand (Fig. 5). Fluorescence
polarization-based affinity measurements of designs and their
evolved variants are performed as noted previously [20] using
a small-molecule-fluorescent dye conjugate (in our case
Alexa488-conjugated DIG; DIG-PEG3-Alexa488).

3.6 Next- Generation
Library Sequencing

3.7 Selectivity
Assays by Equilibrium
Fluorescence
Polarization
Competition Assays

Christine E. Tinberg and Sagar D. Khare

167

 2. In a typical experiment, the concentration of the conjugate is
fixed near the Kd of the interaction being monitored, and the
effect of the increasing concentrations of protein on the fluo-
rescence anisotropy of the fluorescent dye is determined.

 3. Fluorescence anisotropy (r) is measured in 96-well plate for-
mat at appropriate excitation and emission wavelengths
(λex = 485 nM and λem = 538 nM using a 515 nm emission cut-
off filter, in our case). In all experiments, PBS (pH 7.4) is used
as the buffer system and the temperature is 25 °C. For high-
affinity complexes, it is important to use NBS-coated plates to
improve the signal-to- noise aspect.

 4. Equilibrium dissociation constants (Kd) are determined by fit-
ting plots of the anisotropy averaged over a period of 20–40 min
(equilibrium) after reaction initiation versus protein concen-
tration to Eq. 1:

A A A A
L K R L K R L R

L
= + -()´

[] + + []() - -[] - - []() - [] []
[f b f

T D T T D T T T

T

2
4

2]]

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

(1)

H

DIG

TYR TYR
PHE PHE

digitoxigenin

H

H

H

H

H

O

O O

0.0

1011 109 107 105 103 109 108 107 106 105 104 103

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0
O

HO HO
OH OH

[steroid] (M)

a

b

c d

F
ra

ct
io

n
B

ou
nd

F
ra

ct
io

n
B

ou
nd

[steroid] (M)

OH

Fig. 5 Measuring and modulating selectivity of designed proteins guided by the computational model of bind-
ing. (a) The specificity of the designed binding protein can be modulated for congeneric ligands that differ in
their chemical structure by as little as a hydroxyl group, as is the case with DIG and digitoxigenin. (b) Guided
by the computational model of DIG10.3, in which tyrosine side chain groups were positioned to make hydrogen
bonds with the DIG hydroxyl, a Tyr to Phe substitution was chosen, and (c and d) the selectivity of DIG10.3 and
DIG10.3_Y110F was measured as described in the text. Robust specificity switching was observed (compare
c and d), demonstrating the programmability of computationally designed ligand-binding proteins

Experimental Ptimization of Ligand Binding Affinity and Specificity

168

where A is the experimentally measured anisotropy, Af is the
anisotropy of the free ligand, Ab is the anisotropy of the fully
bound ligand, [L]T is the total ligand concentration, and [R]T
is the total receptor concentration.

 5. For ensuring assay robustness, reported Kd values should rep-
resent the average of at least three independent measurements
with at least two separate batches of purified protein.

 1. Fluorescence polarization equilibrium competition binding
assays are used to determine the binding affinities of designed
proteins and their variants for unlabeled ligands and conge-
neric compounds (for which selectivity measurements and
modulation is desired; in our case, these were digoxigenin,
digitoxigenin, progesterone, β-estradiol, and digoxin; Fig. 5a).
During the computational design procedure, careful place-
ment of interacting amino acid side chains allows for explicit
design of selectivity (Fig. 5b). Selectivity can be switched by
manipulation of these residues. In our case, we considered
Tyr to Phe mutations as candidates to switch the specificity
toward more hydrophobic steroids (Fig. 5b). The labeled small
molecule (Subheading 3.5) is used, and the ability of different
ligands to inhibit its binding to the designed protein variant is
used to calculate their affinities for the protein.

 2. In a typical experiment, the concentration of labeled small
molecule is kept near or below the Kd of the interaction being
monitored, the concentration of protein is fixed at a saturating
value such that >95 % the labeled small molecule in the system
is bound to protein, and the effects of increasing concentra-
tions of unlabeled ligand on the fluorescence anisotropy of the
fluorescent dye are determined as described above in
Subheading 3.5.

 3. If the ligands being considered are insoluble or sparingly solu-
ble in aqueous buffers, stock solutions are typically made in
organic solvents such as DMSO or methanol. For each ligand
concentration, a negative control sample containing only the
appropriate dilution of the corresponding organic solvent-only
control solution (in aqueous assay buffer, PBS in our case) is
measured. While we found that at all concentrations employed,
methanol or DMSO solvents did not affect fluorescence anisot-
ropy with our binding assay. However, correction for this effect
must be made.

 4. The concentration of total unlabeled ligand producing 50 %
binding signal inhibition (I50) is determined by fitting a plot of
the anisotropy averaged over a period of 30 min to 3 h after
reaction initiation versus unlabeled ligand concentration [20].
See Note 7.

3.8 Fluorescence
Polarization
Equilibrium
Competition Binding
Assays

Christine E. Tinberg and Sagar D. Khare

169

 5. For cases in which Kd for competitor is much smaller than Kd
for the labeled small molecule, the data cannot be fit to the
model and only qualitative conclusions can be reached (Fig.
5c, d).

 6. The inhibition constant for each protein–ligand interaction,
Ki, is calculated from the measured IC50 and the Kd of the
protein-label interaction according to a model accounting for
receptor- depletion conditions [20].

 7. IC50 values, the concentrations of free unlabeled ligand pro-
ducing 50 % binding signal inhibition, are calculated from the
measured I50 values [20].

 8. For assay robustness, reported I50 and subsequent Ki values
should represent the average of at least three independent
measurements from at least two batches of purified protein and
a fresh unlabeled inhibitor stock prepared for each
experiment.

4 Notes

 1. In a typical experiment using DIG-BSA-biotin or DIG-RNase-
biotin, 4e6 cells are resuspended in 50 μL of a premixed solu-
tion of PBSF containing a 1:100 dilution of anti-cmyc-FITC,
2.66 μM DIG- BSA- biotin or DIG-RNase-biotin, and 664 nM
SAPE (to achieve a 1:4 streptavidin/biotin ratio). The use of
carrier protein–ligand molecules offers a highly avid label for
detection of weak binders. The avidity of the system (i.e., num-
ber of copies of the ligand on the carrier protein) can be tai-
lored by changing the concentration of reagents in the carrier
protein–ligand conjugation reaction.

 2. In our case, competition assays with free digoxigenin were per-
formed: between 750 μM and 1.5 mM of digoxigenin (Sigma
Aldrich, St. Louis, MO) prepared as a stock solution in MeOH
was added to each labeling reaction mixture, and binding of
the resultant samples was determined as above. For “true” hits,
the addition of excess free ligand should abolish the binding
signal. Control experiments performed in a similar manner
showed that the small amount of MeOH added does not affect
the fluorescence or binding properties of SAPE.

 3. It is best to restrict the library size such that each clone in the
library can be oversampled by 10–100 in the transformed pool.

 4. The stringency of the sort can be increased from round to
round in order to hone in on one or a few binding clones by
lowering the label concentration. However, it is important for
the first round to be permissive to ensure that clones with low
representation in the library pool are able to enrich if they have
desirable binding properties.

Experimental Ptimization of Ligand Binding Affinity and Specificity

170

 5. Transformation of Kunkel libraries is typically not as efficient as
is transformation of other library formats, so we found that
preparing the library DNA in more efficient E. coli prior to
transformation into yeast led to higher overall transformation
efficiencies and a better chance of having complete clone cov-
erage in the transformed library.

 6. It is best to restrict the total library size so that each clone can
be oversampled at 10–100 in both the transformed library and
in the sequencing run (Illumina MiSeq runs currently yield up
to 107 reads/run).

 7. Note that for some experiments, due to the lack of solubility,
limiting competitor ligand concentrations can make it impos-
sible to collect data in the regime of complete inhibition. In
these cases, data are fit by fixing the anisotropy at infinite ste-
roid concentration to a value measured for other ligands for
which this value could be determined experimentally.

Acknowledgment

SDK acknowledges support from the NSF (grant MCB1330760).

References

 1. Rothlisberger D, Khersonsky O, Wollacott
AM, Jiang L, DeChancie J, Betker J, Gallaher
JL, Althoff EA, Zanghellini A, Dym O, Albeck
S, Houk KN, Tawfik DS, Baker D (2008)
Kemp elimination catalysts by computational
enzyme design. Nature 453(7192):190–195.
doi:10.1038/nature06879

 2. Jiang L, Althoff EA, Clemente FR, Doyle L,
Rothlisberger D, Zanghellini A, Gallaher JL,
Betker JL, Tanaka F, Barbas CF 3rd, Hilvert
D, Houk KN, Stoddard BL, Baker D (2008)
De novo computational design of retro-aldol
enzymes. Science 319(5868):1387–1391.
doi:10.1126/science.1152692

 3. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus
C, Corn JE, Strauch EM, Wilson IA, Baker D
(2011) Computational design of proteins tar-
geting the conserved stem region of influenza
hemagglutinin. Science 332(6031):816–821.
doi:10.1126/science.1202617

 4. Tinberg CE, Khare SD, Dou J, Doyle L, Nelson
JW, Schena A, Jankowski W, Kalodimos CG,
Johnsson K, Stoddard BL, Baker D (2013)
Computational design of ligand-binding proteins
with high affinity and selectivity. Nature
501(7466):212–216. doi:10.1038/nature12443

 5. Khare SD, Fleishman SJ (2013) Emerging
themes in the computational design of novel
enzymes and protein-protein interfaces. FEBS

Lett 587(8):1147–1154. doi:10.1016/j.febslet.
2012.12.009

 6. Fleishman SJ, Baker D (2012) Role of the bio-
molecular energy gap in protein design, struc-
ture, and evolution. Cell 149(2):262–273.
doi:10.1016/j.cell.2012.03.016

 7. Griss R, Schena A, Reymond L, Patiny L,
Werner D, Tinberg CE, Baker D, Johnsson K
(2014) Bioluminescent sensor proteins for
point-of- care therapeutic drug monitoring.
Nat Chem Biol 10(7):598–603. doi:10.1038/
nchembio.1554

 8. Kuhlman B, Baker D (2000) Native protein
sequences are close to optimal for their struc-
tures. Proc Natl Acad Sci U S A 97(19):
10383–10388

 9. Chao G, Lau WL, Hackel BJ, Sazinsky SL,
Lippow SM, Wittrup KD (2006) Isolating and
engineering human antibodies using yeast sur-
face display. Nat Protoc 1(2):755–768

 10. Mazor Y, Blarcom TV, Mabry R, Iverson BL,
Georgiou G (2007) Isolation of engineered,
full- length antibodies from libraries expressed
in Escherichia coli. Nat Biotechnol
25(5):563–565

 11. Nilsson B, Moks T, Jansson B, Abrahmsén L,
Elmblad A, Holmgren E, Henrichson C, Jones
TA, Uhlén M (1987) A synthetic IgG-binding

Christine E. Tinberg and Sagar D. Khare

http://dx.doi.org/10.1038/nature06879
http://dx.doi.org/10.1126/science.1152692
http://dx.doi.org/10.1126/science.1202617
http://dx.doi.org/10.1038/nature12443
http://dx.doi.org/10.1016/j.febslet.2012.12.009
http://dx.doi.org/10.1016/j.febslet.2012.12.009
http://dx.doi.org/10.1016/j.cell.2012.03.016
http://dx.doi.org/10.1038/nchembio.1554
http://dx.doi.org/10.1038/nchembio.1554

171

domain based on staphylococcal protein
A. Protein Eng 1(2):107–113

 12. Gietz RD, Schiestl RH (2007) High-efficiency
yeast transformation using the LiAc/SS carrier
DNA/PEG method. Nat Protoc 2(1):31–34

 13. Schlehuber S, Beste G, Skerra A (2000) A
novel type of receptor protein, based on the
lipocalin scaffold, with specificity for digoxi-
genin. J Mol Biol 297(5):1105–1120

 14. Kunkel TA (1985) Rapid and efficient site-
specific mutagenesis without phenotypic selec-
tion. Proc Natl Acad Sci U S A 82(2):
488–492

 15. Benatuil L, Perez JM, Belk J, Hsieh C-M
(2010) An improved yeast transformation
method for the generation of very large human
antibody libraries. Protein Eng Des Sel
23(4):155–159

 16. Whitehead TA, Chevalier A, Song Y, Dreyfus
C, Fleishman SJ, De Mattos C, Myers CA,

Kamisetty H, Blair P, Wilson IA, Baker D
(2012) Optimization of affinity, specificity and
function of designed influenza inhibitors using
deep sequencing. Nat Biotechnol 30(6):
543–548

 17. Fowler DM, Araya CL, Gerard W, Fields S
(2011) Enrich: software for analysis of protein
function by enrichment and depletion of vari-
ants. Bioinformatics 27(24):3430–3431

 18. Fowler DM, Araya CL, Fleishman SJ, Kellogg
EH, Stephany JJ, Baker D, Fields S (2010) High-
resolution mapping of protein sequence- function
relationships. Nat Methods 7(9):741–746

 19. McLaughlin RN Jr, Poelwijk FJ, Raman A,
Gosal WS, Ranganathan R (2012) The spatial
architecture of protein function and adapta-
tion. Nature 491(7422):138–142

 20. Rossi AM, Taylor CW (2011) Analysis of
protein- ligand interactions by fluorescence
polarization. Nat Protoc 6(3):365–387

Experimental Ptimization of Ligand Binding Affinity and Specificity

173

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_10, © Springer Science+Business Media New York 2016

Chapter 10

Computational Design of Multinuclear Metalloproteins
Using Unnatural Amino Acids

William A. Hansen, Jeremy H. Mills, and Sagar D. Khare

Abstract

Multinuclear metal ion clusters, coordinated by proteins, catalyze various critical biological redox reac-
tions, including water oxidation in photosynthesis, and nitrogen fixation. Designed metalloproteins featur-
ing synthetic metal clusters would aid in the design of bio-inspired catalysts for various applications in
synthetic biology. The design of metal ion-binding sites in a protein chain requires geometrically con-
strained and accurate placement of several (between three and six) polar and/or charged amino acid side
chains for every metal ion, making the design problem very challenging to address. Here, we describe a
general computational method to redesign oligomeric interfaces of symmetric proteins for the purpose of
creating novel multinuclear metalloproteins with tunable geometries, electrochemical environments, and
metal cofactor stability via first and second-shell interactions.

The method requires a target symmetric organometallic cofactor whose coordinating ligands resem-
ble the side chains of a natural or unnatural amino acid and a library of oligomeric protein structures fea-
turing the same symmetry as the target cofactor. Geometric interface matches between target cofactor and
scaffold are determined using a program that we call symmetric protein recursive ion-cofactor sampler
(SyPRIS). First, the amino acid-bound organometallic cofactor model is built and symmetrically aligned to
the axes of symmetry of each scaffold. Depending on the symmetry, rigid body and inverse rotameric
degrees of freedom of the cofactor model are then simultaneously sampled to locate scaffold backbone
constellations that are geometrically poised to incorporate the cofactor. Optionally, backbone remodeling
of loops can be performed if no perfect matches are identified. Finally, the identities of spatially proximal
neighbor residues of the cofactor are optimized using Rosetta Design. Selected designs can then be pro-
duced in the laboratory using genetically incorporated unnatural amino acid technology and tested experi-
mentally for structure and catalytic activity.

Key words Metalloprotein, Metalloenzyme design, Multinuclear metal site, Unnatural amino acid,
2,2′-Bispyridine, Computational design

1 Introduction

Much progress has been made in the last two decades toward the
de novo design of novel metalloproteins [1–9], where the guiding
principle is simultaneous placement of two or more metal coordi-
nating side chain groups from naturally occurring amino acid

174

residues, cysteines, aspartate and glutamate, and histidine residues.
However, successful design attempts have been largely dominated
by mononuclear (a single metal ion per designed protein) inser-
tions into a single type of scaffold—the geometrically well defined
alpha helical bundles [3]. One of the challenges while designing a
multinuclear (metal ion site composed of two or more metal ions)
metalloproteins is the need to incorporate multiple side chain
coordinating groups in close spatial proximity in a single protein—
placing exacting constraints on design. Another challenge is the
design of the electrostatic environment of the metal ions, which
has a large impact on the stability of the highly charged cofactor
and the associated catalytic activity.

Computational algorithms could, in principle, aid in address-
ing both challenges. We previously developed an algorithm that
utilized the metal-chelating unnatural amino acid 2,2′-bispyridyl
alanine (BPY) [10, 11] for designing mononuclear metal-binding
sites [9]. The algorithm uses RosettaMatch [12] to combinatori-
ally search, in a given protein scaffold (typically a single chain), for
a constellation of backbone structures that can support the multi-
ple (~3–6) side chain metal-chelating functional groups in the
appropriate coordination geometry. The use of BPY simplified the
combinatorial design problem as, unlike any natural amino acid
side chain, the bipyridyl moiety contributes two metal ligands from
the same amino acid side chain. Metalloproteins featuring BPY
with His and Asp/Glu residues were designed, and their crystal-
lographic structure demonstrated close agreement with the design
model. However, this algorithm is limited by its combinatorial
complexity and is not applicable, practically, to construct multinu-
clear metal-binding sites.

Here, we describe an approach to computationally design
incorporation a symmetric multinuclear metallo-cofactor via inte-
gration into a similarly symmetric protein scaffold (Fig. 1). For this
task, we have developed a matching algorithm, symmetric protein
recursive ion-cofactor sampler (SyPRIS), and implemented it in
Python. This algorithm allows expanding metalloprotein design to
scaffolds other than alpha helical bundles, as well as gaining access
to a greater variety of symmetric multinuclear cofactors such as
iron-sulfur clusters and cubane complexes. We illustrate the method
by describing the incorporation of the D2 symmetric cobalt- oxygen
cube-like cofactor (Co-cubane) [13–20]. This cofactor is a mimic
of the water oxidation center in photosystem II and features four
bipyridyl moieties coordinating four Co-ions, respectively. Though
Co-cubane is used as an example, the method is generally applica-
ble to incorporate all types of cofactors of either C or D symmetry
within any complementary symmetric scaffold. Theozyme [21]
matches generated from SyPRIS can be further designed with the
enzyme design modules in the Rosetta macromolecular modeling
software [12, 22–25] (Fig. 2).

William A. Hansen et al.

175

2 Methods

 1. Generate and standardize a symmetric scaffold library (Fig. 3b).
 2. Prepare a target cofactor for symmetric insertion (Fig. 3c).
 3. Use SyPRIS to identify inverse rotamer positions suitable for

design (Fig. 3d).
 4. Perform kinematic loop closure on residue matches that reside

within a loop secondary structure (Figs. 3e, f).
 5. Design the oligomeric interface with constraints (Fig. 3g).
 6. Revert extraneous residue mutations to favor wild-type

sequence.
 7. Experimental validation through protein expression, purifica-

tion, and crystallization (not discussed here).

2.1 The General
Pipeline
for the Method
(Fig. 3a) Includes
the Following Steps
(Also See Note 1)

Fig. 1 Several target cofactors that this method was intended to implement using
scaffolds of various symmetries. (a) Co4O4(Ac)2(bipyridine)4 converted from CCDC
crystal structure to noncanonical amino acid-bound model featuring D2 symme-
try. (b) Cu2(OH)2(bipyridine)2 converted to models featuring C2 symmetry. (c)
CuOH(bipyridine)2 converted to models featuring C2 symmetry. (d) Fe4S4(Cys)4
cluster featuring D2 symmetry. (e) Cu(OH)2(His)4 featuring C4 symmetry

Design of Metal Binding Sites and Metalloproteins

176

Potential protein scaffold candidates are selected from the RCSB
protein databank to feature a given symmetry in the oligomeric
protein, i.e., D2, C2, 3, 4…, etc. Search parameters include symmetry
type, chain stoichiometry, expressibility in E. coli, 90 % sequence
identity threshold, and <3.0 Å resolution (for structures deter-
mined by X-ray crystallography). From these constraints, a raw
scaffold library is generated. More than 70 % of the scaffold files
generated in this way contain asymmetries in the form of incomplete
chains—due to missing electron density in the crystal structures.

2.2 Generate
and Standardize
Symmetric Scaffold
Library

Fig. 2 Method overview, incorporation of a Co4O4(Ac)2(bipyridine)4 cofactor with noncanonical amino acids into
a D2 symmetric scaffold

William A. Hansen et al.

177

In order to use the symmetry package of the Rosetta suite, all input
files must be composed of chains that are equal in both residue
length and residue type. To correct the intrinsic asymmetries, a
hybrid Smith-Waterman local alignment is performed on all com-
binations of chains, removing residues absent from other chains,
until a single converging monomeric sequence and all its symmet-
ric partner protomers in the structures are found.

Cofactors of interest include organometallic compounds containing
ligands that resemble either canonical amino acids or previously
characterized noncanonical amino acids. PDB files are generated
for cofactors of interest using their crystal structures and, where
needed, the programs Mercury 3.5 and ConQuest 1.17 from the

2.3 Target Cofactor

Fig. 3 (a) SyPRIS flow chart starting from generating scaffold library and ultimately ending in designable or
discarded match. (b) An example scaffold, part of a library, will be considered by SyPRIS for the incorporation
of a target cofactor. (c) A target cofactor, in this case an oxocobalt cubane coordinated by bipyridine ligands,
has been modified with the appended magenta atoms creating a noncanonical amino acid. (d) The rotameric
degrees of freedom for the atoms comprising the new backbone are sampled recursively with a chi distribution
file (or exhaustively if desired) and compared to that of nearby backbone residues of the scaffold. (e) If the
matched residue is part of a loop and the match was not geometrically identical, the loop is remodeled. (f)
Three residues upstream and downstream of the translated backbone position are remodeled using Generalized
KIC in Rosetta. (g) A fully designed oligomeric interface showing incorporated cofactor

Design of Metal Binding Sites and Metalloproteins

178

Cambridge Crystallographic Database (CCDC). Small structural
changes may be applied to the supplied atom positions to reduce
asymmetries within the X-ray crystallographic models. If necessary,
backbone atoms are appended to each symmetric ligand, and all
dihedrals are set to a default 0.0° prior to matching. To identify
dihedral positions acceptable for each cofactor, an ensemble is gen-
erated of all dihedral rotations while simultaneously performing
internal atomic clash checks. Dihedral rotations that pass the clash
check are stored and plotted against each subsequent dihedral rota-
tion within a heat map. Preferred geometries are classified as regions
of the heat map with the highest bin density at a determined thresh-
old. These geometric constraints are then converted into a “chi
distribution” file necessary for the symmetric protein recursive ion
sampler (SyPRIS). A chi distribution file depicts the four atoms par-
ticipating in a dihedral rotation, a range of values between which to
sample, and the degree with which to iterate. A Rosetta parameter
file, which stores information about the asymmetric unit of the mul-
tinuclear cluster (i.e., one Co-ion and one oxygen atom for the
Co-cubane, one Fe and one S atom for an iron-sulfur cluster), is
defined for integration within the Rosetta suite during design.
Lastly, a Rosetta enzyme design constraints file, which adds an
energy term favoring the coordination geometry between ligand
and complex, is generated to more accurately determine the energy
of the integrated cofactor.

With the scaffold set and cofactor model in place, the following
steps are utilized in finding symmetric matches between the cofac-
tor coordinated to an UAA and the protein scaffold.

 1. The axis of symmetry for the scaffold protein and each cofactor
are determined by finding the eigenvector and eigenvalues—
multiplying the coordinate matrix by its transpose matrix.
Consequently, this creates unit vectors for each set of coordi-
nates and supplies the principal rotational axes defined as the
eigen minimum and maximum and their orthogonal cross
product. In C-symmetry proteins, the eigen minimum and
maximum can each be the target axis of symmetry. To correctly
identify the axis of symmetry in a C-system, the midpoint of all
symmetric Cα atoms is generated, and the average of all vectors
connecting atoms to the origin becomes the symmetric axis.

 2. Translate all Cartesian atoms of all files so that the axis of sym-
metry origin of the scaffold and each model lie on a theoretical
(0, 0, 0) origin.

 3. Align the axes of symmetry of the complex so that the eigen
maximum and eigen minimum are aligned with that of the
given scaffold (Fig. 4b). In C-symmetry, the eigen minimum
of the cofactor is aligned to the midpoint average vector gener-
ated in step 1.

2.4 Symmetric
Protein Recursive Ion
Sampler (SyPRIS)

2.4.1 Align Scaffold
and Cofactor Axes
of Symmetry

William A. Hansen et al.

179

Fig. 4 (a) Residues that satisfy user-specified distance from symmetric axis highlighted in red sticks. (b) Rigid
body rotation about symmetric axis to align symmetric axes. (c) Pictorial view of the enumerative exhaustive
backbone sampling (left). Schematic view of the recursive atom placing algorithm for direct matching (right).
(d) Ensemble of backbone positions generated via the recursive method. (e) A matched cofactor output from
SyPRIS ready for Rosetta Design

Design of Metal Binding Sites and Metalloproteins

180

 4. If the input features C-symmetry, SyPRIS will locate the
 midpoint of the Cβ atoms of the cofactor and translate to the
midpoint of each protein Cβ combination that is within ± <user
input (default = 1.0) > Å of the cofactor Cβ radii (Fig 3a). The
cofactor is then rotated about the plane of symmetry until the
Cβ atoms of both the cofactor and protein are aligned (Fig 3b).
Each rotational/translational position unique to a residue sub-
set will store the lowest atom magnitude difference position as
well as two other rotational positions clockwise and counter-
clockwise to the aligned atoms within a < user input (default =
1.0) > Å direct distance. The four unaligned positions will be
stored to further generate an ensemble of positions and dihe-
drals starting from step 6, below.

 5. If the input features d-symmetry, SyPRIS will perform 90° and
180° rotations of the cofactor about the vectors that corre-
spond to each of the defined symmetric axes. Each rotational
position will be further sampled in step 6.

 1. A cofactor to scaffold backbone clash check is performed by
determining distances between all heavy atoms of the cofactor
not included in the chi distribution file and the backbone heavy
atoms of nearby residues (not including the residue making the
match ± one residue position proximal in sequence). Any dis-
tances to heavy atoms < user input (default = 2.8 Å) are consid-
ered clashes and discarded.

 2. For each unique cofactor rotation, cofactor backbone atoms
(branches) are rotated within the range of values about the
bonds defined by the atoms in the chi distribution file.

 3. To score a given rotation, a vector is produced from the last
stationary atom (LASA) to the first atom changing location
(FACL). For example, while rotating about a chi1 bond of
BPY UAA, the LASA is the alpha carbon, while the FACL
would be the backbone nitrogen atom. The vector produced
by the LASA and FACL of the cofactor is compared to that of
the scaffold. The angle difference is calculated as an AngleLog:

AngleLog = < > < > ´ ´()é

ëê
ù
ûú

æ
è ()- ¢ ¢log cos / /SD 1 20xyz xyz xyz xyz n n·çç ö

ø
÷

where n is the number of compared vectors and a value of
zero is an average deviation of 20° across all n vectors. To
further score a matched position, the magnitude of the cofac-
tor FACL to the compared scaffold atom is calculated. The
default threshold for AngleLog and atom magnitude is < user
input (default = 0.0) > and < user input (default = 0.8) > Å,
respectively.

2.4.2 Sample Inverse
Rotamers

William A. Hansen et al.

181

 4. Enumerative sampling. A predefined ensemble of inverse
 rotameric states is stored within one cofactor file. Each state is
sampled exhaustively (Fig. 4c, left).

 5. Recursive sampling. For any range of values tested in the chi
distribution file, the best scoring rotation (as long as it meets the
thresholds) is stored along with the best adjacent rotation.
Recursive ½ angles are sampled within this range to minimize to
the best solution. The algorithm to locate new half dihedrals:

 A or B) /) /j j j jo n

n

n n

n+() +()-2 21

where n is the number of half angles calculated as set by the
user, φo is first dihedral (best scored), and n = 1 is the best scor-
ing adjacent dihedral. SyPRIS starts with the algorithm in A. If
two of the newly calculated half angles score better than the
original dihedral, the B algorithm takes over for subsequent
tests. Only the φo, φ1, and φn (n = max) FACL rotated branches
will be stored to further sample a wider ensemble of positions
(Fig. 4c, right). This algorithm occurs for each subsequent tor-
sion angle at all stored positions (3^# of chis). Therefore, a
cofactor with three chis featuring D2 symmetry will store 27
positions (with tunable tolerance) at a given rotation. A C2
cofactor with the same number of chis will store up to five
times this many positions due to the rigid body rotational
degrees of freedom (Fig. 4d).

 6. For both the recursive and enumerative methods, final matches
are determined by scoring the average AngleLog and RMSD
over all FACL atom positions as defined in step 8 (Fig. 4e).

 7. A table for each protein is generated containing all the intrinsic
properties of the ion cluster at a given match—model number
and rotation about an axis. The table also includes the residue
matched within the scaffold, the average AngleLog score, each
individual AngleLog for all chains, the RMSD for all compared
atoms, and the scaffold name. If an exact match is found (pri-
ority 1 designs), the scaffold will be mutated at the given resi-
due position and passed to Rosetta Design. All other matches
are subjects for the KIC procedure (priority 2 designs).

This predesign method takes the tables generated by SyPRIS and
locates the preferred residues for replacement with the ligand-like
amino acid within the protein scaffold. The secondary structure of
that residue with ± <user input (default = 3) > residues is determined
based on Ramachandran preferred angles of phi and psi using a
standard DSSP check. If the query within the scaffold is a loop
region, the scaffold is accepted as designable; otherwise, if the

2.5 Kinematic Loop
Closure (KIC)

Design of Metal Binding Sites and Metalloproteins

182

region is helical or forms beta sheets, the scaffold is rejected.
The scaffolds containing loops at match locations are then subjects
of programs that:

 1. Take the scaffold and corresponding model as arguments.
 2. Translate the backbone coordinates of the matched residue on

the scaffold to the location of the model to ensure exact match
(generally changing atom positions by 0.5 Å across the entire
residue).

 3. Generate a coordinate constraint file (see Note 2) of the heavy
atoms comprising the multinuclear cluster in the model cor-
responding to chain A for use during design. A coordinate
constraint (CST) file contains coordinates that ensures that the
metal cluster atoms do not change positions during design.

 4. Generate two “loops” files (upstream and downstream of the
matched residue) specific to each scaffold and matching resi-
dues necessary for performing KIC. The loop file contains
information for which residue backbones will be sampled to
make connection to another end point residue (i.e., remodel-
ing the upstream or downstream loop about the ligand-like
residue).

 5. Utilizing a Rosetta-generalized KIC [26, 27], the four resi-
dues upstream and downstream are remodeled to accommo-
date the new position of the matched residue (step II). The
remodeling includes sampling of backbone phi and psi angles
while progressively closing the chain break. More details can
be found in Kortemme et al.

 6. A deterministic de novo loop is generated for each use of
generalized KIC.

 7. Generated loops are evaluated based on void formation,
electrostatic repulsion, etc.

All redesigned loop scaffolds that pass are subject to four rounds of
rotamer sampling followed by gradient-based minimization of side
chain and backbone atoms. Design and repack shells are defined as
residues with Cα atoms within 12 and 16 Å radii, respectively,
about the matched residue. The design shell specifies that all resi-
dues within the shell excluding the metal cofactor and UAA will be
allowed to mutate to other more favorably scoring residues.
Residues within the repack shell sample their rotameric preferred
side chain conformations while keeping their identity fixed. The
talaris2013 symmetric score function with constraints is used to
evaluate the states of the protein during design. The coordinate
constraint file generated in step 3 of Subheading 2.5 is used to
force the ligand-like residue into a conformation conducive for

2.6 Rosetta Design

William A. Hansen et al.

183

coordinating the ions of the cofactor. The symmetry definition file
generated in stage 2 was used to copy any change made on the
master unit to all slave units as defined by Rosetta symmetry.
Backbone minimization is allowed for residues that are part of the
UAA-containing loop and nearby residues. Heavy coordinate
constraints are placed on the scaffold to only allow movement of
backbone atoms if necessary due to redesigned loop clashes. Final
designs are chosen by low backbone RMSD of the design shell,
smallest change to void volume, and favorable energies of inter-
action of the design shell residues with the cofactor (see Notes 3
and 4). Lastly, reversions are made on extraneous residues
(see Note 5) to favor the wild-type sequence, and the protein is
ready for expression (Fig. 5).

Fig. 5 Two designs incorporating a catalytic D2 symmetric organometallic cofac-
tor (Co4O4(Ac)2(bipyridine)4). The noncanonical amino acid bipyridine is incorpo-
rated on one chain, forming the cofactor upon oligomerization. The design protein
(green and white) is compared to the wild-type scaffold (wheat). Mutation posi-
tions are represented by sticks

Design of Metal Binding Sites and Metalloproteins

184

3 Notes

 1. All Python scripts and skeleton RosettaScripts XML files are
attached.

 2. The Rosetta force field, as other molecular mechanics force
fields, does not accurately model interactions of protein func-
tional groups with metal ions. Therefore, it is necessary to treat
these interactions with restraints. The weights used in the
restraints will be system dependent, but in the final models,
one should end up with a metal site geometry similar to the
one from the starting crystal structure with some small devia-
tion. If the metal site is completely distorted, the weights of
the restraints should be increased to keep the geometry fixed.

 3. Another metric that is currently evaluated by human intuition
in our protocol is that access of small ions/substrates to the
metal site has not been blocked by new mutations introduced
in the design protocol. Conformational changes upon sub-
strate binding are not modeled, and system-dependent knowl-
edge of the dynamics of the closure and opening of the active
site should be kept in mind when either picking out scaffolds
for design and evaluating designs by inspection.

 4. Many substitutions can be introduced, but as a designer, one
should also make sure that the initial protein scaffold can
accommodate these changes in the absence of any substrate;
otherwise, the enzyme will either not express or be unfolded.
In particular, we paid special attention to the maintenance of
the symmetric interface of the oligomer in question.

 5. Chemical intuition is almost always required to evaluate the
goodness of designs.

References

 1. Ghosh D, Pecoraro VL (2004) Understanding
metalloprotein folding using a de novo
design strategy. Inorg Chem 43:7902–7915.
doi:10.1021/ic048939z

 2. Hellinga HW (1996) Metalloprotein design.
Curr Opin Biotechnol 7:437–441. doi:10.1016/
S0958-1669(96)80121-2

 3. Peacock AFA (2013) Incorporating metals
into de novo proteins. Curr Opin Chem
Biol 17:934–939. doi:10.1016/j.cbpa.2013.
10.015

 4. Zastrow ML, Pecoraro VL (2013) Designing
functional metalloproteins: from structural to
catalytic metal sites. Coord Chem Rev 257:
2565–2588. doi:10.1016/j.ccr.2013.02.007

 5. Lu Y, Yeung N, Sieracki N, Marshall NM
(2009) Design of functional metalloproteins.
Nature 460:855–862. doi:10.1038/nature
08304

 6. Grzyb J, Xu F, Weiner L et al (2010) De novo
design of a non-natural fold for an iron-sulfur
protein: Alpha-helical coiled-coil with a four- iron
four-sulfur cluster binding site in its central core.
Biochim Biophys Acta Bioenerg 1797:406–413.
doi:10.1016/j.bbabio.2009.12.012

 7. DeGrado WF, Summa CM, Pavone V et al
(1999) De novo design and structural charac-
terization of proteins and metalloproteins.
Annu Rev Biochem 68:779–819. doi:10.1146/
annurev.biochem.68.1.779

William A. Hansen et al.

http://dx.doi.org/10.1021/ic048939z
http://dx.doi.org/10.1016/S0958-1669(96)80121-2
http://dx.doi.org/10.1016/S0958-1669(96)80121-2
http://dx.doi.org/10.1016/j.cbpa.2013.10.015
http://dx.doi.org/10.1016/j.cbpa.2013.10.015
http://dx.doi.org/10.1016/j.ccr.2013.02.007
http://dx.doi.org/10.1038/nature08304
http://dx.doi.org/10.1038/nature08304
http://dx.doi.org/10.1016/j.bbabio.2009.12.012
http://dx.doi.org/10.1146/annurev.biochem.68.1.779
http://dx.doi.org/10.1146/annurev.biochem.68.1.779

185

 8. Degrado WF, Summa CM, Pavone V et al
(1999) De novo design and structural char-
acterization of proteins. Biochemistry 68:
779–819

 9. Mills JH, Khare SD, Bolduc JM et al (2013)
Computational design of an unnatural amino
acid dependent metalloprotein with atomic
level accuracy. J Am Chem Soc 135:13393–
13399. doi:10.1021/ja403503m

 10. Liu CC, Schultz PG (2010) Adding new
chemistries to the genetic code. Annu Rev
Biochem 79:413–444. doi:10.1146/annurev.
biochem.052308.105824

 11. Imperiali B, Fisher SL (1991) (S)-u-amino-
2,2′-bipyridine-6-propanoic acid: a versatile
amino acid for de novo metalloprotein
design. J Am Chem Soc 113:8527–8528.
doi:10.1021/ja00022a053

 12. Richter F, Leaver-Fay A, Khare SD et al (2011)
De novo enzyme design using Rosetta3. PLoS
One 6:1–12. doi:10.1371/journal.
pone.0019230

 13. Smith PF, Kaplan C, Sheats JE et al (2014)
What determines catalyst functionality in
molecular water oxidation? Dependence on
ligands and metal nuclearity in cobalt clusters.
Inorg Chem 53:2113–2121. doi:10.1021/
ic402720p

 14. Li X, Clatworthy EB, Masters AF, Maschmeyer
T (2015) Molecular cobalt clusters as precur-
sors of distinct active species in electrochemi-
cal, photochemical, and photoelectrochemical
water oxidation reactions in phosphate elec-
trolytes. Chemistry 21(46):16578–16584.
doi:10.1002/chem.201502428

 15. Dimitrou K, Brown AD, Christou G et al
(2001) Mixed-valence, tetranuclear cobalt
(iii, iv) complexes: preparation and properties
of [Co4O4(O2CR)2(bpy)4]3+ salts. Chem
Commun 4:1284–1285. doi:10.1039/
b102008k

 16. Evangelisti F, Guettinger R, More R et al
(2013) Closer to photosystem II: A Co4O4
cubane catalyst with flexible ligand architec-
ture. J Am Chem Soc 135(50):18734–18737.
doi:10.1021/ja4098302

 17. McCool NS, Robinson DM, Sheats JE,
Dismukes GC (2011) A Co4O4 cubane water

oxidation catalyst inspired by photosynthesis.
J Am Chem Soc 133:11446–11449.
doi:10.1021/ja203877y

 18. Berardi S, La Ganga G, Natali M et al (2012)
Photocatalytic water oxidation: tuning light-
induced electron transfer by molecular Co4O4
cores. J Am Chem Soc 134:11104–11107.
doi:10.1021/ja303951z

 19. Chakrabarty R, Bora SJ, Das BK (2007)
Synthesis, structure, spectral and electrochem-
ical properties, and catalytic use of cobalt
(III)−oxo cubane clusters. Polyhedron 46:
9450–9462

 20. Najafpour MM, Rahimi F, Aro E-M et al
(2012) Nano-sized manganese oxides as bio-
mimetic catalysts for water oxidation in artifi-
cial photosynthesis: a review. J R Soc Interface
9:2383–2395. doi:10.1098/rsif.2012.0412

 21. Tantillo DJ, Chen J, Houk KN (1998) Theo-
zymes and compuzymes: theoretical models
for biological catalysis. Curr Opin Chem
Biol 2:743–750. doi:10.1016/S1367-5931(98)
80112-9

 22. Siegel JB, Zanghellini A, Lovick HM et al
(2010) Computational design of an enzyme
catalyst for a stereoselective bimolecular diels-
alder reaction. Science 105:1–6

 23. Röthlisberger D, Khersonsky O, Wollacott AM
et al (2008) Kemp elimination catalysts by
computational enzyme design. Nature 453:
190–195. doi:10.1038/nature06879

 24. Jiang L, Althoff EA, Clemente FR et al (2008)
De novo computational design of retro-
aldol enzymes. Science 319:1387–1391.
doi:10.1126/science.1152692

 25. Bradley P, Misura KMS, Baker D (2005)
Toward high-resolution de novo structure pre-
diction for small proteins. Science 309:1868–
1871. doi:10.1126/science.1113801

 26. Mandell DJ, Kortemme T (2009) Backbone
flexibility in computational protein design.
Curr Opin Biotechnol 20:420–428.
doi:10.1016/j.copbio.2009.07.006

 27. Mandell DJ, Coutsias EA, Kortemme T
(2009) Sub-angstrom accuracy in protein loop
reconstruction by robotics-inspired conforma-
tional sampling. Nat Methods 6:551–552.
doi:10.1038/nmeth0809-551

Design of Metal Binding Sites and Metalloproteins

http://dx.doi.org/10.1021/ja403503m
http://dx.doi.org/10.1146/annurev.biochem.052308.105824
http://dx.doi.org/10.1146/annurev.biochem.052308.105824
http://dx.doi.org/10.1021/ja00022a053
http://dx.doi.org/10.1371/journal.pone.0019230
http://dx.doi.org/10.1371/journal.pone.0019230
http://dx.doi.org/10.1021/ic402720p
http://dx.doi.org/10.1021/ic402720p
http://dx.doi.org/10.1002/chem.201502428
http://dx.doi.org/10.1039/b102008k
http://dx.doi.org/10.1039/b102008k
http://dx.doi.org/10.1021/ja4098302
http://dx.doi.org/10.1021/ja203877y
http://dx.doi.org/10.1021/ja303951z
http://dx.doi.org/10.1098/rsif.2012.0412
http://dx.doi.org/10.1016/S1367-5931(98)80112-9
http://dx.doi.org/10.1016/S1367-5931(98)80112-9
http://dx.doi.org/10.1038/nature06879
http://dx.doi.org/10.1126/science.1152692
http://dx.doi.org/10.1126/science.1113801
http://dx.doi.org/10.1016/j.copbio.2009.07.006
http://dx.doi.org/10.1038/nmeth0809-551

187

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_11, © Springer Science+Business Media New York 2016

 Chapter 11

 De Novo Design of Metalloproteins and Metalloenzymes
in a Three-Helix Bundle

 Jefferson S. Plegaria and Vincent L. Pecoraro

 Abstract

 For more than two decades, de novo protein design has proven to be an effective methodology for model-
ing native proteins. De novo design involves the construction of metal-binding sites within simple and/or
unrelated α-helical peptide structures. The preparation of α 3 D, a single polypeptide that folds into a native-
like three-helix bundle structure, has signifi cantly expanded available de novo designed scaffolds. Devoid
of a metal-binding site (MBS), we incorporated a 3Cys and 3His motif in α 3 D to construct a heavy metal
and a transition metal center, respectively. These efforts produced excellent functional models for native
metalloproteins/metalloregulatory proteins and metalloenzymes. Morever, these α 3 D derivatives serve as
a foundation for constructing redox active sites with either the same (e.g., 4Cys) or mixed (e.g., 2HisCys)
ligands, a feat that could be achieved in this preassembled framework. Here, we describe the process of
constructing MBSs in α 3 D and our expression techniques.

 Key words De novo protein design , Three-helix bundle , Metal-binding site , Metalloprotein ,
 Metalloregulatory protein , Metalloenzyme , Protein expression

1 Introduction

 De novo protein design offers a methodology for modeling the
metal centers of metalloproteins and metalloenzymes [1 – 3]. This
approach involves the construction of a desired metal-binding
site(s) in a peptide scaffold with a sequence that is not found in
nature, thus allowing scientists to uncover physical properties that
may remain hidden from direct studies of native proteins. The most
commonly used scaffolds have an α-helical fold and have previously
been engineered to contain heme, nonheme iron, and zinc centers
[4]. Much of our efforts have focused on building a 3Cys site in
the TRI and Coil-Ser (CS) peptide system [3 , 5]. This thiol-rich
site is accomplished through the self-association of a single TRI or
CS peptide into a three-stranded coiled tertiary structure (3SCC)
(Fig. 1a) [6]. Our work with the 3SCC scaffolds has generated
excellent spectroscopic, structural, and functional models for native

188

 metalloregulatory proteins that bind toxic heavy metals, including
arsenic, cadmium, mercury, and lead [3]. Moreover, in an effort to
recapitulate the activity of metalloenzymes bound to a transition
metal, TRI constructs with a 3His site had also been developed
and shown to possess copper nitrite reductase activity [7 , 8] and
zinc carbonic anhydrase [9 , 10].

 DeGrado and coworkers expanded available de novo designed
scaffolds through the preparation of a native-like peptide, α 3 D [11]
(Fig. 1b). This scaffold is a single polypeptide chain that preas-
sembles into an antiparallel three-helix bundle, a major advance-
ment in de novo protein design. Lacking a metal-binding site, our
fi rst approach aimed to introduce a 3Cys site in α 3 D. Through the
substitutions of apolar residues, as shown in Fig. 1b , four locations
(categorized as layers) were identifi ed that could accommodate
this design. Based on Nuclear Magnetic Resonance (NMR) analy-
sis on α 3 D, the fourth layer, which is composed of L18, L28, and
L67, was predicted to be the most amenable to mutations.
Chakraborty et al. prepared α 3 D IV (Fig. 2a), an α 3 D derivative
with a 3Cys site at the C-terminal end of the bundle [12]. The
authors showed that α 3 D IV binds heavy metals Cd, Hg, and Pb in

 Fig. 1 Structures of de novo designed peptides. (a) X-ray crystal structure of
As(III) bound CSL9C (PDB 2JGO), a three-stranded coiled coil scaffold. (b) Solution
structure of α 3 D. Apolar residues of α 3 D divided into four layers, as indicated by
varying shades of gray . The fi rst layer comprises F7, L42, and L56 at the
N-terminal end of the bundle. Subsequent layer contains L11, F38, and A60. The
third layer has all isoleucine residues at the 14th, 35th, and 63rd positions. The
C-terminal layer composes of L18, L28, and L67. These layers were predicted to
provide a 3Cys metal-binding site

Jefferson S. Plegaria and Vincent L. Pecoraro

189

the expected mode, serving as a spectroscopic and functional
model for metalloregulatory proteins that contain an MS 3 center.
The NMR structure of α 3 D IV was also solved, which revealed that
the overall fold of α 3 D was not signifi cantly perturbed after the
removal of stabilizing Leu residues [13]. Subsequently, a 3His zinc
metal site was also incorporated in the fourth layer, generating
α 3 D H 3 [14] (Fig. 2b , Table 1).

 Fig. 2 Subsequent α 3 D derivatives for heavy and transition metal binding. (a)
Solution structure of α 3 D IV , which exhibits a 3Cys site at positions 18, 28, and 67
that coordinates Cd, Hg, and Pb. (b) Model of a 3His α 3 D derivative, α 3 D H 3 , which
was demonstrated to bind Zn and perform the function of carbonic anhydrase.
This model was constructed from the α 3 D IV structure

 Table 1
 Amino acid sequence of α 3 D constructs

 Construct Sequence
 Molecular
weight (Da) PDB code

 α 3 D MGSWAEFKQR LAAIKTR LQAL GGS EAELAAFEKE
IAAFESE LQAY KGKG

 NPEVEALRKE AAAIRDE LQAYRHN

 7977.2 2A3D

 α 3 D IV MGSWAEFKQR LAAIKTR C QAL GGS EAE C AAFEKE
IAAFESE LQAY KGKG

 NPEVEALRKE AAAIRDE C QAYRHN

 7946.9 2MTQ

 α 3 D H 3 a MGSWAEFKQR LAAIKTR H QAL GGS EAE H AAFEKE
IAAFESE LQAY KGKG

 NPEVEALRKE AAAIRDE H QAYR V N GSGA

 8283.5

 Bolded residues indicate change from the sequence of α 3 D
 a See Note 1

Design of Metalloproteins and Metalloenzymes

190

 Construct α 3 D H 3 was extended with a glycine-serine-glycine-
alanine (GSGA) tail in an attempt to increase its overall stability
after the incorporation of bulky His residues inside the core, with-
out perturbing the overall framework of α 3 D (see Note 1). This tail
can also be modifi ed to glycine-serine-glycine-cysteine (GSGC)
with an A77C mutation. Both derivatives resulted in high expres-
sion yields of 100 mg/L, and from chemical denaturation studies,
the GSGA construct increased the Gibbs free energy of unfolding
(ΔG U) of α 3 D H 3 to 3.1 from 2.5 kcal/mol compared to α 3 D IV .
Moreover, α 3 D H 3 was shown to bind Zn and perform the CO 2
hydrolysis associated with carbonic anhydrase. Overall, these efforts
increased in scope the use of α 3 D as a viable framework for model-
ing the metal centers of native proteins. They provide the opportu-
nity to tackle redox active sites with either the same ligands (e.g.,
4Cys) or mixed ligands (e.g., 2HisCysMet) [15], which can be
achieved in this preassembled scaffold. This chapter presents our
design and expression techniques in preparing α 3 D derivatives.

2 Materials

 Prepare all solutions using MQ or double distilled H 2 O. Prepare
and store solutions at room temperature, unless noted otherwise.
Prepare all solutions on a sterile lab bench, cleaned with 10 %
bleach and followed by 70 % ethanol. Autoclave all the necessary
glassware.

 Access to a computer console connected to the Internet that con-
tains a more recent version of PyMOL (1.3–1.7) is required [16].
A payment is required to obtain a license for PyMOL (http://
www.pymol.org), but a free version for students and educators is
available (http://pymol.org/edu/?q=educational/). Once a com-
puter is equipped with PyMOL, download the structure of α 3 D
(PDB code 2A3D) and/or α 3 D IV (PDB code 2MTQ) from the
 RCSB Protein Data Bank (RCSB PDB) (http://www.rcsb.org/
pdb/home/home.do) by entering the PDB code in the search box
and downloading the PDB text fi le under the Download Files tab.
A computer mouse with at least three customizable buttons is ideal
for visualizing structures on PyMOL.

 1. A synthetic gene that contains the DNA sequence of the
designed α 3 D derivative cloned into pET-15b.

 2. One-shot (50 μL) BL21(DE3) chemically competent
 Escherichia coli cells.

 3. LB agar plates: Plates are prepared on a sterilized lab bench and
under a fl ame provided by an isopropanol lamp. Suspend 4.0 g
LB agar powder in 250 mL beaker containing 100 mL water

2.1 Modeling
Using PyMOL

2.2 Transformation
Components

Jefferson S. Plegaria and Vincent L. Pecoraro

http://www.pymol.org/
http://www.pymol.org/
http://pymol.org/edu/?q=educational/
http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do

191

and autoclave using a liquid program. Allow the solution to
cool to touch and then add 100 μL of a 100 mg/mL ampicillin
(amp) solution. Pour LB agar solution in 100 × 15 mm petri
dishes, allow to solidify, and store plates upside down in 4 °C.

 4. SOC media, which can be prepared or commercially pur-
chased. SOB media: Dissolve 0.20 g tryptone, 0.05 g yeast
extract, and 0.005 g NaCl in 9.8 mL H 2 O. Autoclave this solu-
tion using a liquid program and allow to cool to room tem-
perature. Subsequently, add 100 μL of 1.0 M MgCl 2 and 100
μL of 1.0 M MgSO 4 to the SOB solution. A 1.0 mL SOC stock
media is prepared by adding 20 μL of 20 % glucose (w/v) into
980 μL SOB media. Store leftover SOB and SOC media in 4
°C or −20 °C for short or long storage, respectively.

 1. An autoinduction media [17] is the preferred expression media
(see Note 2) and prepared in 6 L batches (3 × 2 L solutions),
which contains a rich media and a sugar solution. In a 4 L fl ask,
suspend 48 g yeast extract powder and 24 g tryptone powder
in 1.8 L H 2 O. For a 6 L rich media, prepare the sugar solution
by adding in a 2 L fl ask containing 600 mL H 2 O 13.8 g
KH 2 PO 4 (monobasic), 62.0 g K 2 HPO 4 (dibasic), 5.0 mL glyc-
erol, 0.5 g glucose, and 2.0 g lactose. Autoclave the rich and
sugar solutions using a short liquid program (see Note 3). The
autoinduction media is prepared by aliquoting 0.2 L of the
sugar solution into a 1.8 L of rich media (see Note 4).

 2. LB media: Suspend 10 g tryptone powder, 5 g yeast extract
powder, and 10 g NaCl in a 2 L fl ask containing 1.0 L
H 2 O. Autoclave using a liquid program.

 1. Lysis buffer: 1X PBS and 2 mM DTT. To prepare a 1 L 10X
PBS buffer, dissolve in 800 mL H 2 O 80 g NaCl, 2.0 g KCl,
14.4 Na 2 HPO 4 , and 2.4 KH 2 PO 4 . Adjust pH to 7.4 and auto-
clave using a liquid program. For a 100 mL 1X lysis buffer
solution, add 10 mL of 10X PBS solution into 90 mL H 2 O
and dissolve 30.9 mg DTT. Prepare the lysis buffer solution
fresh every expression.

 2. A centrifuge for 1 L and 50 mL cell cultures.
 3. A sonicator and a steel cup that can hold 100–200 mL

volume.
 4. A water bath set at 55 °C.
 5. A pH electrode and lyophilizer.
 6. A reverse-phase C18 HPLC. Solvents: The polar solvent is

composed of H 2 O and 0.1 % trifl uoroacetic acid and the non-
polar solvent is comprised of 90 % acetonitrile, 10 % H 2 O, and
0.1 % trifl uoroacetic acid.

2.3 Protein
Expression
Components

2.4 Protein
Purifi cation
Components

Design of Metalloproteins and Metalloenzymes

192

3 Methods

 1. Run PyMOL and open the α 3 D IV (PDB 2MTQ) or α 3 D
structure (PDB 2A3D).

 2. Show structure as carton.
 3. To model a new metal-binding site in the layers described in

the introduction (Fig. 1), in the Menu tab, choose Wizard and
 then Mutagenesis.

 4. In Mutagenesis option, select backbone- dependent rotamers
and show residues as sticks.

 5. Pick a residue to mutate and then the desired residue that can
provide a metal-binding ligand such as S(Cys), N(His), or
O(Asp or Glu).

 6. Notice that several rotamers are possible. Choose the rotamer
that is conducive to metal binding, that is, where the ligand is
oriented toward the hydrophobic core.

 7. Repeat according to the number of desired ligands (see Note 5).
 8. Under the Wizard tab, use the Measurement option to deter-

mine the distances between the ligands. To obtain a qualitative
sense of a suitable metal binding, these distances should be
between 3.5 and 4.5 Å.

 Prior to the transformation experiment, prepare the amino acid
sequence with the desired mutations. The gene for this sequence is
placed between restriction sites BamHI and NcoI in the pET-15b
vector (see Note 6).

 1. Add 4–5 μL of 1 ng/μL of DNA to a tube of one-shot (50 μL)
BL21(DE3) chemically competent E. coli cells thawed on ice
for 10 min. Let stand for 10 min.

 2. Heat shock in a 42 °C water bath for 30 s.
 3. Cool on ice for 2 min.
 4. Add 200 μL SOC and shake at 200 rpm in 37 °C for 30–50 min.
 5. Prepare a diluted culture solution by adding 10 μL of

BL21(DE3) cells into 90 μL fresh SOC.
 6. Plate 100 μL culture on LB agar amp plate and incubate upside

down overnight in 37 °C.
 7. Save unused cells in 4 °C, which can be re-platted if the over-

night plate does not show single colonies or is overgrown with
no distinguishable single colonies.

 1. Pick single colonies from the overnight plate and inoculate 20
mL LB broth containing 20 μL of 100 mg/mL amp. Grow
cultures overnight at 200 rpm and 37 °C.

3.1 Design of α 3 D
Derivatives Using
 PyMOL

3.2 Transformation

3.3 Protein
Expression Using
Autoinduction Media

Jefferson S. Plegaria and Vincent L. Pecoraro

193

 2. Add 2 mL of 100 mg/mL amp to a 2 L autoinduction media.
Inoculate with a 20 mL overnight culture.

 3. Incubate overnight, 16–20 h, at 180 rpm and 25–30 °C.
 4. Harvest cells by spinning down in 1 L centrifuge tubes at

8,000 × g and 4 °C. Re-suspend pelleted cells with 15–25 mL
of lysis buffer pre-chilled on ice.

 5. Transfer re-suspended cells in a steel cup chilled on an ice
bucket.

 6. Insert sonicator tip in steel cup, ~80 % submerged in re-
suspended cells. Keep steel cup on ice.

 7. Sonicate for total of 5 min, at 30 s on and 30 s off intervals.
Repeat three times or until the solution has turned
translucent.

 8. Transfer to centrifuge tubes (50 mL) and spin-down at
17,000 × g and 4 °C for 30 min.

 9. Transfer supernatant to 50 mL conical tubes and heat denature
at 55 °C for 20–30 min. Transfer to the appropriate centrifuge
tubes and spin-down at 17,000 × g and 4 °C for 30 min.

 10. Pour supernatant in a beaker and acidify to pH 1.9 to precipi-
tate salts and cellular debris. Transfer to the appropriate centri-
fuge tubes and spin-down at 17,000 × g and 4 °C for 30 min.

 11. Place supernatant in 50 mL conical tubes and fl ash-freeze in
liquid nitrogen for 10–15 min or until completely frozen.
Lyophilize frozen protein for 2–3 days or until dry.

 1. Redissolve dry protein powder in H 2 O (15–20 mL) and check
pH (see Note 7).

 2. Purify on a reversed-phase C18 HPLC using a fl ow rate of 20
mL/min and a linear gradient of polar solvent (0.1 % TFA in
water) to nonpolar solvent (0.1 % TFA in 9:1 CH 3 CN/H 2 O)
over 45 min.

 3. Retention time of α 3 D constructs is between 26 and 30 min.
 4. The molecular weight is determined using an electrospray

mode on a Micromass LCT Time-of-Flight mass ionization
spectrometer. The MW accounts for 72 of the 73 amino acids
as Met1 is cleaved posttranslation (see Note 8).

4 Notes

 1. The sequence of α 3 D H 3 was extended with a GSGA tail to
increase the overall protein stability [14]. This extension also
improved protein expression yield to ~100 mg/L compared
from 50 mg/L compared to α 3 D IV .

3.4 Protein
Purifi cation

Design of Metalloproteins and Metalloenzymes

194

 2. Autoinduction media and induction via IPTG work by the
same mechanism, which involves the induction of gene expres-
sion by relieving the repression of the lac promoter. Using the
latter induction technique, repression is relieved by the bind-
ing of IPTG (allolactose analog). However, in the case of auto-
induction media, protein overexpression is controlled by the
availability of sugar source instead of the addition of IPTG. Cell
density relies on sugar source, as well as the expression of the
designed gene without monitoring the cell density at 600 nm
(OD 600). After exhausting the more metabolically available
sugars, glucose and glycerol, the cells will use lactose as the
sugar source. This natural switch will turn on the components
of the lac operon, including our gene of interest that is down-
stream of the lac promoter region in pET- 15b. Overall, com-
pared to IPTG induction in LB media, the autoinduction
technique eliminates 3–5 h waiting for the cell density to reach
the proper OD 600 and has also improved our protein yield by
20–50 mg/mL.

 3. For the sugar solution, autoclave using a short liquid program
to avoid sugar oxidation, which can make them less bioavail-
able. If this sugar oxidation is suspected, the solution can be
prepared by dissolving all the components in autoclaved water
and vacuum fi lter through a sterile 0.22 μm fi lter.

 4. Prepare the autoreduction media several hours before inocula-
tion to avoid contamination. Contamination was often
observed when the media was prepared one to two days prior
to expression.

 5. Depending on your design goals, each metal-binding residue
can be positioned on separate helices to form a triangular
pocket. Or the two ligands can be placed on the same helix,
spaced by two to three residues, to replicate a chelate-like motif
and the third on a second helix, requiring only two of the three
helices to form a metal-binding site.

 6. Carefully indicate where to place the stop codon in the
sequence. If a 73 amino acid sequence is desired, place the stop
codon (TAA, TAG, or TGA) after Asn73. If a GSGA or GSGC
tail is desired, place the stop codon after Ala/Cys77 (see Note
1). As described in the introduction and Note 1, the addition
of a GSGA tail had a signifi cant effect on the expression yield
(100 mg/L) of α 3 D H 3 and improved the ΔG U of α 3 D H 3 by
0.6 kcal/mol compared to α 3 D IV . The latter effect, which
demonstrates an increase in stability, showed that the addition
of these tails does not change or perturb the overall framework
of α 3 D. Moreover, an A77C mutation to generate a GSGC tail
also had the same effect on the expression yield of α 3 D H 3 .
Therefore, we expect that the addition of a GSGA or GSGC
tail is essential in stabilizing α 3 D derivatives that aim to modify
layers 2 or 3 (see Fig. 1b).

Jefferson S. Plegaria and Vincent L. Pecoraro

195

 7. The pH of the polar solvent is about 1.9. It is important to
make sure that the crude protein solution matches this pH
condition. When the pH conditions do not match, we have
observed precipitation after the crude solution is mixed with
the polar solvent. This precipitate can clog the HPLC tubings
and lines and ultimately damage the solvent pump system.

 8. Met1-containing species is observed in the mass spectrum of
α 3 D IV and α 3 D H 3 but at a low amount compared to the
Met1- cleaved species. Met1-containing species make up about
<5 % of the total protein.

 Acknowledgments

 J.S.P. and V.L.P. would like to thank the National Institutes of
Health (NIH) for fi nancial support for this research (ES012236).
J.S.P. thanks the Rackham Graduate School at the University of
Michigan for a research fellowship.

 References

 1. DeGrado WF, Summa CM, Pavone V, Nastri
F, Lombardi A (1999) De novo design and
structural characterization of proteins and
metalloproteins. Annu Rev Biochem 68:779–
819. doi: 10.1146/annurev.biochem.68.1.779

 2. Lu Y, Berry SM, Pfi ster TD (2001) Engineering
novel metalloproteins: design of metal-binding
sites into native protein scaffolds. Chem Rev
101(10):3047–3080. doi: 10.1021/
cr0000574

 3. Yu F, Cangelosi VM, Zastrow ML, Tegoni M,
Plegaria JS, Tebo AG, Mocny CS, Ruckthong
L, Qayyum H, Pecoraro VL (2014) Protein
design: toward functional metalloenzymes.
Chem Rev 114(7):3495–3578. doi: 10.1021/
cr400458x

 4. Lu Y, Yeung N, Sieracki N, Marshall NM
(2009) Design of functional metalloproteins.
Nature 460(7257):855–862. doi: 10.1038/
nature08304

 5. Peacock AF, Iranzo O, Pecoraro VL (2009)
Harnessing nature’s ability to control metal
ion coordination geometry using de novo
designed peptides. Dalton Trans 13:2271–
2280. doi: 10.1039/b818306f

 6. Touw DS, Nordman CE, Stuckey JA, Pecoraro
VL (2007) Identifying important structural
characteristics of arsenic resistance proteins by
using designed three-stranded coiled coils.
Proc Natl Acad Sci U S A 104(29):11969–
11974. doi: 10.1073/pnas.0701979104

 7. Tegoni M, Yu F, Bersellini M, Penner-Hahn
JE, Pecoraro VL (2012) Designing a func-
tional type 2 copper center that has nitrite
reductase activity within alpha-helical coiled
coils. Proc Natl Acad Sci U S A 109(52):21234–
21239. doi: 10.1073/pnas.1212893110

 8. Yu F, Penner-Hahn JE, Pecoraro VL (2013)
 De novo -designed metallopeptides with type 2
copper centers: modulation of reduction
potentials and nitrite reductase activities. J Am
Chem Soc 135(48):18096–18107.
doi: 10.1021/ja406648n

 9. Zastrow ML, Peacock AF, Stuckey JA,
Pecoraro VL (2012) Hydrolytic catalysis and
structural stabilization in a designed metallo-
protein. Nat Chem 4(2):118–123.
doi: 10.1038/nchem.1201

 10. Zastrow ML, Pecoraro VL (2013) Infl uence of
active site location on catalytic activity in de
novo -designed zinc metalloenzymes. J Am
Chem Soc 135(15):5895–5903. doi: 10.1021/
ja401537t

 11. Walsh ST, Cheng H, Bryson JW, Roder H,
DeGrado WF (1999) Solution structure and
dynamics of a de novo designed three-helix
bundle protein. Proc Natl Acad Sci U S A
96(10):5486–5491. doi: 10.1073/
pnas.96.10.5486

 12. Chakraborty S, Kravitz JY, Thulstrup PW,
Hemmingsen L, DeGrado WF, Pecoraro VL
(2011) Design of a three-helix bundle capable

Design of Metalloproteins and Metalloenzymes

http://dx.doi.org/10.1146/annurev.biochem.68.1.779
http://dx.doi.org/10.1021/cr0000574
http://dx.doi.org/10.1021/cr0000574
http://dx.doi.org/10.1021/cr400458x
http://dx.doi.org/10.1021/cr400458x
http://dx.doi.org/10.1038/nature08304
http://dx.doi.org/10.1038/nature08304
http://dx.doi.org/10.1039/b818306f
http://dx.doi.org/10.1073/pnas.0701979104
http://dx.doi.org/10.1073/pnas.1212893110
http://dx.doi.org/10.1021/ja406648n
http://dx.doi.org/10.1038/nchem.1201
http://dx.doi.org/10.1021/ja401537t
http://dx.doi.org/10.1021/ja401537t
http://dx.doi.org/10.1073/pnas.96.10.5486
http://dx.doi.org/10.1073/pnas.96.10.5486

196

of binding heavy metals in a triscysteine envi-
ronment. Angew Chem Int Ed Engl 50(9):
2049–2053. doi: 10.1002/anie.201006413

 13. Plegaria JS, Pecoraro VL (2015) Sculpting
metal- binding environments in de novo
designed three-helix bundles. Isr J Chem
55(1):85–95. doi: 10.1002/ijch.201400146

 14. Cangelosi VM, Deb A, Penner-Hahn JE,
Pecoraro VL (2014) A de novo designed metal-
loenzyme for the hydration of CO 2 . Angew
Chem Int Ed Engl 53(30):7900–7903.
doi: 10.1002/anie.201404925

 15. Plegaria JS, Duca M, Tard C, Friedlander TJ,
Deb A, Penner-Hahn JE, Pecoraro VL (2015)
 De novo design and characterization of copper
metallopeptides inspired by native cupredox-
ins. Inorg Chem. doi: 10.1021/acs.
inorgchem.5b01330

 16. The PyMOL Molecular Graphics System,
Version 1.5.0.4 Schrödinger, LLC

 17. Studier FW (2005) Protein production by
auto- induction in high density shaking cul-
tures. Protein Expr Purif 41(1):207–234.
 doi: 10.1016/j.pep.2005.01.016

Jefferson S. Plegaria and Vincent L. Pecoraro

http://dx.doi.org/10.1002/anie.201006413
http://dx.doi.org/10.1002/ijch.201400146
http://dx.doi.org/10.1002/anie.201404925
http://dx.doi.org/10.1021/acs.inorgchem.5b01330
http://dx.doi.org/10.1021/acs.inorgchem.5b01330
http://dx.doi.org/10.1016/j.pep.2005.01.016

197

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_12, © Springer Science+Business Media New York 2016

Chapter 12

Design of Light-Controlled Protein Conformations
and Functions

Ryan S. Ritterson, Daniel Hoersch, Kyle A. Barlow, and Tanja Kortemme

Abstract

In recent years, interest in controlling protein function with light has increased. Light offers a number of
unique advantages over other methods, including spatial and temporal control and high selectivity. Here, we
describe a general protocol for engineering a protein to be controllable with light via reaction with an exog-
enously introduced photoisomerizable small molecule and illustrate our protocol with two examples from the
literature: the engineering of the calcium affinity of the cell–cell adhesion protein cadherin, which is an
example of a protein that switches from a native to a disrupted state (Ritterson et al. J Am Chem Soc (2013)
135:12516–12519), and the engineering of the opening and closing of the chaperonin Mm-cpn, an example
of a switch between two functional states (Hoersch et al.: Nat Nanotechn (2013) 8:928–932). This protocol
guides the user from considering which proteins may be most amenable to this type of engineering, to con-
siderations of how and where to make the desired changes, to the assays required to test for functionality.

Key words Photoswitches, Computational protein design, Light-modulatable proteins, Protein
engineering

1 Introduction

There has been considerable interest in light-based control of pro-
tein functions [1], and successful applications include light modu-
lation of neuronal ion channels [2], light-switchable cell adhesion
proteins [3], and light-controlled protein machines [4]. Light-
based methods offer titratable, precise spatial, and temporal regu-
lation that has been demonstrated in vitro [5], in cell culture [6,
7], and in whole animals [8]. Most examples of light-based control
fall into one of two categories: (a) those that are genetically
encoded using fusions with a light-sensitive protein borrowed from
nature [6] and (b) those created via targeted insertion of amino
acids into a protein sequence and subsequent reaction with them
of an exogenously introduced photoisomerizable small molecule,
typically azobenzene based [9]. Azobenzene and its derivatives
undergo a reversible cis–trans isomerization upon illumination

198

with either near-ultraviolet or visible light, leading to a change in
end-to-end distance of ~18 Å in the trans state to a ~5–12 Å dis-
tribution in the cis state; this change in molecular shape can then
be coupled to changes in protein function.

In this chapter, we describe two related methods for designing
category (b) molecules (Fig. 1). The first method was applied to
engineer light control of the group II chaperonin Mm-cpn [4] and
illustrates the design of protein photoswitches that reversibly
change between two known protein conformations. The described
design method is useful when the target protein has two known
functional conformations (e.g., chaperonins, nuclear hormone
receptors, many small molecule binders), and the researcher would
like to maintain both of them. (Note that, due to the two-state
nature of azobenzene- based molecules, directing proteins into
three or more conformations using light alone would require addi-
tional engineering.) The second method was applied to engineer
light control of the cell adhesion protein cadherin [3] and designed
a protein photoswitch that reversibility changes from a native to a
disrupted conformation. Such designs are useful when a target
protein has one functional conformation of interest to be dis-
rupted, and the conformation in the disrupted state need not be
specified in detail. We also include basic protocols for conjugating
the small molecule to the protein, as well as for measuring the
extent to which the protein is conjugated and switchable.

In general, the considerations for both design protocols share
much in common. Most importantly, the target protein must be

Fig. 1 Cartoon representation of two strategies for controlling protein function
with light. In the first (top), the protein is switched between two defined confor-
mations. In the second (bottom), the protein is switched between a functional
state and a “disrupted” state, in which, for example, the conformation of an
active or ligand-binding site is destabilized

R.S. Ritterson et al.

199

 suitable for cross-linking with a cysteine-reactive small molecule at
defined sites, which requires elimination of all or most native cyste-
ines and introduction of two nonnative cysteines to use as conjuga-
tion sites for cross-linking. In addition, the distance of the side-chain
sulfur atoms of the engineered cysteines in the conformation(s) of
the target to be maintained must match the end-to-end distance of
the chosen azobenzene molecule in its trans and/or cis states, and
the side-chain sulfur atoms of the engineered cysteines must be sol-
vent accessible for cross-linking. The requirement of ensuring geo-
metric compatibility necessitates experimentally determined
structures or high-quality models for the protein conformations to
be maintained. In addition, as initial characterizations of the photo-
switches are carried out in vitro, protein targets should be amenable
to protein purification and, ideally, be stable.

Where the protocols differ is in the detailed constraints neces-
sary to satisfy. With two protein target states, one must find an
interatomic distance between a pair of residues in the target such
that in one state the distance is only compatible with one isomer of
the chromophore and the second state only compatible with the
other isomer of the small molecule; illumination should then lead
to selective destabilization of one of the two protein states and
hence reversible interconversion between them. Two states pro-
vide the advantage that the desired structures of both illumination
states are known, increasing the probability that successful conju-
gation will produce a functional photoswitch. However, because of
the additional geometric constraints, it is likely that only a small
number of suitable cross-linking sites will be available, reducing
the likelihood of finding one compatible with protein stability,
structure, and function.

In comparison, with one functional state, one only needs to
find a pair of attachment sites compatible with one isomer of the
chromophore. Illumination should alter this distance and thus dis-
rupt the conformation and function of the protein target. Because
the geometric constraints need only be satisfied in one conforma-
tion, there are likely many more possible attachments sites. As the
conformation of the illuminated state is not known, however, it is
more likely that chromophore illumination may not result in the
desired change in protein function. For example, if the local con-
formation of the protein is too flexible, the change in structure of
the chromophore may be accommodated without a significant
change in protein structure [9, 10].

2 Materials

 1. Azobenzene chromophore suitable for cross-linking cysteine
residues. For Mm-cpn we used azobenzene–dimaleimide
(ABDM), and for cadherin we used 3,3′-bis(sulfonato)-4,4′-
bis(chloroacetamido)azobenzene (BSBCA).

Design of Light-Controlled Ligand Binding

200

 2. Structure(s) or high-quality models of protein of interest.
 3. Academic license of the molecular modeling and design pro-

gram Rosetta [11].
 4. A protein structural viewer (such as PyMOL) capable of measur-

ing distances, or script to compute distances from coordinates.
 5. Supplies required to purify the target protein.
 6. An assay for target functionality. Mm-cpn, 4 % native polyacryl-

amide gel (PAGE); cadherin, surface plasmon resonance (SPR).
 7. UV–Vis spectrophotometer to determine the switching effi-

ciency of the chromophore.
 8. An assay to determine the efficiency of chromophore

conjugation/cross-linking. Mm-cpn, 4–20 % SDS-PAGE gel;
cadherin, mass spectrometer that is capable of detecting 1 Da
changes in whole proteins, such as a Waters LCT Premier.

 9. Illumination sources for ultraviolet and visible light to switch
the chromophore between the cis and trans isomerization states.
Mm-cpn and cadherin: high-power LEDs with emission wave-
length of 365 nm (1 W, Advancemart) and 455 nm (3 W,
SparkFun).

3 Methods

In this section, we detail the strategies and techniques to computa-
tionally design protein photoswitches with the goal of producing a
ranked-ordered list of pairs of cysteine mutations to introduce into
the target protein. At certain points in the method, the procedures
bifurcate into parallel methods, depending on whether the target
protein of interest has two conformations to maintain and switch
between or a single conformation to disrupt.

In order to preserve target structure and stability, locations must
be identified within the target structure where a pair of cysteines
can replace the native residues with minimal disruption to the
overall fold. One strategy to identify the safest positions for these
mutations is to estimate the folding free energy contribution of
each native side chain. This energy is commonly estimated by inde-
pendently mutating each residue to alanine, as alanine reduces the
side chain to a single methyl group. This procedure, “alanine scan-
ning,” can be performed experimentally or computationally, which
has provided rich data for the development of robustly tested com-
putational protocols, including within Rosetta [12, 13]. Alanine
scanning can be run within Rosetta using the RosettaScripts XML
scripting interface. Detailed instructions are available within the
RosettaScripts documentation [14].

3.1 Computational
Design of Protein
Photoswitches

3.1.1 Mutational
Robustness

R.S. Ritterson et al.

201

We use computational alanine scanning within Rosetta to iden-
tify positions amenable to mutation to cysteine by only allowing
mutations at positions where mutation to alanine is predicted not
to destabilize the protein significantly (energy increase of less than
1 Rosetta energy units (approximately 1 kcal/mol); all positions
that had a decrease in energy were accepted).

 1. To shift an equilibrium between two defined conformational
states of a protein, select cross-linking positions for which the
following criteria are satisfied:

 (a) The expected distance of the side-chain sulfur atoms of the
engineered cysteines in one conformational state matches the
end-to-end distance of the chosen chromophore in its trans
state, and the other conformational state matches the length of
the cis state (positive design) (see Note 1).

 (b) Each isomerization state is only compatible with one of
the two conformational states of the protein and not the other
(negative design).

 2. To shift an equilibrium between one functional and one non-
functional state (or ensemble) of a protein, select cross-linking
positions for which the following criteria are satisfied:

 (a) The expected distance of the side-chain sulfur atoms of the
engineered cysteines in the functional, known state matches
the end-to-end distance of the chromophore in either the trans
or cis states.

 (b) The expected distance of the side-chain sulfur atoms of the
engineered cysteines after isomerization is incompatible with
the functional state, leading to a disrupting conformation
change in the protein. This can be accomplished, e.g., by dis-
rupting secondary structure or distorting conformations of
functional loops.

In order for the azobenzene chromophore to react efficiently with
the target, the residues chosen as cross-linking sites must be sol-
vent accessible. Using PyMOL [15] (or another method of the
users’ choice), identify all residues that are buried (have a solvent
accessible surface area below a given threshold) and remove them
from the list of possible mutations.

Finally, residues to be cross-linked must be pointing toward each
other, and the chromophore must be sterically compatible with the
protein structure (e.g., a line drawn between the Cβ atoms should
not penetrate the protein). Generally, this process is easily done by
visual inspection; in our experience, the vast majority of potential
cross-link pairs are obviously sterically incompatible, leaving only a
few pairs for consideration.

3.1.2 Distance Matching

3.1.3 Solvent
Accessibility

3.1.4 Steric Clashes
(Visual Inspection)

Design of Light-Controlled Ligand Binding

202

The following two sections describe the specific parameters of
the general protocol that we used for engineering photoswitchable
Mm-cpn (Subheading 3.1.5) or cadherin (Subheading 3.1.6):

 1. Using the PDB structures of Mm-cpn in the open and closed
conformation (identifiers 3IYE and 3IYF, cryo-EM structures,
and 3KFB and 3KFK, X-ray structures), calculate the expected
distances between sulfur atoms for every possible pair of cyste-
ine mutations in neighboring subunits of Mm-cpn as well as
the expected accessible surface area of the sulfur. To create the
models of the cysteine mutants and to do the calculations, use
PyMOL or software of your choice.

 2. Screen for residue pairs with an expected sulfur distance of
5–14 Å in the closed and 16.6–19.5 Å in the open state and a
minimum expected surface accessible area for the sulfur atoms
of 8 Å2 (10 % of the maximum surface-exposed area of the
sulfur atom in a deprotonated cysteine residue).

 3. Keep residue pairs which satisfy the selection criteria in both
sets of structures (3IYE/3IYF and 3KFB/3KFK).

 4. Exclude residue pairs with an intra-monomer (Mm-cpn is a
homooligomer of 16 subunits) distance smaller than 19.5 Å to
avoid off-target cross-linking.

 5. Visually inspect the list of possible cross-linking sites for resi-
due pairs for which there is enough unoccupied space between
the attachment sites to accommodate the chromophore
ABDM, and choose promising cross-linking sites for in vitro
testing.

 1. Using Rosetta and the PDB structures of cadherin (identifiers
1FF5, 1EDH, 2O72, and 1Q1P) with the methodology
described in Subheading 3.1.1, computationally mutate all
residues in the protein to alanine, and record the predicted
change in protein stability. Eliminate all residues with predicted
change in stability >1 Rosetta energy unit.

 2. Eliminate all residues that directly bind calcium ions.
 3. For the residues that remain, compute the Cβ–Cβ distance

between all possible remaining pairs. Eliminate all pairs whose
distances do not fall into the range 17–20 Å. After this step,
the number of potential cross-linking pairs was reduced to
approximately 1500.

 4. Eliminate all pairs that do not have at least one cross-linking
site (Cβ atom) within 20 Å of a calcium ion.

 5. Eliminate all pairs that do not have solvent accessible surface area
(SASA) of both cross-linking sites >30 Å2. After this step, the
number of potential pairs was reduced to approximately 300.

3.1.5 Protocol
for the Structure-Based
Design
of a Photoswitchable
Mm-cpn

3.1.6 Protocol
for the Structure-Based
Design of Photoswitchable
Cadherin

R.S. Ritterson et al.

203

 6. Visually inspect the remaining pairs by drawing a line between
the cross-linking sites. Eliminate all pairs whose line intersects
with the protein structure, by using the surface representation
in PyMOL. This step reduced the number of possible pairs to
approximately 30.

 7. Using experimenter judgement, select a subset of pairs that
meet the criteria of the study. We chose ten pairs based on a
desire to have a diverse set of potential cross-linking sites.

After selecting the potential cross-linking sites via computational
design, the next stage is to express and test the selected pairs exper-
imentally. This method describes the removal of native cysteines
and the addition of the cross-linking cysteines.

The chromophores we used (ABDM and BSBCA) are cysteine
reactive. As native cysteines in the protein target may also be reac-
tive and give undesired side products, native cysteines should be
removed, if possible, prior to mutation to cysteine residues at the
cross-linking sites (see Note 2).

 1. Using a suitable cloning method (e.g., Gibson assembly, site-
directed mutagenesis), mutate a single native cysteine residue
in the protein-coding sequence to an alternate amino acid (see
Note 3).

 2. Express and purify the mutated protein using a method appro-
priate for the specific protein, and then test the change in sta-
bility of the protein after the mutation using a method of
choice (see Note 4).

 3. If the protein has a specific function to be maintained, test
changes in protein functionality after the mutation using a
method appropriate to the specific function.

 4. If steps 1–3 result in a satisfactory outcome, repeat steps 1–3
for an additional cysteine residue, continuing until all possible
cysteines have been removed.

 5. If steps 1–3 do not result in a stable or functional protein,
replace that cysteine by a different residue (repeat steps 1–3)
or maintain the cysteine and repeat steps 1–3 for the next cys-
teine in series (see Note 5).

After all possible native cysteines have been removed, mutations to
nonnative cysteines can be made.

 1. Using a suitable cloning method (e.g., Gibson assembly, site-
directed mutagenesis), mutate both native residues at the tar-
geting cross-linking sites in the protein-coding sequence to
cysteine.

3.2 Protein
Engineering

3.2.1 Elimination
of Native Cysteines

3.2.2 Addition of Cross-
Linking Cysteines

Design of Light-Controlled Ligand Binding

204

 2. Express and purify the mutated protein using a method of
choice appropriate for the specific protein, and then test the
change in stability of the protein after the mutation using a
method of choice (see Note 6).

 3. If the protein has a specific function to be maintained, test
changes in protein functionality after the mutation using a
method appropriate to the specific function.

 4. If steps 1–3 result in a satisfactory outcome, keep the potential
pair. If not, eliminate it from future consideration.

In this section, we detail how to cross-link the azobenzene-based
chromophore to the target protein, with the goal of optimizing the
percentage of cross-linked and folded protein. We describe details
of the important parameters controlling the outcome of the reac-
tion, including how they may change based on the particular chro-
mophore chosen.

 1. Chromophore absorption spectrum. Azobenzene cross-linkers
with have been recently developed to enable the user to choose
between a wide variety of wavelengths to switch the isomer
equilibrium of the chromophore [9, 16–18]. The two chro-
mophores used in the methods described in this chapter have
the following absorption properties: The absorption peak of
the π–π* transition of the trans state of ABDM is at 342 nm,
and the long wavelength n–π* band of the cis state used for
selective cis–trans isomerization is at 440 nm [19]. For BSBCA,
the π–π* band is shifted to 363 nm and the cis n–π* band is at
450 nm [20].

 2. Reactive groups. Maleimide, the reactive group of ABDM,
reacts fast and specifically with thiols at a pH between 6.5 and
7.5 but is unstable in water. Proteins can be cross-linked at
incubation times of less than 1 h at RT and at fairly low con-
centrations of protein and cross-linker (e.g., see Subheading
3.3.3). This strategy may be advisable for the conjugation of
sensitive target proteins or for the conjugation of metastable
protein states.

Chloroacetamide, the reactive group of BSBCA, is also spe-
cific toward thiols, but is stable in water, and its reactivity is
considerably lower than that of maleimides. This makes incuba-
tion times of several hours, high chromophore concentrations,
optimized buffer conditions, and elevated incubation tempera-
tures necessary to achieve satisfactory conjugation efficiency (see
Subheading 3.3.4).

 3. Chromophore solubility and bistability of azobenzene isomeri-
zation states. ABDM is not very soluble in aqueous solutions
in its trans isomerization state. Therefore, it is advisable to
cross-link a protein with ABDM in the cis state after pre-illumi-
nation with UV light. An advantage of ABDM, however, is the

3.3 Conjugating
Protein with Small
Molecule

3.3.1 Choice
of Chromophore
and Reactive Group (ABDM
vs. BSBCA)

R.S. Ritterson et al.

205

high bistability of its two isomers. The cis isomerization state is
stable for several hours due to a low rate of the thermal cis to
trans isomerization [4, 19].

BSBCA is designed to be highly soluble in water due to the addi-
tion of sulfonate groups to the aromatic rings of the azoben-
zene. The rate of thermal cis to trans isomerization at room
temperature is approximately 20 min, though this can be con-
siderably longer when conjugated to protein [3, 20].

See Burns et al. [20] for a comprehensive overview of conjugation
reaction conditions with BSBCA. For ABDM refer to [4, 19, 21]
or the protocol below.

 1. Dilute purified Mm-cpn to 500 μl at a concentration of 0.25
μM Mm-cpn (complex concentration) in Buffer A (20 mM
HEPES pH 7.4, 50 mM KCl, 5 mM MgCl2, 10 % glycerol).

 2. Bias the conformational equilibrium of Mm-cpn toward the
closed state via addition of ADPAlFX (a phosphate analogue
which binds to hydrolyzed ATP after phosphate release) by
adding 1 mM ATP, 6 mM Al(NO3)3, and 25 mM NaF to the
solution (buffer A+, pH 7.0), and incubate the sample for
20 min at 43 °C [22].

 3. Dissolve ABDM in dimethylformamide (DMF) to a concen-
tration of 1.2 mM. Prior to cross-linking, illuminate ABDM
for 1.5 min using the UV LED. UV illumination results in an
accumulation of ~75 % cis isomer in the solution (estimated by
analyzing the absorption spectrum of the sample [19]).

 4. Add ABDM to the Mm-cpn solution at a ratio of 1 μl ABDM
solution per 50 μl protein solution and shield the sample from
background illumination. Quench the reaction after 40 min
incubation time by adding dithiothreitol (DTT) to a concen-
tration of 2 mM.

 1. Dilute purified cadherin (protocol described in Ritterson et al.
[3]) to a final concentration of 160 μM in 25 mM Tris–HCl
pH 8.5, 400 mM NaCl, 1 mM EDTA, 3 mM KCl, 3 mM
Tris(2-carboxyethyl)phosphine (TCEP), 500 μM BSBCA.

 2. Place reactions at 25 ° C in the dark for 72 h.
 3. Desalt excess chromophore using a HiPrep 26/10 (GE) col-

umn (see Note 7) into 25 mM Tris–HCl pH 8.5, 400 mM
NaCl, 1 mM EDTA, 3 mM KCl, 3 mM TCEP.

In this section, we describe methodologies for measuring the frac-
tion of total protein conjugated, with the goal of providing the
researcher insight into which parameters of the reaction may need
optimization and information about which cysteine pairs conju-
gate most completely. As in other sections, the method splits into

3.3.2 Reaction
Conditions

3.3.3 Protocol
for Conjugating Mm-cpn
with ABDM

3.3.4 Protocol
for Conjugating Cadherin
with BSBCA

3.4 Measuring
Protein Conjugatability

Design of Light-Controlled Ligand Binding

206

parallel methods, based on the target structure of interest (cad-
herin monomer versus Mm-cpn chaperonin protein complex).
Generally, a wide range of potential methods are possible, and the
particular method chosen will depend on the protein target of
interest.

 1. Remove 20 μl of the sample cross-linked in Subheading 3.3.3,
and analyze it on a 4–20 % gradient SDS-PAGE gel. Formation
of covalently linked Mm-cpn multimers after subunit cross-
linking by ABDM leads to multimer bands which can be easily
distinguished from the 60 kDa band of the Mm-cpn monomer
(see Fig. 2 in ref. [4]).

 2. Estimate the cross-linking stoichiometry of the sample defined
as the fraction of cross-links to possible cross-linking sites in
the protein ensemble by calculating the sum of the relative
intensities of the multimer bands (band intensity divided by
the sum of the band intensities for all multimers) weighted by
their ratio of cross-links to subunits using, e.g., the ImageJ
[23] software package.

This example method for photoswitchable cadherin assumes one
has the results of a conjugation reaction on hand (from Subheading
3.3.4) and wishes to know to what extent the reaction completed.
Buffers are provided in the original work [3].

 1. Estimate the protein concentration using A280.
 2. Dilute protein to an estimated 1 μM concentration in pure

water (see Note 8).
 3. Inject the conjugated sample into the mass spectrometer,

observing a peak at 23,813 Da for unconjugated protein and
24,266 Da for conjugated (see Note 9).

 4. Estimate the fraction of protein conjugated by calculating the
peak areas for each subspecies and dividing the area of the con-
jugated peak by the sum of the areas of all subspecies. Potential
conjugatabilities range widely, from 0 to 100 % depending on
the cysteine pair (see Note 10).

In this section, we describe a method to determine the extent to
which the chromophore in a cross-linked system undergoes isom-
erization upon illumination, without describing whether that
isomerization causes a functional change in protein structure or
state. We also provide a method to measure the half-life of the cis
isomerization state, so that a researcher may determine which pho-
toswitchable candidates are most promising to test in functional
assays.

3.4.1 Measuring
Cross-Linking Ratio
for ABDM- Mm- cpn
with an SDS- PAGE Gel

3.4.2 Estimating
Conjugatability
for Cadherin Using Mass
Spectrometry

3.5 Measuring
Chromophore
Switchability/Rate
of Thermal Cis–Trans
Back Reaction

R.S. Ritterson et al.

207

The cis–trans isomer equilibrium of azobenzene-based chromo-
phores can typically be switched in the direction of the cis state by
exciting the π–π* band of the trans state in the near UV. To switch
the equilibrium in the direction of the trans state, excite the n–π*
band of the cis isomer with blue (or green) light [9]. We recom-
mend the use of high-power LEDs for illumination as they are
widely available, relatively inexpensive, portable, and intense
enough to isomerize protein in bulk within seconds to minutes.
Lasers can also be used for illumination, particularly in microscope
and other applications where high spatial precision is desirable.
Keep isomerized protein in the dark to the extent possible to pre-
vent undesirable isomerization due to ambient light.

Prior to assessing the extent to which illumination modulates pro-
tein function, we recommend determining whether the chromo-
phore conjugated to the protein is photoisomerizable by
illuminating trans-relaxed protein with UV light. The trans states
of the azobenzene- based chromophores used in this protocol have
a characteristic near-UV absorption peak of the π–π* transition,
and, upon illumination at that wavelength, the peak amplitude
decreases as the small molecule isomerizes into the cis state.

 1. Measure extinction coefficient εtrans of the unconjugated pro-
tein for the peak wavelength of the π–π* transition of the chro-
mophore (ABDM: 342 nm; BSBCA 363 nm) using protein at
a known concentration (if the protein has no cofactor bound
that absorbs light at that wavelength, ε should be approxi-
mately zero) (see Note 11).

 2. Compute εtrans for the conjugated protein using the sum of the
extinction coefficients of the free chromophore in the trans
state and the unconjugated protein.

 3. Measure the absorption spectrum of the conjugated protein
prior to illumination (see Note 12).

 4. Illuminate the protein at the absorbance maximum (ABDM:
342 nm; BSBCA 363 nm) using a method of choice, and
remeasure the absorption spectrum of the protein every 2 min
of illumination time. Cease illumination once the absorption
of the π–π* band reaches a minimum.

 5. Estimate the fraction of protein that photoswitches using the
following equation:

Frac peak peak mix

peak peak

=
-

-

e e

e e
, ,

, ,*
trans

trans transR

where R is the cis–trans extinction coefficient ratio for the π–π*
band of the chromophore; peak refers to the wavelength of the
chromophore- specific absorption maximum; εtrans is the mea-

3.5.2 UV–Vis
Spectroscopy

3.5.1 Illumination
Techniques

Design of Light-Controlled Ligand Binding

208

sured extinction coefficient for the thermodynamically equili-
brated, 100 % trans state; and εmix is the measured extinction
coefficient for the photostable, UV-illuminated state containing
a mix of cis and trans (Notes 12 and 13).

 6. Measure the absorbance of the conjugated protein at the peak
wavelength of the π–π* transition of the chromophore (ABDM:
342 nm; BSBCA 363 nm) prior to illumination.

 7. Using the same methods as in Subheading 3.5.2, illuminate
the protein to photostability.

 8. Measure the absorbance of the conjugated protein at the peak
wavelength of the π–π* transition of the chromophore (ABDM:
342 nm; BSBCA 363 nm) immediately following illumination
(time zero, t0).

 9. Keep the conjugated protein in the dark. Every 5 min (or a
time of the experimenter’s choosing), remeasure the absor-
bance of the sample.

 10. Repeat step 3 until the protein relaxes back to the unillumi-
nated state. The half-life (t1/2 of the illuminated state) is the
time point at which the absorbance of the sample is halfway
between the absorbances measured in steps 1 and 2.

The particular method chosen for assaying whether photoswitch-
ing induces a structural or functional change will depend on the
target protein. Here, we provide an example of a native gel assay
used to determine changes in conformation upon illumination.

 1. Use the cross-linked samples from Subheading 3.3.3.
 2. To switch azobenzene between the cis and the trans isomeriza-

tion states, expose the cross-linked Mm-cpn sample to alter-
nating illumination for 20s with the blue LED (cis → trans
isomerization) or for 90s with the UV LED (trans → cis isom-
erization). For this the sample is pipetted in a 200 μl PCR tube
without a cap and placed in a PCR tube rack. Illuminate from
the top by placing the LED as close to sample as possible (in
our case in a distance of ~1 cm) to maximize light exposure (see
Note 14).

 3. Illuminate the sample alternately with blue and UV light. After
each illumination step, remove 20 μl of the sample for struc-
tural characterization.

 4. Load the samples on a 4 % native PAGE gel and run it for
30 min at 160 V.

 5. Stain and destain the gel with Coomassie blue and take a pic-
ture of the gel. You can observe the light-induced switching
between the closed and open conformations of Mm-cpn via a

3.5.3 Measuring
Bistability/Relaxation Rate

3.6 Structural/
Functional Assay

3.6.1 Native Gel Assay
to Probe the Light- Induced
Conformational Switching
of ABDM-Mm- cpn

R.S. Ritterson et al.

209

clear distinct band shift between both conformations on the
gel (see Fig. 2 in ref. [4]).

4 Notes

 1. Keep in mind that the end-to end distance distribution of the
cis isomerization state is significantly broader than the one of
the trans state (i.e., more rigid due to the planar extended π
electron system) [9].

 2. Deeply buried cysteines in the native protein may not be reac-
tive and could be maintained. However, proteins often have
some flexibility and can transiently expose buried positions. As
a result, we recommend attempting to mutate all native cyste-
ines and adding back those that cannot be mutated to an alter-
nate residue without compromising protein stability or
function.

 3. We recommend using serine as a replacement for surface-
exposed cysteine and alanine for buried cysteines. In theory, all
cysteines could be removed in one step. Sequential mutation,
although time consuming, allows one to identify any particu-
larly troublesome cysteines that may have to be added back
later.

 4. There are a multitude of protein expression and purification
methods, and the choice of a particular method is outside the
scope of this chapter.

 5. It is possible that surface-exposed cysteines distant from the
intended cross-linking sites, even if they are labeled with chro-
mophore, will not cross-link the protein and thus may not
affect function. However, the presence of those additional
labeled cysteines complicates measurement of protein concen-
tration, conjugatability, and switchability.

 6. When purifying and handling cysteine-containing proteins,
maintain reducing agent (e.g., DTT, TCEP) wherever possible
to avoid oxidation/disulfide bond formation of cysteine resi-
dues. Note, however, that thiol-based reducing agents can
interfere with chromophore conjugation.

 7. BSBCA tends to migrate slowly in common chromatography
media and can be difficult to elute, especially in the presence of
salt. It can be removed by washing the column thoroughly and
repeatedly with pure water.

 8. The presence of salts leads to adduct formation and the appear-
ance of side peaks in the instrument, obfuscating the results.
Cadherin is stable for hours in pure water without any salt; the
stability of other proteins may vary.

Design of Light-Controlled Ligand Binding

210

 9. For BSBCA, the conjugated, cross-linked protein will appear
at +453 Da relative to unconjugated protein. In our hands, we
never observed single-linked protein or protein conjugated to
two single-linked chromophores. This is likely due to the much
faster intramolecular reaction rate of the single-linked protein
to the remaining cysteine compared to side reactions. If native
cysteines in the protein were required to be maintained, how-
ever, reaction to them by chromophore will result in the
appearance of additional peaks.

 10. We assume the ionizability of the cross-linked protein is the
same as the uncross-linked for the purposes of computing
cross- linked fraction.

 11. Different chromophores have different extinction coefficients.
If protein concentration is to be measured using A280, ε280 for
the chromophore can be measured using pure chromophore of
known concentration, and the conjugated protein concentra-
tion can be calculated using ε280,conjugate = ε280,chromophore + ε280,unconju

gated protein. This assumes the extinction coefficient of the small
molecule does not change during conjugation; this assumption
can be checked by comparing band intensities of unconjugated
and unconjugated proteins at the same nominal concentrations
with an alternate assay (e.g., Bradford or SDS-PAGE).

 12. A pure population of trans protein can be obtained by first
illuminating protein with visible light, followed by keeping
protein in the dark for an extended period of time (e.g.,
overnight).

 13. Computing R relies on knowing εpeak for the cis chromophore,
which may be difficult to obtain, as cis chromophore may be
difficult to isolate for measurement. A previous study used an
R value of 0.541 for computing protein concentrations, based
on measurements of BSBCA chromophore isomers separated
by HPLC [3].

 14. UV light is absorbed by conventional glass and plastic.

Acknowledgments

 Work on light-switchable protein functions in our group was sup-
ported by grants from the Program for Breakthrough Biomedical
Research and the Sandler Family Foundation (to T. K.), the
National Institutes of Health (PN2EY016525, PI Wah Chiu), the
National Science Foundation (NSF CBET-1134127 to T.K.), and
a Deutsche Forschungsgemeinschaft postdoctoral fellowship (HO
4429/2-1 to D.H.). We particularly thank A. Woolley (U Toronto)
for the advice, discussions, and gifts of ABDM and BSBCA.

R.S. Ritterson et al.

211

References

 1. Krauss U, Drepper T, Jaeger KE (2011)
Enlightened enzymes: strategies to create novel
photoresponsive proteins. Chemistry
17(9):2552–2560. doi:10.1002/
chem.201002716

 2. Banghart M, Borges K, Isacoff E, Trauner D,
Kramer RH (2004) Light-activated ion chan-
nels for remote control of neuronal firing. Nat
Neurosci 7(12):1381–1386. doi:10.1038/
nn1356

 3. Ritterson RS, Kuchenbecker KM, Michalik M,
Kortemme T (2013) Design of a photoswitch-
able cadherin. J Am Chem Soc 135(34):12516–
12519. doi:10.1021/ja404992r

 4. Hoersch D, Roh SH, Chiu W, Kortemme T
(2013) Reprogramming an ATP-driven pro-
tein machine into a light-gated nanocage. Nat
Nanotechnol 8(12):928–932. doi:10.1038/
nnano.2013.242

 5. Woolley GA, Jaikaran ASI, Berezovski M,
Calarco JP, Krylov SN, Smart OS, Kumita JR
(2006) Reversible photocontrol of DNA bind-
ing by a designed GCN4-bZIP protein.
Biochemistry 45(19):6075–6084.
doi:10.1021/bi060142r

 6. Levskaya A, Weiner OD, Lim WA, Voigt CA
(2009) Spatiotemporal control of cell signal-
ling using a light-switchable protein interac-
tion. Nature 461(7266):997–1001.
doi:10.1038/nature08446

 7. Zhang F, Muller KM, Woolley GA, Arndt KM
(2012) Light-controlled gene switches in
mammalian cells. Methods Mol Biol 813:195–
210. doi:10.1007/978-1-61779-412-4_12

 8. Wyart C, del Bene F, Warp E, Scott EK,
Trauner D, Baier H, Isacoff EY (2009)
Optogenetic dissection of a behavioural mod-
ule in the vertebrate spinal cord. Nature
461(7262):407–410. doi:10.1038/
nature08323

 9. Beharry AA, Woolley GA (2011) Azobenzene
photoswitches for biomolecules. Chem Soc
Rev 40(8):4422–4437. doi:10.1039/
c1cs15023e

 10. Ali AM, Woolley GA (2013) The effect of azo-
benzene cross-linker position on the degree of
helical peptide photo-control. Org Biomol
Chem 11(32):5325–5331. doi:10.1039/
c3ob40684a

 11. Rosetta Commons (2015) Rosette license and
download. https://www.rosettacommons.
org/software/license-and-download. Accessed
5/31/2015

 12. Kortemme T, Baker D (2002) A simple physi-
cal model for binding energy hot spots in
protein- protein complexes. Proc Natl Acad Sci

U S A 99(22):14116–14121. doi:10.1073/
pnas.202485799

 13. Kortemme T, Kim DE, Baker D (2004)
Computational alanine scanning of protein-
protein interfaces. Science STKE
2004(219):pl2. doi:10.1126/stke.2192004pl2

 14. Rosetta Commons (2015) Rosetta documen-
tation. https://www.rosettacommons.org/
docs. Accessed 27 June 2015

 15. Schrodinger LLC (2010) The PyMOL molec-
ular graphics system, Version 1.3r1

 16. Samanta S, McCormick TM, Schmidt SK,
Seferos DS, Woolley GA (2013) Robust visible
light photoswitching with ortho-thiol substi-
tuted azobenzenes. Chem Commun (Camb)
49(87):10314–10316. doi:10.1039/
c3cc46045b

 17. Samanta S, Babalhavaeji A, Dong MX, Woolley
GA (2013) Photoswitching of ortho-substi-
tuted azonium ions by red light in whole
blood. Angew Chem Int Ed Engl
52(52):14127–14130. doi:10.1002/
anie.201306352

 18. Beharry AA, Sadovski O, Woolley GA (2011)
Azobenzene photoswitching without ultravio-
let light. J Am Chem Soc 133(49):19684–
19687. doi:10.1021/ja209239m

 19. Umeki N, Yoshizawa T, Sugimoto Y, Mitsui T,
Wakabayashi K, Maruta S (2004) Incorporation
of an azobenzene derivative into the energy
transducing site of skeletal muscle myosin
results in photo-induced conformational
changes. J Biochem 136(6):839–846.
doi:10.1093/jb/mvh194

 20. Burns DC, Zhang F, Woolley GA (2007)
Synthesis of 3,3′-bis(sulfonato)-4,4′-
bis(chloroacetamido)azobenzene and cysteine
cross-linking for photo-control of protein con-
formation and activity. Nat Protoc 2(2):251–
258. doi:10.1038/nprot.2007.21

 21. Schierling B, Noel AJ, Wende W, le Hien T,
Volkov E, Kubareva E, Oretskaya T, Kokkinidis
M, Rompp A, Spengler B, Pingoud A (2010)
Controlling the enzymatic activity of a restric-
tion enzyme by light. Proc Natl Acad Sci U S A
107(4):1361–1366. doi:10.1073/
pnas.0909444107

 22. Douglas NR, Reissmann S, Zhang J, Chen B,
Jakana J, Kumar R, Chiu W, Frydman J (2011)
Dual action of ATP hydrolysis couples lid clo-
sure to substrate release into the group II chap-
eronin chamber. Cell 144(2):240–252.
doi:10.1016/j.cell.2010.12.017

 23. Abràmoff MD, Magalhães PJ, Ram SJ (2004)
Image processing with ImageJ. Biophoton Int
11(7):36–42

Design of Light-Controlled Ligand Binding

http://dx.doi.org/10.1002/chem.201002716
http://dx.doi.org/10.1002/chem.201002716
http://dx.doi.org/10.1038/nn1356
http://dx.doi.org/10.1038/nn1356
http://dx.doi.org/10.1021/ja404992r
http://dx.doi.org/10.1038/nnano.2013.242
http://dx.doi.org/10.1038/nnano.2013.242
http://dx.doi.org/10.1021/bi060142r
http://dx.doi.org/10.1038/nature08446
http://dx.doi.org/10.1007/978-1-61779-412-4_12
http://dx.doi.org/10.1038/nature08323
http://dx.doi.org/10.1038/nature08323
http://dx.doi.org/10.1039/c1cs15023e
http://dx.doi.org/10.1039/c1cs15023e
http://dx.doi.org/10.1039/c3ob40684a
http://dx.doi.org/10.1039/c3ob40684a
https://www.rosettacommons.org/software/license-and-download
https://www.rosettacommons.org/software/license-and-download
http://dx.doi.org/10.1073/pnas.202485799
http://dx.doi.org/10.1073/pnas.202485799
http://dx.doi.org/10.1126/stke.2192004pl2
https://www.rosettacommons.org/docs
https://www.rosettacommons.org/docs
http://dx.doi.org/10.1039/c3cc46045b
http://dx.doi.org/10.1039/c3cc46045b
http://dx.doi.org/10.1002/anie.201306352
http://dx.doi.org/10.1002/anie.201306352
http://dx.doi.org/10.1021/ja209239m
http://dx.doi.org/10.1093/jb/mvh194
http://dx.doi.org/10.1038/nprot.2007.21
http://dx.doi.org/10.1073/pnas.0909444107
http://dx.doi.org/10.1073/pnas.0909444107
http://dx.doi.org/10.1016/j.cell.2010.12.017

213

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_13, © Springer Science+Business Media New York 2016

 Chapter 13

 Computational Introduction of Catalytic Activity
into Proteins

 Steve J. Bertolani , Dylan Alexander Carlin , and Justin B. Siegel

 Abstract

 Recently, there have been several successful cases of introducing catalytic activity into proteins. One
method that has been used successfully to achieve this is the theozyme placement and enzyme design
algorithms implemented in Rosetta Molecular Modeling Suite. Here, we illustrate how to use this software
to recapitulate the placement of catalytic residues and ligand into a protein using a theozyme, protein
scaffold, and catalytic constraints as input.

 Key words Enzyme design , De novo enzyme design , Rosetta , Theozyme

1 Introduction

 The design of enzyme catalysts with catalytic profi ciencies rivaling
natural enzymes remains a major challenge in biochemistry.
Successful design of active enzymes would be the ultimate proof of
our understanding of enzymatic catalysis . The fi eld of computa-
tional enzyme design has had successes in the past decade, with the
successful computational design of enzyme catalysts that perform
 Kemp elimination [1], retro-aldol condensation [2], and Diels-
Alder cyclization [3]. These examples used the Rosetta Molecular
Modeling Suite [4] to introduce activity into protein scaffolds.

 The introduction of new chemistry into a protein using the
 Rosetta Molecular Modeling Suite consists of the following steps:

 1. Theozyme generation : A theozyme is a geometric description
of the transition state of a reaction that is stabilized by interac-
tions from protein residues [5]. There are several ways to gen-
erate theozymes: they may be calculated using QM methods,
by direct observation of a crystal structure with an inhibitor
bound, or by chemical intuition. The goal of a theozyme is to

214

defi ne the geometry of the transition state relative to the amino
acids in the protein performing the chemistry. This includes
selecting a low-energy mechanism for the reaction of interest
and testing various amino acids to stabilize and lower the reac-
tion energy. The geometry of the theozyme is written in a con-
straint fi le, which defi nes the residues and atoms involved and
distances, angles, and dihedrals between them.

 2. Scaffold selection : In order to place the theozyme into a pro-
tein, the engineer must choose a set of proteins to use as scaf-
folds. The proteins in this set will depend on the project goals.
For example, if the end goal will be to introduce function into
a protein that will be used in a thermophilic environment, then
it would be best to select a subset of the proteins from the
PDB that are already thermophilic proteins. It is recommended
to work with crystal structures at high resolution (<2.0 Å).

 3. Match : With both a set of protein scaffolds and a theozyme in
hand, the next step is to fi nd a protein in which the amino acids
of the theozyme can be introduced and the ligand built off in
a geometric orientation that satisfi es all of the constraints,
while not sterically overlapping with the protein bac kbone.
RosettaMatch [6] is one software package that can perform
this search. It requires a geometric description of the catalytic
residues geometric orientation relative to the transition state
(i.e., a constraint fi le) and a set of “scaffold” PDB fi les and
positions within the PDB to search for potential placement of
the catalytic amino acids (i.e., a position fi le). First, all the
amino acids in the positions defi ned in the position fi le are
converted into alanine. Next, the algorithms searches residue
by residue, attempting to fi nd a set of positions that allow both
the catalytic residues and the theozyme to be introduced in an
orientation that is within the geometric parameters defi ned in
the constraint fi le. After running RosettaMatch, the result will
be a set of scaffolds containing mutations and a ligand match-
ing the geometry in the constraint fi le (i.e., matches).

 4. Enzyme design : The next step is optimizing additional molec-
ular interactions at the protein–theozyme interface by intro-
ducing mutations predicted to stabilize the conformations of
residues involved in the theozyme (including the ligand). The
enzyme design protocol in Rosetta [7] starts with a “match”
from the matcher containing the theozyme grafted onto the
protein backbone and designs the local region for complemen-
tarity to the ligand and interactions that stabilize the catalytic
residues. This step also refi nes the ligand placement with fi ner
sampling than is performed in the matching step.

 5. Manual refi nement of designs : The fi nal computational step
is an interactive assessment of the designs using real-time eval-

Steve J. Bertolani et al.

215

uation with Rosetta’s energy function. Foldit [8] is used to
enable the researcher to refi ne the automated designs using
chemical intuition or external knowledge in order to optimize
designs before experimental characterization.

 6. Experimental validation and characterization : Designed
sequences should be predicted to have overall low energy and
be in close agreement with the defi ned constraints. Designs
may be selected for testing by a combination of visual assess-
ment and energetic scores, as well as other considerations such
as viability of expression. In order to evaluate whether the
introduced function is truly rate enhancing, we suggest follow-
ing the guidelines of Wolfenden and calculating the k cat /k uncat
[9 , 10]. The result, if all goes well, is a novel enzyme that per-
forms the desired function.

2 Materials

 Here, we will provide an example of the design of an enzyme by
recapitulating the active site of a glycosyl hydrolase through plac-
ing a p-nitrophenyl-beta- d -glucopyranoside (pNPG) substrate
and catalytic amino acids into the native enzyme scaffold using the
protein scaffold, theozyme , and chemical constraints as inputs.
The protein selected in this case natively performs the chemistry
desired. But this illustrates how the entire process works and could
be readily adopted for introducing function into protein scaffolds
that do not natively carry out the desired chemistry. The materials
needed are:

 1. A 3D model of the desired substrate, pNPG.
 2. A constraint fi le describing the theozyme . In this case, we will

use an experimentally derived geometry from the crystal struc-
ture 2JIE [11], which contains a transition state inhibitor
(2-deoxy- 2-fl uoro-alpha- d -glucopyranose) that closely mimics
the shape of the desired substrate, pNPG (Fig. 1).

 3. A protein scaffold into which we can match the theozyme
described in the constraint fi le. In this tutorial, we will use
2JIE itself for this walkthrough as discussed earlier.

 4. A computer with Rosetta installed and Internet connection.
For this tutorial, Rosetta has been installed from source into
the home directory. The path to Rosetta binaries is ~/Rosetta/
main/source/bin (see Note 1).

 5. FoldIt. In order to load designs with transition state models,
this must be compiled from source. Instructions for doing so
can be found at https :// wiki.rosettacommons.org / index.
php / Foldit _ Getting _ Started .

Design of Catalytic Sites

https://wiki.rosettacommons.org/index.php/Foldit_Getting_Started
https://wiki.rosettacommons.org/index.php/Foldit_Getting_Started

216

 6. PyMOL version 1.5.0.5 or greater. Any molecular modeling
program may be used, but the commands in this example are
tested with the executable version of PyMOL, built upon ver-
sion 1.5.0.5 © Schrodinger LLC [12].

3 Methods

 Entries beginning with > indicate the line is to be executed at a
command prompt. Entries beginning with PyMOL > indicate the
line is to be executed inside of the PyMOL command prompt. All
of the fi les and commands used in this tutorial are available at
 https://github.com/SiegelLab/matcher_fi les (see Note 2).

 1. Begin with a 3D conformer of pNPG as a Sybyl Mol 2 fi le.

The model reaction here will be modeled as an S n 2-like reac-
tion where the substrate transitions into a pentacoordinate
transition state in which the anomeric carbon is approximately
sp 2 hybridized. Therefore, the three atoms bonded to the
anomeric carbon should be planar (Fig. 2). Using a program
such as Spartan [13] constraints can be implemented using
this chemical information where distances and dihedrals are
locked at the proposed relative geometries for the transition
state. The remainder of the molecular can undergo molecular
mechanics minimization. The resulting model should be
saved as LG1.mol2.

 In order for Rosetta to understand how to treat the ligand,
we must convert the mol2 formatted fi le into a Rosetta params
fi le. This fi le contains the atom type (e.g., primary carbon,
hydroxyl, acid, etc.) specifi cations in order for Rosetta to calcu-
late the molecular energy of the system with the ligand in terms
of the energy function being used.

3.1 Theozyme
Generation

 Fig. 1 The theozyme used in this example, showing the modeled pNPG, two
glutamates, and one tyrosine residue in the proper orientation for hydrolysis

Steve J. Bertolani et al.

https://github.com/SiegelLab/matcher_files

217

 2. To generate a parameters fi le for pNPG, run the Python script
molfi le_to_params.py using the 3D conformer of pNPG as the
input:

 >python ~/Rosetta/main/source/src/python/apps/public/
molfi le_to_params.py -n LG1 LG1.mol2.

 The script will write a parameters fi le, LG1.params, and a PDB
 of the ligand called LG1_0001.pdb, which defi nes Rosetta
atom types for each atom in the ligand. The params fi le defi nes
a “neighbor” atom for the molecule, which is the center of
mass atom of the ligand, by default. In the params fi le, this
neighbor atom is denoted on the line that starts with “NBR_
ATOM.” This atom is used when overlaying alternate confor-
mations and may be a problem if the atom chosen moves in
the alternate conformations. It is recommended that the user
open the LG1_0001.pdb fi le, turn on the atom names, and
verify the neighbor atom chosen, and the atoms it is directly
bonded are the most relevant atoms for the chemistry being
carried out.

 3. Convert the theozyme into a Rosetta enzyme design/matcher
constraint fi le. Using the atom names in LG1_0001.pdb and
the standard Rosetta atom names for canonical amino acids
(located in the source at ~/ Rosetta / main / database / chemical
/ residue _ type _ sets / fa _ standard / residue _ types / l - caa), write the
constraint fi le defi ning the theozyme geometry. This has been
previously described, and we refer to the literature [7] and the
online documentation found at https://www.rosettacom-
mons.org/docs/wiki/rosetta_basics/fi le_types/match-cstfi le-
format . In addition, there are several resources available at the
Meiler lab research page http://www.meilerlab.org/index.
php/jobs/resources -> Rosetta Reso urces -> Enzyme Design.
 Briefl y, we wish to defi ne three distinct constraints.

 Fig. 2 The crystal structure ligand (cyan) versus the model of the transition state
of pNPG (green). Only the hydrogen mentioned (part of the sp 2 hybridization of
the anomeric carbon) is shown

Design of Catalytic Sites

https://www.rosettacommons.org/docs/wiki/rosetta_basics/file_types/match-cstfile-format
https://www.rosettacommons.org/docs/wiki/rosetta_basics/file_types/match-cstfile-format
https://www.rosettacommons.org/docs/wiki/rosetta_basics/file_types/match-cstfile-format
http://www.meilerlab.org/index.php/jobs/resources
http://www.meilerlab.org/index.php/jobs/resources

218

 1. Nucleophile: The nucleophilic Glu353 must be con-
strained in accordance with an S n 2-like transition state
geometry such that the carboxylate oxygen of Glu353, the
anomeric carbon of the substrate, and the leaving group
oxygen are collinear (Fig. 3).

 2. Acid: The carboxylate of the acid–base, Glu164, must be
constrained such that the carboxylate oxygen, the proton,
and the leaving group oxygen are collinear (Fig. 4).

 3. Backup: Finally, Tyr295 must be constrained to be within
hydrogen bonding distance from the nucleophilic oxygen
of Glu353 in order to maintain the Glu353 in the correct
orientation for nucleophilic attack (Fig. 5).

 Fig. 3 Constraint Block 1 that describes the nucleophilic attach of the GLU353 in
the native crystal structure

 Fig. 4 Constraint Block 2 which describes the protonation of the leaving group. In
the renumbered crystal structure 2jie, this is performed by residue GLU164

Steve J. Bertolani et al.

219

 For this tutorial, it is suffi cient to measure the distances, angles,
and dihedrals from the crystal structure of 2JIE in complex
with the transition state inhibitor and write these down in
LG1.enzdes.cst for constraints #1 and #3. The inhibitor lacks
a leaving group, and thus the researcher is left to make con-
straint #2 using knowledge of organic chemistry and idealized
geometries. Here, we have idealized the angles and dihedrals
to be round numbers in accordance with fundamental organic
chemistry principles. The three constraints are as follows:
 # GLU nucleophile to LG1

 # The following describe the geometry desired in the matcher
and for the enzyme design:

 TEMPLATE:: ATOM_MAP: 1 atom_name: C5 O2 C4
 TEMPLATE:: ATOM_MAP: 1 residue3: LG1
 TEMPLATE:: ATOM_MAP: 2 atom_name: OE2 CD CG
 TEMPLATE:: ATOM_MAP: 2 residue1: E
 CONSTRAINT:: distanceAB: 2.0 0.3 500.0 1 0
 CONSTRAINT:: angle_A: 180.0 20.0 500.0 360 0
 CONSTRAINT:: angle_B: 120.0 20.0 500.0 360 0
 CONSTRAINT:: torsion_B: -180.0 30.0 500.0 360 0
 CONSTRAINT:: torsion_AB: 180.0 30.0 500.0 360 0
 CONSTRAINT:: torsion_A: -42.0 30.0 500.0 360 0

 The last column describes the number of additional samples
RosettaMatch will discretely test. When this column is set to 0,
 RosettaMatch will try the default value (2.0). If no matches are
found, increase the degrees of freedom (DOFs) by increasing
the values in this column (see Note 3).

 Fig. 5 Constraint Block 3 which describes the TYR interaction with the nucleo-
phile, GLU

Design of Catalytic Sites

220

 # GLU acid to LG1 leaving group oxygen:
 TEMPLATE:: ATOM_MAP: 1 atom_name: O2 C7 C9
 TEMPLATE:: ATOM_MAP: 1 residue3: LG1
 TEMPLATE:: ATOM_MAP: 2 atom_name: OE2 CD CG
 TEMPLATE:: ATOM_MAP: 2 residue1: E
 CONSTRAINT:: distanceAB: 3.0 0.5 500.0 0
 CONSTRAINT:: angle_B: 120.0 25.0 500.0 360
 CONSTRAINT:: torsion_B: 180.0 35.0 500.0 180
 ALGORITHM_INFO:: match
 SECONDARY_MATCH: DOWNSTREAM
 ALGORITHM_INFO::END

 # TYR backup to GLU nucleophile (Constraint block 1):
 CST::BEGIN
 TEMPLATE:: ATOM_MAP: 1 atom_name: OE2 CD CG
 TEMPLATE:: ATOM_MAP: 1 residue1: E
 TEMPLATE:: ATOM_MAP: 2 atom_type: OH
 TEMPLATE:: ATOM_MAP: 2 residue1: Y
 CONSTRAINT:: distanceAB: 3.0 0.5 500.0 0
 ALGORITHM_INFO:: match
 SECONDARY_MATCH: UPSTREAM_CST 1
 ALGORITHM_INFO::END

 The resulting fi le in which these constraints are placed should be
called LG1.enzdes.cst. This fi le serves as both the RosettaMatch
fi l e and the Rosetta enzyme design const raint fi le.

 4. Generate conformations.
 This step allows the researcher to control over which degrees of
freedom are sampled of the ligand. There are many ways to
achieve this including Spartan [13], Omega [14], Gaussian [15],
and Confab [16]. These programs evaluate a number of different
conformations while taking in consideration the energy, intramo-
lecular interactions, and steric interactions. It is highly recom-
mended to use one of these programs to generate a representative
set of conformations. However, for simplicity we shall generate
our conformations by hand. What follows describes how to hand
generate rotations about the oxygen atom of the leaving group,
thus rotat ing the p -nitrophenyl group. It is important to note
that when generating the conformations by hand, the energy of
the ligand is not taken into consideration. This is critical since the
intramolecular energy of the ligand is essentially not considered
in the current implementation of the Rosetta Molecular Modeling
Suite. Therefore, having low-energy conformations is of critical
importance since Rosetta will not distinguish binding of a high-

Steve J. Bertolani et al.

221

energy to low-energy ligand conformation. The method
described below assumes the conformation software does not
change the atom names; if that is not the case, refer to the Notes
section for a different method (see Note 4).

 5. Open the LG1_0001.pdb fi le in PyMOL. Changing mouse
mode from 3 button selection to 3 button editing, the p -nitro-
phenyl group can be rotated by holding Ctrl on the keyboard
and right- clicking on the bond between the oxygen and the
carbon on the ring, closer to the carbon side. This allows
manipulation of the angle. Once the bond has been rotated,
each conformation can be saved into separate fi les. Alternatively,
for the fi le provided, use the following PyMOL commands:

 PyMOL>show labels, LG1
 PyMOL>get dihedral n. C5, n. O2,n. C7, n. C8 #
-46.454 degrees.

 PyMOL>set_dihedral n. C5, n. O2,n. C7, n. C8,
73.55

 PyMOL>save LG1_rot2.pdb

 PyMOL>set_dihedral n. C5, n. O2,n. C7, n. C8,
193.55

 PyMOL>save LG1_rot3.pdb

 6. Rename LG1_rot2.pdb to LG1.conf.pdb and concatenate the
contents of LG1_rot3 on to the end in the command prompt,
working in the same directory these fi les were created.

 >mv LG1_rot2.pdb LG1.conf.pdb; cat LG1_rot3.pdb >>

LG1.conf.pdb.
 This creates a fi le called LG1.conf.pdb that contains rota-

tions about the leaving group oxygen.
 7. Add conformations to params fi le.

 To load the conformations into Rosetta, the conformation fi le
must be identifi ed in the params fi le. This will allow the transi-
tion state to adopt the generated ensemble of conformations
during docking and design (see Note 5).

 8. Add the following line to the bottom of the LG1.params fi le
 PDB_ROTAMERS conf.lib.pdb.

 1. Open PyMOL.
 2. PyMOL>fetch 2jie.

 This downloads the 2jie.pdb crystal structure into the direc-
tory from which PyMOL is executed from. Alternatively, just
download the PDB directly from the website.

 3. Renumber the PDB. It is im portant to renumber before creat-
ing the positions fi le. Many Rosetta applications will internally
renumber proteins to start at 1. Renumbering thus avoids
potential mismatches of residues.

3.2 Scaffold
Selection
3.2.1 Download
the Crystal Structures
to Use as Scaffolds

Design of Catalytic Sites

222

 4. >python ~/Rosetta/tools/renumber_pdb.py -pdb 2jie.pdb
–o 2jie.renumbered.pdb -a 1.

 5. Create a position fi le. In order for the matcher to run on a
given scaffold and to limit sampling to only residues that are
buried or in pockets, one may select a subset of all residue posi-
tions (see Note 6) and declare these in a space-delimited posi-
tions fi le (positions.pos). For this example, the renumbered
crystal structure of 2jie was opened in PyMOL, the ligand
selected, and any residues within 8Å of the ligand were selected.
The 8 Å cutoff defi nes the location of the pocket as being com-
prised of these residues. However, all residues or any arbitrary
set can be selected as potential positions to use during the tran-
sition state placement stage depending on the researchers goals
and hypothesis of what an optimal catalytic site would be going
into the modeling (see Notes 8 and 9).

 6. The following assumes there are no other HETATM records in
the PDB fi le other than waters (which get removed using the
commands below). The following set of commands is to be
executed in the PyMOL command prompt (see Note 7):

 PyMOL>load 2jie.renumber.pdb
 PyMOL>remove solvent
 PyMOL>sele hetatm, HETATM
 PyMOL>sele pos, hetatm expand 8 and n. CA
 PyMOL>myfh = open("positions.pos","w")
 PyMOL>iterate pos, myfh.write("%s " %resi)
 PyMOL>myfh.close()

 This loads the crystal structure, removes waters and other sol-
vent molecules, selects the ligand in the crystal structure,
expands the selection by 8 Å around the ligand, opens a fi le
called postions.pos, and writes to it the list of residues by index
with a space in between. The positions.pos fi le should read as
one line with the following residues:
 “ 15 16 19 119 163 164 220 293 294 295 352 353 354 355
356 399 400 404 405 406 407 415 .”

 1. Check the Constraint File –optional, requires additional modi-

fi cation to the constraint fi le (see Note 10 and 11). Although
optional, this step is highly indicative of the accuracy of the con-
straint fi le. However, it does require the specifi cation of all 6
DOFs for each constraint block. The Rosetta Cstfi leTo
TheozymePDB app creates a model of the theozyme based off of
the constraint fi le (this is the inverse problem of specifying a con-
straint fi le from the theozyme). The reader is highly encouraged to
consult the online matcher documentation for more details and to
remove any extra degrees of freedom to be sampled in the LG1.

3.3 Match

Steve J. Bertolani et al.

223

enzdes.csts fi le when running this app. Warning : The LG1.enz-
des.cst fi le as provided in the GitHub repository will not run
without defi ning all of the degrees of freedom.

 2. >~/Rosetta/main/source/bin/CstfileToTheozymePDB.
default.linuxgccrelease -database ~/Rosetta/main/database
-extra_res_fa LG1.params -match:geometric_constraint_fi le
LG1.enzdes.csts.

 This will create a number of PDB fi les that may be opened in
 PyMOL . These fi les may be used to verify the constraint fi le is
specifying the distances, angles, and dihedrals as intended. The
fi les should approximately match the theozyme from which the
constraints were generated.

 3. Run the matcher on the scaffold. Repeat for all scaffolds of
interest; to do this just change the –s 2jie.renumber.pdb to
another scaffold. Each scaffold should be renumbered and
have its own unique position fi le. More information on each
option used here may be found at https://www.rosettacom-
mons.org/docs/latest/full-options-list .

 4. >~/Rosetta/main/source/bin/match.default.linuxgccrelease
(add all of the following fl ags after this binary command; do not
include the lines starting with #) .

 #File I/O
 -match:geometric_constraint_fi le LG1.enzdes.cst
 -s 2jie.renumbered.pdb
 -extra_res_fa LG1.params
 #Extra side chain rotamer samples
 -ex1 -ex2 -ex3 -ex1aro -ex2aro -use_input_sc #(see Note 3)
 #Matcher Options
 -match:lig_name LG1
 -match:scaffold_active_site_residues positions.pos
 -bump_tolerance 0.4
 -consolidate_matches T
 -output_matches_per_group 1
 -match_grouper SameSequenceGrouper
 #Other
 -ignore_unrecognized_res T
 -database ~/Rosetta/main/database
 -mute protocols.idealize

 This will create a series of fi les starting with UM_ that describes
the matches found, in the order of the constraint block (Fig. 6).
For example,

Design of Catalytic Sites

https://www.rosettacommons.org/docs/latest/full-options-list
https://www.rosettacommons.org/docs/latest/full-options-list

224

 UM_13_E353E164Y295_2jie_LG1_1.pdb is the 13th hit
found by the matcher, and it placed the fi rst constraint block resi-
due at position 353 in the protein and matched the second con-
straint block to position 164 and the third constraint block to the
295 tyrosine position. The LG1_1 refers to the fi rst (of 3) ligand
 rotamers that were used in sampling.

 At this point, for every scaffold there may be many different UM*
hit fi les. In order to optimize the position of the ligand, as well as
to backup the mutations made with additional interactions, an
enzyme design run should be carried out. This samples different
mutations around the space where the theozyme was inserted into
the scaffold protein. This has previously been described in litera-
ture [7]; we have provided the fl ags to run the binary as well as the
sampling script in the online GitHub repository (see Note 12).
Further details on the format and movers called in the design_
on.xml can be found at https://www.rosettacommons.org/docs/
wiki/scripting_documentation/RosettaScripts/RosettaScripts .
This should be run for every UM* fi le that comes out of the
RosettaMatch simulation. Rosetta simulations stochastically sam-
ple the design space, and the results may differ from run to run.

 1. >~/Rosetta/main/source/bin/rosetta_scripts.default.
linuxgccrelease

 @enzfl ags_parser
 -parser:protocol design_on.xml
 -s UM_13_E353E164Y295_2jie_LG1_1.pdb
 -nstruct 10
 -database ~/Rosetta/main/database
 -run::preserve_header

3.4 Enzyme Design

 Fig. 6 Two examples of matches—pre optimization. Note that in these two examples, the Tyr is positioned at
the same place, but the glutamic acids are on different loops (comparing the left image to the right image)
resulting in a different orientation of the substrate

Steve J. Bertolani et al.

https://www.rosettacommons.org/docs/wiki/scripting_documentation/RosettaScripts/RosettaScripts
https://www.rosettacommons.org/docs/wiki/scripting_documentation/RosettaScripts/RosettaScripts

225

 -jd2::enzdes_out
 -enzdes::cstfi le LG1.enzdes.cst
 -extra_res_fa LG1.params

 This will create 10 new structures in which the geometric position
of the ligand has been optimized and the mutations to stabilize the
active site have been introduced. Each simulation also creates a
score fi le and a tab-delimited fi le that contains the individual terms
of the score function for each of the ten models. Each match has its
own score fi le (when ran in different folders), and all of the score
fi les may be concatenated into one combined score fi le for fi ltering.
This can be achieved with the following Bash commands:

 >fi nd . –name “score.sc” > myscorefi les.
 >while read x; do; cat $x >> combo.scores; done <
myscorefi les.
 This combines all of the scores into a new fi le called combo.
score.

 Rosetta carries out a Monte-Carlo simulation and is not determin-
istic of a low-energy solution. Ten simulations are not suffi cient to
thoroughly sample the degrees of freedom with side chain, back-
bone, and rigid body movement. However, ten provide a general
indication of whether or not a low-energy solution is possible while
minimizing computational time.

 2. From the designs, a subset are chosen for further refi nement
(see Note 13). In this example, all of the score fi les for different
position matches are combined into one fi le. Using the score
terms as fi lters, a subset of designs can be selected for further
refi nement. This step may be done in a spreadsheet or using
command line tools. There are no rules or established “best
practices” for fi ltering and selecting a subset of designs.
However, the following is one series of fi lters we commonly
employ. First, select all of the matches that have 0 constraint
energy (i.e., the constraint fi le specifi cations are fully satisfi ed).
Then sort on interface energy (the term in the score fi le that
ends with interf_E_1_2) and select the lowest 5 from this set to
visually inspect. The lowest fi ve found are 2 at position UM_18
(interface energies: -8.56, -7.56), 1 at position UM_31 (inter-
face energy: -7.32), 1 at position UM_20 (interface energy:
-7.15), and 1 at position UM_13 (interface energy: -6.49).

 3. At this point, further refi nement of the selected low-energy
designs should be carried out. This can either include running
a larger design simulation, which may be equivalent to the one
above but with an –nstruct of 100 or 1000. However, at the
very end, it is always critical to visually assess and evaluate the
details of the designed interface. To do this, Foldit provides an

Design of Catalytic Sites

226

excellent way to understand why a mutation was chosen and
the ability to assess if other mutations may also be favorable in
real time. We will illustrate this with UM_13 in further detail.

 At this point, we have identifi ed several designs from potentially
several scaffolds that all appear to score well (see Note 14). As a
fi nal computational step, Foldit is utilized to interact with each
design and make a manual and visual assessment of each design.

 1. Choose a representative set of enzyme design outputs to man-
ually refi ne in Foldit. In this case, we will select the structure
UM_13_E353E164Y295_2jie_LG1_1_0001.pdb, which is
one of the fi ve best found by removing models that have a
nonzero constraint score and sorting based on the interface
score found in the score fi le. The fi rst key step is to compare
the design to the input scaffold to identify the mutations intro-
duced. Mutations may be found by opening up the designed
structure and the original crystal structure in PyMOL and
visually identifying them. Alternatively, a Perl script located on
the GitHub repository may be used to identify mutations given
the crystal structure (>perl mutation_id.pl 2jie.renumbered.
pdb UM_13_E353E164Y295_2jie_LG1_1_0001.pdb). In
this case, the mutations are H119N,Y166A, and E399S.

 2. Copy the output design (also renaming to a simpler name,
such as lowE.pdb, is recommended), the parameters fi le for
pNPG (LG1.params), the conformers fi le for pNPG (LG1.
conf.pdb), and the ligand constraints fi le (LG1.enzdes.cst) in a
working directory for loading into Foldit.

 3. Start Foldit and enter any puzzle. Once in a puzzle (e.g., the
introduction level 1-1 One Small Clash), activate the open dia-
log with Control-Alt-Shift-A and choose all four fi les.

 4. Activate the Selection Interface by choosing Menu > Selection
Interface and edit the viewing settings (recommended settings:
Cartoon Thin structure and Score/Hydro+CPK coloring).
Visually identify the ligand and zoom by hovering the moue
over the ligand and pressing Shift-Q (no click necessary).

 5. With the protein system loaded into Foldit, relax the global
structure by alternating between shake (S) and wiggling the
side chains (E). The enzyme design protocol only relaxed the
environment local to the ligand. This relax step will lower the
overall protein score as well as remove many of the clashing
interactions that are seen in Foldit (see Notes 15 – 17).

 6. Systematically evaluate each of the designed mutations intro-
duced during design (see Note 18), potentially reverting resi-
dues chosen by the enzyme design algorithm back to the native
residues from the crystal structure. Additional mutations may

3.5 Foldit

Steve J. Bertolani et al.

227

also be incorporated at this stage based on chemical intuition
and the Rosetta energy function. The end product should be a
list of sequences to order and experimentally characterize.

 Here we will briefl y illustrate how to carry out by analysis of a
design by looking at each of the three mutations in the UM_13
design:

 1. H119N : This mutation exchanges a hydrogen bond to the
ligand for two hydrogen bonds to neighboring protein resi-
dues . The per-residue score terms for any residue (including
the ligand) can be viewed by hovering the cursor over it and
pressing Tab. This opens an Info Panel which changes as we
test reverting the asparagine 119 mutation back to the histi-
dine found in the crystal structure. Make the mutation (click
to select the residue then press M [mutate to] and N
[Asparagine]), and select a sphere of 20–30 residues around
the Asn by Control-Alt-Shift-drag (a residue counter in the top
left corner counts the number of residues selected). Once the
sphere is selected, re-optimize the local region by using the
shake (S), wiggle the side chains (E), and wiggle the backbone
and side chains together (W). When the backbone is allowed
to move, discontinuities in the energy function may make large
changes that are not realistic. Therefore, the timer and cycle
number (in parentheses after the timer, top left corner) are
used to limit the movement. The protein is near convergence
when the cycle count advances rapidly. On a modern com-
puter, a few seconds is likely suffi cient to re-optimize the posi-
tion of the side chain.

 After minimizing the structure, this reversion is predicted to
maintain the total ligand score and only slightly increase the
residue’s score. Histidine has a much better Lennard-Jones
attractive score term [4] than the Asparagine does, indicating
that it is better packed in the area. What gives rise to the slightly
higher total residue score is the Dunbrack energy [4]. The his-
tidine has a much higher Dunbrack energy term, but if it is in
fact well packed, this residue may be locked into the conforma-
tion found, regardless of the Dunbrack score. Given the ligand
score stays the same and reverting the mutation seems to have
little energetic effect, a conservative design would revert the
mutation to the native crystal structure residue.

 Verdict : revert to native (H) .
 2. Y166A : At fi rst, this mutation may seem desirable as reverting

it to native in the enzyme design output structure has a signifi -
cant energy penalty on the total score. However, a “local wig-
gle” as described above rapidly decreases the system energy to
an input- like score, and, furthermore, the ligand score decreases
slightly.

3.6 Examples

Design of Catalytic Sites

228

 Verdict : order a sequence with this mutation (Y166A) and
one without (Y166Y) .

 3. E399S : Reverting this mutation to a W is predicted to increase
both the total protein energy and the ligand energy. The
increase in energy comes from strong repulsion between this
large amino acid and the ligand and surroundings. The local
refi nement within Foldit is unable to fi nd an alternative con-
formation where this is a favorable interaction.

 Verdict : order this mutant .

4 Notes

 1. Anytime a Rosetta app is used, the user may need to change the
ending to match his or her build environment. For example,
when the binary rosetta_scripts.default.linuxgccrelease is
referred to, if the Clang compiler was used, the user would
need to call the rosetta_scripts.default.linuxclangrelease binary.

 2. The authors want to note the existence of an excellent review of
this process on another substrate. This is located at https://
github.com/RosettaCommons/teaching_resources/tree/
ma s ter/OtherTeach ingResources/whole_c la s ses/
tutorial_20121128jbei/tutorial_20121128jbei/enzyme_design .

 3. One can restrict or remove the extra chi sampling for hydro-
gens or other DOFs. This can be controlled on the command
line with –exX commands (where X is 1–4) and with addi-
tional commands in the LG1.enzdes.cst fi le in the algorithm
blocks (see matcher documentation).

 4. It is also possible to feed in a mol2 formatted fi le into mol-
fi le_to_params.py that already has conformations made. This
may be the case if using another piece of software to generate
the conformations. In this case, the researcher will not need to
add the PDB_ROTAMER conf.lib.pdb line into the params
fi le. See the help options from the molfi le_to_params script for
more information.

 5. The time and memory for RosettaMatch rise dramatically as
the degrees of freedom increase (i.e., the last column of the
constraint lines). If the runtime lasts too long, try reducing
the DOFs.

 6. There are several methods available to automatically generate
the positions fi les; see the matcher documentation for descrip-
tions of these methods.

 7. Ideally, PyMOL will be started from the command prompt in
the directory the researcher will be working in. If PyMOL has
been opened from an application icon or task bar, then upon

Steve J. Bertolani et al.

https://github.com/RosettaCommons/teaching_resources/tree/master/OtherTeachingResources/whole_classes/tutorial_20121128jbei/tutorial_20121128jbei/enzyme_design
https://github.com/RosettaCommons/teaching_resources/tree/master/OtherTeachingResources/whole_classes/tutorial_20121128jbei/tutorial_20121128jbei/enzyme_design
https://github.com/RosettaCommons/teaching_resources/tree/master/OtherTeachingResources/whole_classes/tutorial_20121128jbei/tutorial_20121128jbei/enzyme_design
https://github.com/RosettaCommons/teaching_resources/tree/master/OtherTeachingResources/whole_classes/tutorial_20121128jbei/tutorial_20121128jbei/enzyme_design

229

execution of some commands such as “fetch 2jie”, it may be
diffi cult to locate the actual fi le.

 8. Many aspects may be involved in scaffold selection, such as the
ability to express the protein in E. coli or another target organ-
ism of interest.

 9. If no positions.pos fi le is included, the matcher will check
every single residue in the protein, which may be a waste of
computational resources and time. In addition, this will lead
to many matches on the surface of proteins which may be
undesirable.

 10. Having too many constraints specifi ed may hinder the ability
to fi nd matches. Only include as many constraints as are abso-
lutely necessary.

 11. The fi rst constraint defi ned must have all 6 DOFs/constraint
lines defi ned.

 12. There are essentially unlimited enzyme design protocols avail-
able due to the fl exibility of the RosettaScripts app. Only one
was suggested here; however, we highly recommend adjusting
the steps in this script to implement new design protocols to
potentially produce better designs. Currently, there is no sin-
gle protocol that has been conclusively demonstrated to be
optimal.

 13. Additional criteria for selecting which designs to visually check
may be the number of mutations made. The more mutations
made to a given protein, the more risk there is that the protein
will not express or the backbone may shift.

 14. Foldit may use a different energy function than what was used
during design. This can lead to discrepancies between the pre-
dicted effect of a mutation in Foldit and enzyme design in
Rosetta.

 15. By selecting the ligand and clicking the left or right arrow
keys, different ligand conformations are accessible, and the
way Rosetta is sampling ligand conformations may be visually
verifi ed. If an undesired region of the ligand is moving during
conformation sampling, adjusting the neighbor atom of the
params fi le should fi x this.

 16. Undo (Cmd-Z) and Redo (Cmd-Y) work for most operations.
The protein structure may be reset to the input by opening
the Undo panel (press U) and choosing “Reset Puzzle.”

 17. It is recommended to sparsely use W (wiggle backbone and
sidechains) or T (wiggle backbone). As a rule of thumb, if a
full “register shift” in the backbone movement can be seen, it
is advised to revert that change. The more the backbone
moves, the less chance the model will be accurate.

Design of Catalytic Sites

230

 18. Mutations from or to the following residues tend to disrupt
the structure more so than other mutations: GLY, PRO, and
CYS. In the case of GLY, if ALA can fi t almost as well, that
should be chosen over GLY.

 Acknowledgments

 The authors would like to thank UC Davis, Sloan Foundation
(BR2014-012), ARPA-E (DE-AR0000429), and CDFA
(SCB14037) for funding.

 References

 1. Röthlisberger D, Khersonsky O, Wollacott
AM, Jiang L, DeChancie J, Betker J, Gallaher
JL, Althoff EA, Zanghellini A, Dym O, Albeck
S, Houk KN, Tawfi k DS, Baker D (2008)
Kemp elimination catalysts by computational
enzyme design. Nature 453(7192):190–195

 2. Jiang L, Althoff EA, Clemente FR, Doyle L,
Röthlisberger D, Zanghellini A, Gallaher JL,
Betker JL, Tanaka F, Barbas CF, Hilvert D,
Houk KN, Stoddard BL, Baker D (2008) De
novo computational design of retro-aldol
enzymes. Science 319(5868):1387–1391

 3. Siegel JB, Zanghellini A, Lovick HM, Kiss G,
Lambert AR, Clair JLS, Gallaher JL, Hilvert
D, Gelb MH, Stoddard BL, Houk KN,
Michael FE, Baker D (2010) Computational
design of an enzyme catalyst for a stereoselec-
tive bimolecular Diels- Alder reaction. Science
329(5989):309–313

 4. Leaver-Fay A, Tyka M, Lewis SM, Lange OF,
Thompson J, Jacak R, Kaufman K, Renfrew
PD, Smith CA, Sheffl er W, Davis IW, Cooper S,
Treuille A, Mandell DJ, Richter F, Ban Y-EA,
Fleishman SJ, Corn JE, Kim DE, Lyskov S,
Berrondo M, Mentzer S, Popović Z, Havranek
JJ, Karanicolas J, Das R, Meiler J, Kortemme T,
Gray JJ, Kuhlman B, Baker D, Bradley P (2011)
ROSETTA3: an object- oriented software suite
for the simulation and design of macromole-
cules. Methods Enzymol 487:545–574.
doi: 10.1016/B978-0-12-381270-4.00019-6

 5. Tantillo DJ, Chen J, Houk KN (1998)
Theozymes and compuzymes: theoretical
models for biological catalysis. Curr Opin
Chem Biol 2(6):743–750

 6. Zanghellini A, Jiang L, Wollacott AM, Cheng
G, Meiler J, Althoff EA, Röthlisberger D,
Baker D (2006) New algorithms and an in
silico benchmark for computational enzyme
design. Protein Sci 15(12):2785–2794

 7. Richter F, Leaver-Fay A, Khare SD, Bjelic S,
Baker D (2011) De novo enzyme design using
Rosetta3. PLoS ONE 6(5):e19230.
doi: 10.1371/journal.pone.0019230

 8. Eiben CB, Siegel JB, Bale JB, Cooper S, Khatib
F, Shen BW, Players F, Stoddard BL, Popovic
Z, Baker D (2012) Increased Diels-Alderase
activity through backbone remodeling guided
by Foldit players. Nat Biotechnol 30(2):
190–192

 9. Radzicka A, Wolfenden R (1995) A profi cient
enzyme. Science 267(5194):90–93

 10. Mak WS, Siegel JB (2014) Computational
enzyme design: transitioning from catalytic
proteins to enzymes. Curr Opin Struct Biol
27:87–94

 11. Isorna P, Polaina J, Latorre-García L, Cañada
FJ, González B, Sanz-Aparicio J (2007)
Crystal structures of Paenibacillus polymyxa
β-glucosidase B complexes reveal the molecu-
lar basis of substrate specifi city and give new
insights into the catalytic machinery of family I
glycosidases. J Mol Biol 371(5):1204–1218.
doi: 10.1016/j.jmb.2007.05.082

 12. The PyMOL Molecular Graphics System,
Version 1.5.0.5 Schrodinger, LLC

 13. Spartan ’08, Wavefunction Inc., Irvine, CA
 14. Hawkins PCD, Skillman AG, Warren GL,

Ellingson BA, Stahl MT (2010) Conformer
generation with OMEGA: algorithm and
validation using high quality structures from
the Protein Databank and Cambridge
Structural Database. J Chem Inf Model
50(4):572–584

 15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria
GE, Robb MA, Cheeseman JR, Scalmani G,
Barone V, Mennucci B, Petersson GA,
Nakatsuji H, Caricato M, Li X, Hratchian HP,
Izmaylov AF, Bloino J, Zheng G, Sonnenberg

Steve J. Bertolani et al.

http://dx.doi.org/10.1016/B978-0-12-381270-4.00019-6
http://dx.doi.org/10.1371/journal.pone.0019230
http://dx.doi.org/10.1016/j.jmb.2007.05.082

231

JL, Hada M, Ehara M, Toyota K, Fukuda R,
Hasegawa J, Ishida M, Nakajima T, Honda Y,
Kitao O, Nakai H, Vreven T, Montgomery JA
Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J,
Brothers EN, Kudin KN, Staroverov VN,
Kobayashi R, Normand J, Raghavachari K,
Rendell AP, Burant JC, Iyengar SS, Tomasi J,
Cossi M, Rega N, Millam NJ, Klene M, Knox
JE, Cross JB, Bakken V, Adamo C, Jaramillo J,
Gomperts R, Stratmann RE, Yazyev O, Austin

AJ, Cammi R, Pomelli C, Ochterski JW, Martin
RL, Morokuma K, Zakrzewski VG, Voth GA,
Salvador P, Dannenberg JJ, Dapprich S,
Daniels AD, Farkas Ö, Foresman JB, Ortiz JV,
Cioslowski J, Fox DJ (2009) Gaussian 09.
Gaussian, Inc., Wallingford, CT

 16. O'Boyle NM, Vandermeersch T, Flynn CJ,
Maguire AR, Hutchison GR (2011) Confab-
Systematic generation of diverse low-energy
conformers. J Cheminform 3:8

Design of Catalytic Sites

233

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_14, © Springer Science+Business Media New York 2016

Chapter 14

Generating High-Accuracy Peptide-Binding Data in High
Throughput with Yeast Surface Display and SORTCERY

Lothar “Luther” Reich, Sanjib Dutta, and Amy E. Keating

Abstract

Library methods are widely used to study protein–protein interactions, and high-throughput screening or
selection followed by sequencing can identify a large number of peptide ligands for a protein target. In this
chapter, we describe a procedure called “SORTCERY” that can rank the affinities of library members for
a target with high accuracy. SORTCERY follows a three-step protocol. First, fluorescence-activated cell
sorting (FACS) is used to sort a library of yeast-displayed peptide ligands according to their affinities for a
target. Second, all sorted pools are deep sequenced. Third, the resulting data are analyzed to create a rank-
ing. We demonstrate an application of SORTCERY to the problem of ranking peptide ligands for the
anti-apoptotic regulator Bcl-xL.

Key words Yeast surface display, Deep sequencing, High-throughput assay, Protein–protein interac-
tion, Bcl-2 family

1 Introduction

High-throughput analysis of functional mutations in proteins,
peptides, or DNA by deep sequencing is emerging as a powerful
technique. Properties such as protein stability, enzymatic activity,
and peptide ligand or DNA binding have been studied [1–16].
The general approach involves screening a library of mutants or
performing a selection for a desired function. Library sequences in
pre- and post-selected pools are then identified by next-generation
sequencing, and computational routines are used to extract infor-
mation about how sequence relates to function.

Many selection or screening processes have been employed for
these types of studies, including in vitro assays, phage display, yeast
surface display in combination with fluorescence-activated cell
sorting (FACS), and in vivo assays. Some studies have used the
observed frequencies of mutant variants in selected pools to infer
sequence–function relationships [1–5]. As an alternative measure,
enrichment scores have been calculated from the ratio of pre- and

234

post-selection frequencies [6–14]. The effects of mutations in par-
ticular sequence positions have been investigated, either by experi-
mentally screening single-mutant libraries or by assuming positional
independence during computational post-processing. Position
weight matrices have been built that score binding, stability, and
function using this approach, sometimes with correction for non-
specific binding or consideration of enrichment changes over mul-
tiple selection rounds [5, 12, 13]. Analyzing single-residue
substitutions benefits from enhanced statistical power, because it is
easy to saturate a single- position sequence space. But important
context-dependent effects may be neglected in this type of
analysis.

In this chapter, we introduce a high-accuracy alternative to
enrichment-based methods for probing mutational effects on the
affinity of peptide ligands. Our protocol “SORTCERY” comprises
the three steps of selection, deep sequencing, and computational
analysis (Fig. 1a). The selection process involves two-color cell
sorting of a yeast surface-displayed library based on the expression
levels of displayed peptides and levels of binding to a target (Fig.
1b). Our sorting protocol builds on reports that two-color FACS
can accurately distinguish between binders of different affinities
[15–19] and agrees with a theoretical model describing the
expected signals for clones expressing peptides with a range of
binding strengths [20]. This model can guide sorting of a library
into pools according to binding affinity, and the pools can then be
deep sequenced to obtain information about individual library
member affinities. SORTCERY extracts information from deep
sequenced library pools using computational routines that rank
observed mutant sequences according to binding strength.

Applying SORTCERY to study helical peptide affinities for the
apoptosis-regulating protein Bcl-xL, we obtained extremely accu-
rate rankings for ~1000 sequences over a range of dissociation con-
stants from 0.1 to 60 nM (Fig. 2a). Our study is described in Ref.
[20], and the reader is referred to that paper for in-depth exposi-
tion of the theory underlying SORTCERY, the results when
applied to Bcl-xL, and further discussion of strengths and limita-
tions of this method. A special variant of our approach is described
here (Fig. 2b, see Note 9) that can potentially be used to analyze
much larger libraries.

2 Materials

 1. SD + CAA/SG + CAA: Dissolve 5 g casamino acids, 1.7 g yeast
nitrogen base, 5.3 g ammonium sulfate, 10.2 g Na2HPO4–
7H2O, and 8.6 g NaH2PO4-H2O in 700 ml water and auto-
clave for 15 min at 22 psi and 120 °C. For growth media
(SD + CAA), dissolve 50 g glucose in 50 ml water then sterilize

2.1 Cell
Culture Media

Lothar “Luther” Reich et al.

235

with a 0.2 μm filter. Add 40 ml of this 50 % glucose solution to
the autoclaved media and fill up to 1 l with sterile water. For
induction media (SG + CAA), dissolve 20 g galactose in 100 ml
water then sterilize with a 0.2 μm filter. Add 100 ml of this 20
% galactose solution to the autoclaved media and fill up to 1 l
with sterile water.

 1. Low protein binding 0.45 μm filter plates or bottle-top filters.
 2. BSS pH 8.0: 50 mM Tris, 100 mM NaCl, 1 mg/ml BSA.
 3. Primary antibody mixture: anti-HA (Roche) 1:100 dilution

and anti-Myc (Sigma) 1:100 dilution in BSS.

2.2 Fluorescence-
Activated Cell Sorting

Fig. 1 (a) SORTCERY combines experimental and computational protocols to rank peptide ligands according to
their affinity for a target. Yeast-displayed peptides are sorted into pools that include ligands of similar affinity
using FACS. Deep sequencing information is generated for each sample, and the distribution of each sequence
over the FACS gates is determined. Pairwise comparison of distributions permits calculation of the probability
that one peptide binds more strongly than another, for each pair of peptides. A global rank order of affinities is
computed from the probabilities. (b) SORTCERY’s yeast-display and gate-setting schemes. Peptide expression
and target binding are detected via tags that are recognized by pairs of primary and fluorescently labeled
secondary antibodies. Two-color cell sorting is based on these two signals. Gates are set to optimally separate
binders of different affinities and to exclude non-binders and non-expressing cells

Peptide Binding Analyses using SORTCERY

236

 4. Secondary antibody mixture: APC-labeled anti-mouse (BD
Biosciences) 1:40 dilution and PE-labeled anti-rabbit (Sigma)
1:100 dilution in BSS.

 1. Zymoprep Yeast Plasmid Miniprep I (Zymo Research).
 2. Isopropanol.
 3. High-Fidelity DNA Polymerase (e.g., Phusion).
 4. Thermocycler.
 5. Gel equipment.
 6. PCR purification and gel extraction kits (QiaGen).
 7. MmeI (New England Biolabs): MmeI restriction enzyme,

NEB CutSmart Buffer, 1 mM SAM.
 8. T4 Ligase.
 9. Primers and oligos.

3 Methods

 1. Dilute cells to OD600 of 0.05 in SD + CAA and grow for 8 h at
30 °C.

 2. Dilute cells to OD600 of 0.005 in SD + CAA and grow to OD
of 0.1–0.4 at 30 °C.

 3. Dilute cells to OD600 of 0.025 in SG + CAA and grow to OD
of 0.2–0.5 at 30 °C for induction of peptide expression.

2.3 Deep Sequencing
Sample Preparation
(See Note 1)

3.1 Cell Growth
and Induction of Yeast
Surface Display
Library (See Note 2)

Fig. 2 (a) Individually measured dissociation constants vs. SORTCERY ranking
indices for 19 sequences from a ranking of ~1000 sequences. Clones have been
reindexed from 1 to 19. Error bars for rank indices are 95 % bootstrap confi-
dence intervals: error bars for dissociation constants indicate standard devia-
tions for four individual measurements. (b) Ranking indices for the same 19
clones as determined by convoluted SORTCERY (see Note 9). Figure panel (a) is
adopted with publisher’s permission from Fig. 4 in Ref. [20]

Lothar “Luther” Reich et al.

237

 1. SORTCERY uses a two-color FACS setup to monitor expres-
sion (Fe) and binding (Fb) signals on a log/log or biexponen-
tial scale. On a log(Fb) vs. log(Fe) plot, points of equal binding
strength lie on a line with a slope of 1 [20]. Subdivide the log/
log plot accordingly into areas (gates) of different affinities by
dissecting it with lines of slopes of 1 (red lines in Fig. 3). The
number, position, and spacing of the lines will affect the per-
formance of the procedure. We recommend an equal spacing
between lines as this will result in optimal resolution between
binders of different affinities. The number of lines (and the
resulting gates) depends on the required resolution. This can
be determined by measuring the FACS profiles of several
yeast-displayed standards (see Note 3). Lines should be posi-
tioned such that the gates cover an area from the strongest
binders to the baseline binding signal. FACS profiles of stan-
dards can help determine whether the experimental setup will
generate samples with quality appropriate for a SORTCERY
sort (see Note 4).

 2. Gate boundaries should be set to exclude cells without signifi-
cant expression signal and to prevent cells in the binding base-
line from being captured in gates for higher affinities. Cutoffs

3.2 Gate Setting

Fig. 3 Gate setting for an affinity sort with 12 gates. The red, diagonal lines sub-
divide the axis of affinity into different intervals and thus insure that each gate
corresponds to a unique range of dissociation constants. The green, lower left
borders exclude non-binding cells from higher- affinity gates and exclude non-
expressing cells from all gates. The depicted FACS profile of a non-binder illus-
trates this. The blue, upper- right borders exclude cells with the maximum
possible expression or binding signal, because affinities cannot be accurately
estimated from such signals. This figure is adopted with the publisher’s permis-
sion from supplemental Fig. 3 in Ref. [20]

Peptide Binding Analyses using SORTCERY

238

can be established by monitoring the FACS profile of a non-
binding yeast clone and noting: (1) the position of non-
expressing cells (blob in the lower left corner of Fig. 3) and (2)
the binding baseline (lower right area in Fig. 3). Determine
appropriate cutoffs and set gate lower-edge boundaries accord-
ingly (see example: green edges in Fig. 3).

 3. Cell sorters assign maximum signal values to any signal intensity
above their scale of measurement. Such signals have, therefore,
not been accurately determined. Exclude the maximum expres-
sion and binding signal areas from the gates by setting gate bound-
aries accordingly (see example: blue edges in Fig. 3) (Fig. 4).

 1. Filter grown and induced yeast cells (Subheading 3.1) and
wash twice with BSS.

 2. Incubate cells with target molecule in BSS for 2 h at 21 °C (see
Notes 5 and 6). Shake gently during incubation.

 3. Filter cells and wash twice with BSS.
 4. Incubate with mixture of primary antibodies (20 μl per 106

cells, see Notes 7 and 8) at 4 °C.
 5. Filter cells and wash twice with BSS.
 6. Incubate with mixture of secondary antibodies at 4 °C.
 7. Filter cells and wash twice with BSS. Resuspend cells in BSS for

sorting.
 8. Sort cells into each individual gate and retain sorted pools for

deep sequencing analysis (see Notes 9 and 10). Note the number

3.3 Cell Sorting

Fig. 4 FACS profile for a BH3 peptide ligand binding to Bcl-xL. The red line indicates
the orientation of the first principle component for the profile of the expressing
cells. This figure is adopted with publisher’s permission from Fig. 3 in Ref. [20]

Lothar “Luther” Reich et al.

239

of cells sorted into each pool. Also determine the library distri-
bution across all gates by recording how many cells hit each
gate during a set time interval, e.g., a minute. This information
is important for the deep sequencing analysis (Subheading 3.5,
step 4).

 1. If >80,000 cells are sorted, spin cells down, aspirate superna-
tant, and add 150 μl of solution 1 from the Zymoprep kit + 2
μl Zymolyase. For smaller numbers of cells, directly add 50 μl
of solution 1 per 100 μl cell suspension + 2 μl Zymolyase per
150 μl total volume.

 2. Incubate at 37 °C for 1 h on a shaker.
 3. Successively add 150 μl of solutions 2 and 3 per 150 μl incuba-

tion volume and vortex after each addition. Spin down precipi-
tate, and retain supernatant.

 4. Add 1 volume isopropanol and 0.1 volume 3 M NaOAc to
each volume of DNA extract. Store at −20 °C overnight.

 5. Spin at 14,000 × g at 4 °C for 10 min. Carefully remove super-
natant. Resuspend DNA pellet in 20 μl sterile water (pellet
may not be visible for small numbers of sorted cells).

Most of this section is based on the excellent preparation protocol
in Ref. [21].

 1. For each sorted sample, separately, amplify DNA sequences
encoding the peptide ligands out of plasmids by PCR. The 5′
end of the forward primer needs to contain a binding site for
the MmeI restriction enzyme: 5′ GGGACCACCACCTCCGAC
3′ (see Note 11). The 5′ end of the reverse primer has to con-
sist of a part of the Illumina adapter sequence: 5′
CGGTCTCGGCATTCCTGC 3′ (see Notes 12 and 13).

 2. Purify PCR products with the Qiagen PCR purification kit.
Elute in 30 μl sterile water.

 3. Digest each PCR product with the MmeI restriction enzyme.
Incubate the digestion mixture for 1 h at 37 °C, then heat
inactivate for 20 min at 80 °C (see Note 14).

Digestion reagents

PCR product 12.5 μl

1 mM SAM 2.5 μl

NEB CutSmart buffer 5 μl

MmeI 5 μl per 8.6 pmol PCR product

Sterile water Fill up to 50 μl

 4. Prepare double-stranded adapters by annealing single-stranded
oligos. The forward strand should contain the standard

3.4 Deep Sequencing
Sample Preparation

3.4.1 DNA Extraction

3.4.2 DNA Amplification
and Adapter Attachment

Peptide Binding Analyses using SORTCERY

240

Illumina read binding site [22], a unique barcode for multiplex-
ing (see Note 15) and a 3′ TC, resultung in the sequence: 5′
ACACTCTTTCCCTACACGACGCTCTTCCGATCTbarcode
TC 3′. The reverse complement strand should be 5′ phosphor-
ylated and lack the 5′ GA 3′ that would be complementary to
the TC of the forward strand.

 5. Ligate each digestion product with an adapter containing a
unique barcode. Ligate for 30 min at 20 °C, then heat inacti-
vate for 10 min at 65 °C.

 6. Run the products of the ligation reaction on a gel. Gel-purify
the bands of correct size with the QIAquick gel purification
kit. Elute in 30 μl sterile water.

 7. PCR-amplify the ligation product. Primers should contain
overhangs that complete the Illumina adapter sequences.

Forward Primer: 5′ AATGATACGGCGACCACCGAG
ATCTACACTCTTTCCCTACACGACGCT 3′.
Reverse Primer: 5′ CAAGCAGAAGACGGCATACGA
GATCGGTCTCGGCATTCCTGCATCTT 3′.
15 PCR cycles should be sufficient using Phusion
polymerase.

 8. Purify PCR products with the Qiagen PCR purification kit.
Elute in 30 μl sterile water.

 9. Combine samples and perform a multiplexed deep sequencing
run on an Illumina sequencer with the standard forward
Illumina read primer: 5′ ACACTCTTTCCCTACACGAC
GCTCTTCCGATCT 3′. If a reverse read is also to be carried
out, use a custom primer (see Note 16).

 1. Filter the Illumina data by only considering sequences with a
high Phred score for the mutated positions and a low number
of read errors in unmutated positions (see Note 17). If a reverse
read has been performed that overlaps the forward read, com-
pare complementary mutant codons and choose the version
with the higher Phred score.

 2. Assign each Illumina read to its sorted pool/gate by barcode
identification.

 3. Count the copies of each unique sequence across all pools.
Discard sequences with low copy numbers when summing up
counts from all gates. Calculate the number of sorted cells that
each unique sequence likely originated from. Dividing the
number of cells that were sorted into a pool by the number of
sequence reads for this sample provides a rough estimate of the
cells per read. As a rule of thumb, require at least 100 sorted
cells for each observed sequence.

 4. If a convoluted sort strategy was used, see Note 18. Otherwise,
calculate the distribution over the gates for each unique sequence.

3.5 Computational
Analysis

Lothar “Luther” Reich et al.

241

f

z
n

n

z
n

n

xj

x
xj

i
xi

y
y

yj

i
yi

=
å

å å

Here, fxj is the normalized frequency of sequence j in gate x,
nxj is the number of reads of sequence j in deep sequencing
data set x (which corresponds to gate x), and zx is the number
of cells that hit gate x when measuring the distribution of cells
across all gates.

 5. Calculate all possible pairwise probabilities that a peptide A is
a stronger binder than a peptide B and vice versa:

p A B f f

x
xA

y x
yB>() = å å

<

Note that gate indices x and y are assigned from lowest to high-
est affinity gates, i.e., in the equation the sum over y runs over
all gates corresponding to lower affinities than that of gate x.
Assign these probabilities as weights to the edges of a directed
graph. The vertices of the graph represent peptides and the
directed edge running from vertex B to vertex A indicates the
assumption that peptide A is a stronger binder than peptide B
(Fig. 5a).

 6. Find the maximum linear subgraph by first applying the
method described in Ref. [23]. To do this, randomly choose a
peptide/vertex A. For each other peptide/vertex B, compare
the edge weights of the two edges that connect it to A. If
p(A > B) > p(B > A), then B is considered a worse binder than A;
if p(B > A) > p(A > B), then B is considered a better binder than
A. Group all peptides according to whether they are better or
worse binders than A. Then, within each group, repeat the
procedure of randomly choosing one peptide and evaluating
all others with respect to it, continuing to subdivide the groups
until an ordering from best to worst binder has been con-
structed. Determine the likelihood score for this ordering by
summing up the logarithms of the edge weights for all directed
edges that agree with the ordering (Fig. 5b). Repeat the pro-
cedure of constructing an ordering several times and retain the
one with the best score. Further refine this ordering by insert-
ing each individual peptide into all possible positions and keep-
ing the new position if a better score is obtained. Run the
routine several times, alternately starting with the best and the
worst binding peptide. Finally, run a Monte-Carlo search in
which moves correspond to exchanging the positions of two
peptides in the ordering. The final result represents an affinity
ranking of all peptides.

Peptide Binding Analyses using SORTCERY

242

4 Notes

 1. We fine-tuned the protocols described in Subheading 3.4 using
material from the specified suppliers. We have not tested cor-
responding products from other suppliers, and it is possible
that these will also work for deep sequencing sample prepara-
tion. Experimenters may need to adjust protocols according to
the specific products they use.

 2. This growth protocol has been optimized for EBY100 cells
that have been transformed with a pCTCON2 plasmid [17].
The experimenter may have to choose other parameters for a
different setup. In the authors’ experience, cell densities may
have an impact on the quality of FACS profiles. Low-quality
FACS profiles can lead to suboptimal sorts with respect to
affinity. Users of the procedure should strictly monitor cell

Fig. 5 (a) A directed graph representing four peptide ligands and assumptions
about their relative binding strengths. Each edge is weighted by the probability
that the ligand at its tail is a weaker binder than the ligand at its head. (b) A linear
subgraph of (a). Note that no conflicting assumptions about binding strengths
exist

Lothar “Luther” Reich et al.

243

densities. The first growth step in this protocol ensures that
samples contain mostly live and healthy cells for correct mea-
surements of ODs. It may be possible to skip this step if cells
are not grown up from frozen stocks or plates.

 3. The number and position of gates can be chosen based on a set
of standards. Record the FACS profiles of several yeast-dis-
played standards in a same-day experiment at a target concen-
tration chosen based on anticipated affinities. Construct a set
of gates to be tested for adequate resolution. Determine for
each FACS profile how many cells would have hit each gate.
This provides a distribution over the gates for each standard.
Then, simulate an experiment by drawing random samples
with a size of ten cells for each standard. (Note that clones
should be sampled more often than this during an actual
SORTCERY sort. However, real samples may experience addi-
tional experimental noise during preparation for deep sequenc-
ing. Thus, we find 10 cells in this procedure provide useful
information.) Use the random sample for each standard X and
gate i to calculate the normalized frequency, fiX, with which
the standard would be observed in the gate. Calculate the
probability that standard X is a better binder than standard Y
based on the random samples, using the formula given in
Subheading 3.5, step 5. Compare the result to the actual affin-
ities of the standards. Repeat this many times to determine the
range of values the probability can take. Sufficient resolution,
i.e., a sufficient number and appropriate placement of gates,
will be indicated by mostly high probabilities for the correct
ordering of standards.

 4. Record several FACS profiles for standards. Consider data for
expressing cells that have binding signals mostly above the
baseline. Use a cutoff line with a slope of −1 to separate express-
ing from non-expressing cells; using other cutoffs may bias the
analysis. Adjust the retained data by subtracting the average
binding and expression signals from each data point. Calculate
the covariance matrix of the data. Determine the first principal
component by calculating the matrix’s eigenvectors and eigen-
values. The vector with the largest corresponding eigenvalue
indicates the orientation of the first principle component.
 Determine the first principle component’s slope, i.e., the slope
of the vector. High-quality FACS profiles should result in a
value close to 1 (Fig. 4). Reduction in quality can have many
different experimental origins, such as inappropriate growth
protocols (see Notes 1 and 2), excess dissociation of target
molecule during washing steps (see Note 8), or nonspecific
binding to tube walls (see Note 5).

 5. BSA is used as a blocking agent to prevent nonspecific binding
to the cells and, more importantly, the test tube walls.

Peptide Binding Analyses using SORTCERY

244

Adsorption to the tube walls may lead to significant depletion
of target molecules and distortion of FACS profiles.

 6. The number of target molecules should be in excess of the
number of surface-displayed peptides. For example, our yeast
strain expresses about 30,000 peptides per cell [24]. If 106
cells are incubated in 700 μl of 1 nM target molecule solution,
then at most ~10 % of the target molecules are bound. Adjust
your incubation volume accordingly. Choose the concentra-
tion of target molecule appropriately to investigate a specific
range of affinities (see Note 3).

 7. We have used an HA tag for detection of expression and a Myc
tag for detection of binding. However, other tags may work
with our protocol and may be preferred by the experimenter.
Required antibody concentrations may depend on the exact
choice. Always test whether the antibodies provide high-qual-
ity FACS profiles (see Note 3).

 8. Swift application of antibodies is crucial because washing steps
can disturb the equilibrium between free and bound target mol-
ecules. We have found that fully prepared samples are relatively
stable, possibly because the antibodies cross-link the bound tar-
get molecules and thereby dramatically decrease dissociation.

 9. Because gate setting requires a significant amount of time, gates
should be drawn prior to sample preparation. Adjust PMT volt-
ages so that the library’s FACS profile largely covers the preset
gates. Adjustments may be guided by a set of standards.

 10. If the number of chosen gates exceeds the number of sample
tubes that the cell sorter can sort into at the same time, gates
have to be sampled successively. This may waste a huge num-
ber of labeled cells, because cells that hit unselected gates will
be discarded. The experimenter can adopt an alternative, con-
voluted sorting strategy instead that permits sorting into all
gates simultaneously. In this approach, cells from different
gates are sorted into the same sample tubes. Successive sorts
that combine different sets of gates can be carried out, which
enables back-calculation of the number of cells in each gate for
each clone in the subsequent analysis (see Note 17). For N
gates, prepare N unique combinations of gates. A gate must
not be paired with any other gate more than once in these
combinations. Sort orthogonal sets of combinations succes-
sively. For example, if 12 gates are chosen and the sorter can
only sort into four sample tubes at the same time, the follow-
ing set of combinations would be appropriate: {1,2,3}, {4,5,6},
{7,8,9}, {10,11,12}, {1,4,7}, {2,5,10}, {3,8,11}, {6,9,12},
{1,5,8}, {2,4,11}, {3,9,10}, and {6,7,12}. Note that any pair of
two gate indices appears together at most once. This set of
combinations could be processed in three successive sorts col-

Lothar “Luther” Reich et al.

245

lecting four pools of cells (each pool derived from three gates,
all pools sorted into individual sample tubes) at a time: first
{1,2,3}, {4,5,6}, {7,8,9}, {10,11,12}, then {1,4,7}, {2,5,10},
{3,8,11}, {6,9,12}, and then {1,5,8}, {2,4,11}, {3,9,10},
{6,7,12}.

 11. MmeI recognizes the sequence 5′ TCCRAC 3′. Additional
nucleotides 5′ of the binding site can improve binding (e.g., 5′
GGGACCACCACC 3′ in step 1, Subheading 3.4.2). MmeI
cuts 20 nucleotides 3′ of its binding sequence.

 12. Use high-fidelity polymerase and as few PCR cycles as possible
in order to reduce errors and amplification bias. 25 cycles gen-
erally suffice with the Phusion Polymerase standard protocol.

 13. High salt content from the DNA extraction step may prove
inhibitory to sufficient amplification. 5 μl DNA extract in a
100 μl reaction mixture generally provides enough dilution to
obtain satisfactory results.

 14. Excess MmeI may block digestion. MmeI activity is also
curbed by high amounts of salt. Excess salt may enter the
reaction mixture via the PCR product from the PCR purifica-
tion step. In addition, MmeI has a very low turnover and stoi-
chiometric amounts of MmeI are required for sufficient
digestion. Experimenters need to take special care to use the
exact amounts of PCR product and MmeI indicated in
Subheading 2.

 15. Diverse barcodes at the beginning of a deep sequencing read
are required to ensure proper calibration of the base-calling
algorithm. Barcodes need to be at least five nucleotides long,
and deep sequencing runs should be multiplexed with at least
20 different barcodes. Barcode sequences should vary such
that all bases appear in each position with roughly the same
frequency.

 16. Sequencing a library can be a difficult task for Illumina sequenc-
ers, because current base-calling algorithms expect significant
sequence variety for all positions of a sample, whereas library
samples generally contain regions of constant sequence.
Spiking PhiX genome into the sample may help alleviate prob-
lems, as may running a reference lane with PhiX genome on
the same flow cell.

 17. MmeI sometimes cuts 19 or 21 bases 3′ of its binding site.
Furthermore, the TC 3′ of the barcode may be missing in
some reads. A small fraction of undigested but ligated sample
may also be observed.

 18. Analyze deep sequencing from convoluted sorts (see Note 9)
in the following way: For each sequence j calculate its fre-
quency in each pool x as

Peptide Binding Analyses using SORTCERY

246

g
n

nxj
xj

i
xi

=
å

with nxj being the number of reads for sequence j in pool x.
Then calculate the corrected number of cells in pool x that
contained sequence j as

m g zxj xj

y
y= å

where zy is the number of cells that hit gate y considering the
distribution of cells across all gates, and the index y runs over
all those gates that are part of pool x. Solve a linear equation
system of the form

 M D Qj j j

� ��� � �� � ��
=

for the elements of vector Qj. The xth entry of the vector Mj is
mxi. The entry dxyj in the xth row and yth column of matrix
Dj is 1 if gate y is part of pool x and zero otherwise. The entry
qyj in vector Qj is the time-corrected number of cells in gate y.
Normalize vector Qj to obtain the frequencies that are required
for step 5.

Acknowledgments

The authors thank Vincent Xue for preparing Fig. 1. The authors
express their gratitude to the Swanson Biotechnology Center Flow
Cytometry Facility and the MIT BioMicro Center for technical
support.
This protocol was developed with support from NIGMS under
award GM096466. It was also funded by grant no. RE 3111/1-1
of the German Merit Foundation to LR.
Figures 2a, 3, and 4 were reprinted from Publication
“SORTCERY—a high-throughput method to affinity rank pep-
tide ligands;” Reich L, Dutta S, Keating AE, J Mol Biol (2015)
427: 2135–2150 with permission from Elsevier.

References

 1. Hietpas RT, Jensen JD, Bolon DNA (2011)
Experimental illumination of a fitness landscape.
Proc Natl Acad Sci U S A 108:7896–7901

 2. DeKosky BJ, Ippolito GC, Deschner RP,
Lavinder JJ, Wine Y, Rawlings BM et al (2013)

High- throughput sequencing of the paired
human immunoglobulin heavy and light chain
repertoire. Nat Biotechnol 31:166–169

 3. Ernst A, Gfeller D, Kan Z, Seshagiri S, Kim
PM, Baderet GD et al (2010) Coevolution of

Lothar “Luther” Reich et al.

247

PDZ domain-ligand interactions analyzed by
high- throughput phage display and deep
sequencing. Mol Biosyst 6:1782–1790

 4. DeBartolo J, Dutta S, Reich L, Keating AE
(2012) Predictive Bcl-2 family binding models
rooted in experiment or structure. J Mol Biol
422:124–144

 5. Jolma A, Kivioja T, Toivonen J, Cheng L, Wei
G, Enge M (2010) Multiplexed massively par-
allel SELEX for characterization of human
transcription factor binding specificities.
Genome Res 861:861–873

 6. Reynolds KA, McLaughlin RN, Ranganathan
R (2011) Hot spots for allosteric regulation on
protein surfaces. Cell 147:1564–1575

 7. McLaughlin RN Jr, Poelwijk FJ, Raman A,
Gosal WS, Ranganathan R (2012) The spatial
architecture of protein function and adapta-
tion. Nature 491:138–142

 8. Fowler DM, Araya CL, Fleishman SJ, Kellogg
EH, Stephany JJ, Baker D et al (2010) High-
resolution mapping of protein sequence-func-
tion relationships. Nat Methods 7:741–746

 9. Whitehead TA, Chevalier A, Song Y, Dreyfus
C, Fleishman SJ, DeMattos C et al (2012)
Optimization of affinity, specificity and func-
tion of designed influenza inhibitors using deep
sequencing. Nat Biotechnol 30:543–548

 10. Zhu J, Larman HB, Gao G, Somwar R, Zijuan
Zhang Z, Lasersonet U et al (2013) Protein
interaction discovery using parallel analysis of
translated ORFs (PLATO). Nat Biotechnol
31:331–333

 11. Tinberg CE, Khare SD, Dou J, Doyle L,
Nelson JW, Schena A et al (2013)
Computational design of ligand-binding pro-
teins with high affinity and selectivity. Nature
501:212–218

 12. Araya CL, Fowler DM, Chen W, Muniez I,
Kelly JW, Fields S (2012) A fundamental pro-
tein property, thermodynamic stability,
revealed solely from large-scale measurements
of protein function. Proc Natl Acad Sci U S A
109:16858–16863

 13. Starita LM, Pruneda JN, Russell SL, Fowler
DM, Kim HJ, Hiatt JB et al (2013) Activity-
enhancing mutations in an E3 ubiquitin ligase
identified by high-throughput mutagenesis. Proc
Natl Acad Sci USA 110(14):E1263–E1272

 14. Melamed D, Young DL, Gamble CE, Miller
CR, Fields S (2013) Deep mutational scanning
of an RRM domain of the Saccharomyces cere-
visiae poly(A)-binding protein. RNA
19:1537–1551

 15. Kinney JB, Murugana A, Callan CG Jr, Cox
EC (2010) Using deep sequencing to charac-
terize the biophysical mechanism of a tran-
scriptional regulatory sequence. Proc Natl
Acad Sci U S A 107:9158–9163

 16. Sharon E, Kalma Y, Sharp A, Raveh-Sadka T,
Levo M, Zeevi D et al (2012) Inferring gene
regulatory logic from high-throughput mea-
surements of thousands of systematically
designed promoters. Nat Biotechnol
30:521–530

 17. Chao G, Lau W, Hackel BJ, Sazinsky SL,
Lippow SM, Wittrup KD (2006) Isolating and
engineering human antibodies using yeast sur-
face display. Nat Protoc 1:755–768

 18. Liang JC, Chang AL, Kennedy AB, Smolke
CD (2012) A high-throughput, quantitative
cell- based screen for efficient tailoring of RNA
device activity. Nucleic Acids Res 40:
138–142

 19. Dutta S, Koide A, Koide S (2008) High-
throughput analysis of the protein sequence
stability landscape using a quantitative yeast
surface two- hybrid system and fragment
reconstitution. J Mol Biol 382:721–733

 20. Reich L, Dutta S, Keating AE (2015)
SORTCERY – a high-throughput method to
affinity rank peptide ligands. J Mol Biol 427:
2135–2150

 21. Hietpas R, Roscoe B, Jiang L, Bolon DNA
(2012) Fitness analyses of all possible point
mutations for regions of genes in yeast. Nat
Protoc 7:1382–1396

 22. Illumina (2015) Illumina Adapter Sequences,
Document # 1000000002694 v00. Available
on the Illumina web site. http://support.illu-
mina.com/downloads/illumina- customer-
sequence-letter.html. Accessed 13 Feb 2016.

 23. Ailon N, Charikar M, Newman A (2008)
Aggregating inconsistent information: ranking
and clustering. JACM 55: article 23

 24. Boder ET, Wittrup KD (1997) Yeast surface
display for screening combinatorial polypep-
tide libraries. Nat Biotechnol 15:553–557

Peptide Binding Analyses using SORTCERY

http://support.illumina.com/downloads/illumina-�customer-�sequence-letter.html
http://support.illumina.com/downloads/illumina-�customer-�sequence-letter.html
http://support.illumina.com/downloads/illumina-�customer-�sequence-letter.html

249

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_15, © Springer Science+Business Media New York 2016

Chapter 15

Design of Specific Peptide–Protein Recognition

Fan Zheng and Gevorg Grigoryan

Abstract

Selective targeting of protein–protein interactions in the cell is of great interest in biological research.
Computational structure-based design of peptides to bind protein interaction interfaces could provide a
potential means of generating such reagents. However, to avoid perturbing off-target interactions, meth-
ods that explicitly account for interaction specificity are needed. Further, as peptides often retain consider-
able flexibility upon association, their binding reaction is computationally demanding to model—a stark
limitation for structure-based design. Here we present a protocol for designing peptides that selectively
target a given peptide-binding domain, relative to a pre-specified set of possibly related domains. We
recently used the method to design peptides that discriminate with high selectivity between two closely
related PDZ domains. The framework accounts for the flexibility of the peptide in the binding site, but is
efficient enough to quickly analyze trade-offs between affinity and selectivity, enabling the identification of
optimal peptides.

Key words Interaction specificity, Computational protein design, PDZ–peptide interactions, Cluster
expansion, Flexible peptide docking

1 Introduction

The loss of precise control over cellular protein interactions often
results in disease [1]. Therefore, reagents that target protein inter-
actions to rewire cellular signaling pathways in desired ways are of
great relevance in both therapeutic development and mechanistic
investigation [2]. A considerable fraction of the known cellular
interactome is believed to be mediated by peptide-recognition
domains (PRDs)—interaction-encoding modules that bind to
short amino- acid stretches on their partner proteins [3–5]. Many
PRD families are large, with members closely related in structure
and sequence, but often having entirely divergent functions.
Peptides are a natural choice for functional modulation of PRD-
encoded interactions, because they are well suited to occupy the
PRD binding site and are amenable to computational design.
Further, recognition sequence preferences of several PRDs have

250

been characterized experimentally [6–9], enabling the develop-
ment of computational models for binding prediction either by
direct training on high-throughput experimental data [10, 11],
structure-based energy calculations [12–15], or combinations of
the two [16, 17]. However, to effectively target a given interaction
encoded by a PRD, the targeting peptide should in general be
selective—i.e., it should avoid interactions with other proteins,
including those within the same PRD family. Given the close simi-
larity among family members, achieving such selectivity by design
is not trivial. Peptides chosen purely for binding to the target are
likely to also bind other family members, with unpredictable func-
tional consequences.

Structure-based methods for modeling PRD–peptide binding
have the potential to generalize across different PRDs [18].
However, the use of such techniques in designing selective recog-
nition is complicated by the inherent flexibility of peptides, which
places high computational demands on modeling. To mitigate this
problem, we have developed a general computational framework
that decouples the complexity of the structure-based simulation
used to model PRD–peptide binding from the computational effi-
ciency requirements imposed by the design of selectivity [19]. The
framework uses the previously described method of cluster expan-
sion (CE) [20, 21] to produce simple sequence-based expressions
that rapidly estimate the results of detailed structure modeling
techniques. The efficiency gained by CE enables the fast identifica-
tion of optimal trade-offs between affinity for the targeted domain
and selectivity against any number of undesired partners. The
framework is detailed below.

2 Materials

The following resources or materials are needed to apply our
framework:

 1. A Unix-/Linux-based computing platform with:
(a) A linear algebra engine (e.g., the proprietary MathWorks

MATLAB or the open-source GNU Octave).
(b) Macromolecular modeling suite Rosetta, version 3.4 or

higher [22].
(c) PyRosetta, a Python-based interface to Rosetta [23].
(d) Highly desirable: access to a high-performance computing

cluster with the ability to perform at least hundreds of jobs
independently in parallel.

 2. A basic understanding of and the capability to work with the
computation resources in 1.

Fan Zheng and Gevorg Grigoryan

251

 3. Optional, but highly desirable: experimentally validated exam-
ples of peptides that bind strongly and those that bind weakly
(or undetectably) to members of the PRD family of interest.

3 Methods

In this section, we outline our framework for designing PRD-
binding peptides. We will refer to our experience with using it to
design PDZ- targeting peptides [19], but we believe that the frame-
work should generalize to other systems. The procedure differs
depending on whether the goal is to design high-affinity peptides
for a single PRD or design selective peptides that bind one PRD
(target) but not the others (competitors). In the latter case, bind-
ing to multiple PRDs has to be modeled. If not stated otherwise,
it should be assumed that each discussed step is carried out for all
PRDs being considered.

 1. Download experimental structures of target and competitor
PRDs from the Protein Data Bank (PDB), if they are available.
The following preferences apply if multiple structures are avail-
able for a given PRD (in the order of priority): (a) an X-ray
structure is preferred over an NMR structure, (b) a peptide-
bound structure is preferred over an apo structure, and (c) a
higher-resolution X-ray structure is preferred over a lower res-
olution one. If a given PRD has no experimental structures,
use homology modeling (e.g., via the SWISS-MODEL server
[24] or MODELLER [25]) to create a predicted structure.
The template used in homology modeling should be a peptide-
bound structure and otherwise as close in sequence to the rel-
evant PRD as possible (see Note 1). If either an NMR structure
or a homology model is used for a PRD, particular attention
should be paid to the results in step 5.

 2. Subject any homology models to continuous minimization in
the presence of a known binding peptide. Because the back-
bone will be held fixed when sampling the bound state (see
below), this step is recommended to make the PRD model
resemble a peptide-bound state as much as possible. To this
end, first align the homology model to the template by opti-
mally superimposing the backbone of binding-site residues,
and then copy the peptide backbone from the template to the
PRD model. In PyRosetta [23], assign peptide side-chain
identities according to a known ligand peptide (a ligand of a
closely homologous PRD may be used if no ligand for the tar-
get is known) and repack all side chains in the model. Follow
by applying full-atom minimization via the “dfpmin” algo-
rithm in PyRosetta, with a tolerance of 0.01, allowing both

Protein-Peptide Binding Design

252

backbone torsion angles and side chain χ-angles to move. Note
this assumes that the template used in homology modeling is
close enough to the PRD of interest to have similar binding
geometry and sequence preferences.

 3. Collect a set of experimental PRD–peptide complex structures
for use in seeding multiple simulation trajectories when
 modeling new PRD–peptide pairs. For example, for PDZ
domains, we collected 51 unique complexes with peptides of at
least six residues (Table 1). For each available complex, align
its binding site onto that of the PRD of interest, and copy the
peptide backbone from the complex onto the PRD (as in step
2). To automate the procedure of identifying binding sites in
all experimental complexes, we recommend manually defining
binding-site residues only in the PRD of interest and then
using our substructure search engine MASTER [26] to auto-
matically find corresponding residues in all complexes. We
found the generation of diverse starting conformations to seed
multiple sampling trajectories to be critical in modeling PDZ–
peptide binding, presumably due to the considerable flexibility
of the peptide in the binding site [19].

 4. Given a peptide/PRD combination to be evaluated, run the
Rosetta FlexPepDock ab initio protocol [27] for each of the
starting conformations generated in step 3. We recommend
asking each simulation to generate at least 500 structural models
(from 500 independent Monte Carlo simulations). Therefore,
in the PDZ example, for each peptide/PRD pair,
500 × 51 = 25,500 structural models would be generated.
Rosetta FlexPepDock documentation is available at https://
www.rosettacommons.org/docs/latest/application_documen-
tation/docking/flex-pep-dock. Evaluate each model using the
talaris2013 Rosetta scoring function; in our experience, omit-
ting backbone statistical energy terms “rama” and “omega”
increases performance (see Note 2). The lowest score among all
generated models should be used as the final predicted binding
score for the given peptide/domain combination.

 5. Use an experimental dataset as a benchmark to assess the accu-
racy of the structure-based simulation and the appropriateness
of structural models used. Ideally, experimental data for the
relevant PRDs should be used, but if such data are unavailable,
results for highly homologous domains in the PRD family
(those believed to share close binding preferences) may be
used. Use the experimental data to build the benchmark data-
set: sets of high-confidence binding peptides and weak/non-
binding peptides for each PRD (see Note 3). Run the procedure
in step 4 to score each peptide/domain combination in the
benchmark dataset. Use the Receiver Operating Characteristic
(ROC) analysis to measure the ability of the simulation to sep-

Fan Zheng and Gevorg Grigoryan

https://www.rosettacommons.org/docs/latest/flex-pep-dock.html
https://www.rosettacommons.org/docs/latest/flex-pep-dock.html
https://www.rosettacommons.org/docs/latest/flex-pep-dock.html

253

Table 1
A set of experimental PDZ–peptide complex structures used to generate starting conformations for
multiple simulation trajectories

PDB-ID Chain-ID (domain) Domain residue number range Chain-ID (peptide)

1B8Q A 11–90 B

1D5G A 8–90 B

1KWA A 3–82 B

1L6O A 3–88 D

1N7F A 5–84 C

1N7T A 12–98 B

1OBY B 2–74 Q

1Q3P A 8–95 C

1RGR A 4–88 B

1RZX A 5–95 B

1TP3 A 13–91 B

1TP5 A 13–91 B

1U3B A 4–88 A

1VJ6 A 8–90 B

1X8S A 5–95 B

1YBO A 88–160 C

1ZUB A 23–107 B

2AIN A 7–89 B

2EJY A 3–81 B

2FNE B 11–93 A

2HE2 A 7–85 B

2I04 B 3–83 D

2I0I A 4–81 D

2I0L A 2–83 C

2I1N A 6–90 B

2IWP A 3–83 B

2JIL A 7–89 B

2JOA A 5–88 B

2 K20 A 9–99 B

2KA9 A 5–89 B

(continued)

Protein-Peptide Binding Design

254

arate true binders from weak/non-binders, using Area Under
the Curve (AUC) for quantification [28]. AUC values above
~0.7 would indicate a reasonable structural model and simula-
tion approach.

 6. Define amino acids allowed at each position of the peptide—
i.e., the design alphabet. We strongly recommend constraining
the alphabet based on any known information about the PRD
family in general and the specific targeted domain(s). This
keeps the sequence space from being unnecessarily large, limit-
ing computational complexity. Further, patterning of allowed
amino acids based on strong experimentally observed prefer-
ences limits the effect of error present in any modeling

Table 1
(continued)

PDB-ID Chain-ID (domain) Domain residue number range Chain-ID (peptide)

2KBS A 4–83 B

2KPL A 17–97 B

2KQF A 8–91 B

2KYL A 8–91 B

2L4T A 17–110 B

2OPG B 5–87 A

2OQS A 2–86 B

2OS6 A 11–83 B

2PZD A 1–85 B

2QBW A 2–97 B

2UZC B 3–81 A

2 V90 E 6–85 C

2VRF B 7–87 A

3B76 B 11–94 A

3CBX B 7–88 A

3CBY B 4–86 A

3CC0 C 4–88 A

3CH8 A 2–95 P

3DIW B 7–100 D

3GGE A 9–88 B

3LNY A 8–90 B

This table was created by filtering search results from extended PDZ domain database (http://bcz102.ust.hk/
pdzex/) [31]

Fan Zheng and Gevorg Grigoryan

http://bcz102.ust.hk/pdzex/
http://bcz102.ust.hk/pdzex/

255

approach. In our PDZ-targeting study, we were able to design
highly selective binders by computationally considering a
sequence space of only 8400 peptides [19].

 7. Given the computationally complex modeling procedure
described in step 4, it will likely be prohibitively expensive to
enumerate even moderately large peptide sequence spaces
(e.g., the procedure takes over 400 CPU hours per peptide in
our PDZ example). On the other hand, given a specific PRD,
the final score of the simulation depends only on the peptide
sequence. Thus, the next step is to derive an analytical map-
ping from peptide sequence to predicted binding score, for
each PRD of interest. We previously described a method for
finding such a mapping, called cluster expansion (CE) [20]. In
short, CE expresses the result of a structure-based computa-
tional procedure as a series expansion in contributions from
amino-acid clusters of increasing size—we call these cluster
functions or CFs. For example, if E

s() represents the binding
score from the procedure in step 4, for a peptide sequence

s
and a given domain, the CE expression states

E C f f
i

L

i i
i

L

j i

L

ij i j

i i i i j j

s s s s

s r s r s r

() = + () + (
=
¹

=
¹

-

= +
¹

å å å
1 1

1

1

,)) +¼

where L is peptide length,

r is a reference sequence, and σi
and ρi are the amino acids in the i-th position of

s and

r ,
respectively. The significance of the reference sequence is that
the summations in the expression extend only over combina-
tions of positions (clusters) occupied by amino acids differing
from the corresponding ones in

r . Thus, C represents the
binding score for

r (i.e., the reference CF), whereas the
remaining terms capture the additional contributions of amino
acids in

s that differ from

r (i.e., higher-order CFs). The first
summation considers point CFs, with fi(σi) representing the
effective contribution of amino acid σi at position i. Similarly,
the second summation considers pair CFs, with fij(σi, σj) rep-
resenting the additional pairwise contribution due to having σi
at position i and σj at position j simultaneously. To be exact,
the expansion must consider all higher-order contributions, up
to L-tuples, but in most cases this is impractical. Instead, one
can choose to preserve only lower- order CFs (e.g., including
only up to pairwise contributions), and use a training set of
sequences with pre-computed scores to deduce CF values that
optimize the accuracy of the truncated expansion [20].
Based on our PDZ study, a CE with up to pair CFs should
represent peptide–PRD interactions reasonably well [19],
though higher-order terms can still be added if needed [20].

Protein-Peptide Binding Design

256

Point CFs at all positions should be included. To reduce com-
putational complexity, pair CFs can be restricted to position
pairs likely to host side chains that interact either directly or
through a common site on the PRD. For example, when build-
ing CEs for PDZ–peptide interactions, we omitted pair CFs
between adjacent peptide positions, as these alternate in point-
ing either into or away from the binding interface, making
coupling between them less likely [19]. Once a cluster is
included in a CE (e.g., a pair cluster), every combination of
non-reference amino acids at the corresponding positions pro-
duces a unique CF. Thus, the number of CFs to be considered
is related to the size of design alphabet. For example, in our
PDZ study, allowing 2–8 amino acids at six peptide positions
resulted in 77 CFs (the reference CF, 24 point CFs, and 52
pair CFs) [19].

 8. Generate sequences for CE training by randomly drawing from
the design alphabet. The number of sequences should be at
least twice the number of CFs to be considered (determined in
steps 6 and 7). These sequences will be subjected to structure-
based simulations, so choosing a design alphabet to be only as
large as necessary (step 6) helps keep training time manage-
able. Figure 1 uses the PDZ example to show how the com-
plexity of CE training increases with increasing number of
amino acids allowed at each position. The random sequence

No. of allowed amino acids per position

N
o.

 o
f t

ra
in

in
g

se
qu

en
ce

s

3 4 5 6 7 8 9 10 11

0

200

400

600

800

1000

0

100

200

300

400

T
im

e
(H

ou
rs

)

Fig. 1 The computational complexity of generating the CE training set increases
with the number of amino acids allowed at each position. The clusters allowed in
our PDZ study [19] are used in this estimation. The number of training sequences
(left-axis) is estimated as twice the number of candidate cluster functions (CFs);
time is estimated by assuming that a 1000-core compute cluster is available and
that the simulations for one peptide take 400 wall-clock hours when run in serial
(see step 4)

Fan Zheng and Gevorg Grigoryan

257

generation can be biased toward any known binding sequence
preferences in order to concentrate the sampling (and ulti-
mately CE accuracy) toward more relevant sequence spaces.
No matter how the random set is generated, we recommend
checking it for reasonable coverage of all CFs to be considered
(e.g., at least three examples of each CF should be present).
For any underrepresented CFs, sequences that contain them
(but are otherwise random) should be added to balance the
training set.

 9. Run the simulation protocol in step 4 for all sequences in the
training set with all PRDs of interest, extracting the final bind-
ing score for each.

 10. Train a CE model for each PRD by deriving optimal CF
weights. In a linear algebra engine (e.g., MATLAB or Octave),
create an m × n model matrix M, where m is the number of
training sequences and n is the number of cluster functions
considered (m > n). M(i, j) should contain the number of times
the j-th CF occurs in the i-th sequence. Typically, this will be
either 1 or 0 (when the i-th sequence either does or does not
involve the j-th CF, respectively), but can also be a larger inte-
ger in cases with structural symmetry, where a CF may occur
multiple times within a sequence (e.g., with coiled coils; see
Ref. [20]). Create also an m × 1 vector E, whose i-th element is
the structure-based binding score of the i-th sequence calcu-
lated in step 9. Optimal CF weights can then be obtained by
finding the m × 1 vector b that minimizes the mean squared
difference between E Mb

= (CE- predicted scores) and E, with
the j-th element of b representing the weight of the j-th
CF. The least-square solution can be easily found using the
method of pseudo-inverse as M M M ET T()-1 . In MATLAB or
Octave, this corresponds to the expression:

b M’ M M’ E= *() -() * *

1

Note that matrix M has to be rank n, meaning that CFs have to
represent orthogonal information and may not be linear com-
binations of each other (if M is not rank n, it often means an
error was made either in encoding the model matrix or in
defining CFs). Rather than including all candidate CFs into M
at once and obtaining the best-fitting b, we recommend using
our previously described strategy to prevent overtraining. The
quality of a CE model (with a specific subset of CFs included)
can be conveniently estimated as the average error with which
the score of each sequence is predicted when that sequence is
left out of the training set—the cross-validation root-mean-
square error (CV-RMS). This value can be computed in closed
form as

Protein-Peptide Binding Design

258

1

1

1

1

2

n

E E

M M M Mn

i
i i

i
T

i
T

å
=

×

-

×

-

- ()
æ

è

ç
ç

ö

ø

÷
÷

˘
,

where Mi · represents the i-th row of matrix M. In MATLAB or
Octave, this can be computed via the expression:
sqrt(sum(((E-M*b)./(1-sum(M.*(M*((M'*M)^(-1))’),
2))).^2)/length(E))

Thus, first train a CE model including all CFs (constant, point,
and pair)—the all-inclusive model. Next, train another CE
model with only constant and point CFs—the current model.
Then, consider pair CFs, in decreasing order of their weights
in the all- inclusive model, for addition to the current model.
Each time a pair CF is considered for addition, train a new CE
model that includes all CFs in the current model and the can-
didate pair CF, and evaluate the resulting CV-RMS. If it is
lower than that of the current model, update the current model
to include the CF; otherwise, discard the pair CF. Repeat until
all pair CFs are considered. We have found this simple proce-
dure to work well in practice, as in our PDZ-targeting study,
but we have also proposed a more principled and general-pur-
pose statistical method for choosing CFs to maximize CE
accuracy [29].

 11. Randomly generate a test set containing sequences not included
in the training set, following the same procedure as in step 8.
The number of sequences in the test set need only be large
enough to provide a reliable estimate of CE error. Run the
protocol in step 4 for these sequences, and compute the root-
mean- square of the difference between the resulting binding
scores and scores calculated by the CE model from above (test-
set RMS). This metric is a better indicator of expected CE
error and is generally marginally higher than CV-RMS. Evaluate
the quality of the CE model in the context of the ROC analysis
in step 5. CE error should be lower than the score differences
that tend to differentiate known binders from non-binders. If
this is not the case, then the CE model is not of sufficient accu-
racy for specificity design, with several possible root causes: (1)
important clusters were missed in step 7; (2) training set for
CE was too small, such that important CF contributions could
not be discerned; or (3) the structure-based score being con-
sidered is not easily expandable in terms of low-order CFs and
may require more context for higher accuracy (e.g., triplet CFs
may be necessary; see Ref. [20]).

 12. Identify optimal peptide sequences for experimental character-
ization. In an earlier study, we described CLASSY, a framework
that feeds CE models into an integer linear programming (ILP)

Fan Zheng and Gevorg Grigoryan

259

framework to select sequences that make optimal trade-offs
between affinity and selectivity [21]. Alternatively, in circum-
stances where the peptide sequence space is sufficiently small
(i.e., £1010 sequences), given that the CE model typically takes
less than 1 μs per peptide to evaluate, the entire sequence space
can be simply enumerated. Either way, the goal is to find all
peptide sequences that cannot be simultaneously improved in
both predicted binding score and selectivity (i.e., the difference
in binding scores between the target complex and the best-
scoring off-target complex) [21]. These sequences lie at the
edge of affinity/selectivity space (the so-called pareto-optimal
front [30]) and are the only candidates worth considering, due
to the simple fact that all other sequences can be simultane-
ously improved in both parameters. The pareto-optimal front
is easy to visualize on a plot of affinity versus selectivity, where
each point represents a sequence (Figure 2 shows a plot cor-
responding to one of the designs from our PDZ study [19]).

 13. The number of sequences on the pareto-optimal front is often
small enough to allow for the manual inspection of each [19,
21]. We recommend re-scoring each of these sequences by the
structure- based framework in step 4 to check for the possibil-
ity of anomalous CE error (discard any candidates scoring sig-
nificantly less favorably in either affinity or selectivity by the
structure- based framework than the CE model), manually ana-
lyzing the corresponding structural models for biophysical

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0 −3.5
−

7.
5

−
6.

5
−

5.
5

−
4.

5

Affinity (eu)

S
el

ec
tiv

ity
 (

eu
)

Fig. 2 An example predicted affinity/selectivity landscape, zoomed in around
optimal sequences. Scores are shown in Rosetta energy units (eu). Each dot
represents a peptide sequence; X and Y coordinates indicate affinity and selec-
tivity scores, respectively (see Ref. [19]), with more negative numbers corre-
sponding to higher affinity and selectivity. Sequences on the pareto-optimal front
(i.e., those for which affinity and selectivity cannot be improved simultaneously;
gray points) are connected with dashed lines. Adapted from Fig. 4a in Ref. [19]

Protein-Peptide Binding Design

260

plausibility (discard candidates with potential structural prob-
lems not properly recognized by the structural modeling
framework), and finally choosing among remaining candidates
based on the predicted scores. Depending on the availability of
time and computational resources, one may also perform
explicit-solvent molecular dynamics simulations of chosen can-
didates to build further support of at least local stability of the
peptide in the binding site. Although relevant timescales will
differ between systems, at least 10–100 ns of sampling is likely
required in most situations to make any relevant observations.
Additional issues in selecting candidate sequences are discussed
in Note 4.

4 Notes

 1. Our analysis showed that when a homologous template for a
PDZ domain has around 35–45 % sequence identity to the
target sequence, the Cα RMSD between the binding pockets
of the true structure and the homology model has a median of
1.4 Å [19]. Also, when comparing apo and peptide-bound
structures of PDZ domains, we noticed that PDZ binding sites
tend to widen upon peptide binding [19]. Backbone rear-
rangements are not modeled in the Rosetta FlexPepDock, but
it was shown that although these rearrangements are small,
they are enough to affect the outcomes of the structural simu-
lation significantly [27]. Therefore, peptide-bound structures
are strongly preferred as homology- modeling templates. For
example, in our previous work, we found that a PDZ domain
homology model based on a peptide-bound structure with 40
% sequence identity performed much better in binding predic-
tion than one based on an apo structure with 50 % sequence
identity (unpublished data).

 2. In our PDZ study, we conducted benchmark tests for two PDZ
domains, NHERF-2 PDZ2 (N2P2) and MAGI-3 PDZ6
(M3P6), with Rosetta 3.4 [22] using the scoring function
score12. We observed that dropping the backbone statistical
terms “rama” and “omega” significantly improved performance
[19]. The AUCs before and after omitting these terms were
0.57 and 0.77 for M3P6 (25 binders and 16 non-binders in the
benchmark set; Fig. 3). In preparation of this manuscript, we
also tested the performance of the new scoring function
talaris2013 used in a newer version of Rosetta
(Rosetta_2014.35.57232_bundle), and the AUCs before and
after dropping “rama” and “omega” were 0.71 and 0.76 for
M3P6. This omission also marginally improves the performance
on N2P2 (AUCs 0.86 and 0.91 before and after dropping),

Fan Zheng and Gevorg Grigoryan

261

although this domain has fewer data points in our benchmark
set (7 binders and 8 non-binders). Importantly, as no experi-
mental structures of M3P6 were available, we used a homology
model for simulating M3P6–peptide interactions in our study.
Given that the improvement due to omitting “rama” and
“omega” is larger for M3P6, it may be that the terms present
more of an issue for homology models than crystal structures.
Still, omitting the terms appears to improve the performance in
general (including additional PDZ domains we have tested
since our study; data not shown), and this may be due to the
fact that Rosetta scoring functions are generally optimized to
recognize/reproduce ground state-like conformations.

 3. The benchmark dataset in our PDZ domain study came from
the work of MacBeath and coworkers, which characterized
binding affinities for a large number of PDZ–peptide pairs [7].
The authors reported dissociation constants if they were below
100 μM, or simply labeled interactions as “weak” in the oppo-
site case. Thus, we naturally chose 100 μM as the cutoff for
separating “binders” from “non-binders” for ROC analysis

FP/(FP+TN)

T
P
/(
T
P
+
F
N
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC

M3P6'(0.77)
M3P6(0.57)

0 0.2 0.4 0.6 0.8 1

Fig. 3 An example ROC analysis, assessing the performance on differentiating
binders from non-binders for M3P6. Default Rosetta scoring function score12
(gray line, labeled as M3P6) and a modified version that omits “rama” and
“omega” (black line, labeled as M3P6′) are compared. Numbers in parenthesis
indicate the area under curve (AUC) for each case. TP: number of true positives,
FP: number of false positives, TN: number of true negatives, FN: number of false
negatives. Adapted from Fig. 2 in Ref. [19]

Protein-Peptide Binding Design

262

[19]. If quantitative affinity measurements are not available,
SPOT-array or phage-display data can also be used to classify
sequences into two categories. However, one should use cau-
tion with such data, as they are in general more error prone,
especially with respect to false negatives (i.e., true binders that
are not detected in the assay).

 4. It may be unnecessary to experimentally test all candidate
sequences selected in steps 12 and 13. It is generally advanta-
geous to characterize sequences spanning different levels of
selectivity, to determine whether predicted affinity/selectivity
trade-offs are correct. When possible and applicable, choose
sequence subsets with diverse structural strategies for reaching
either affinity or selectivity.

References

 1. Ryan DP, Matthews JM (2005) Protein-
protein interactions in human disease. Curr
Opin Struct Biol 15(4):441–446

 2. Bashor CJ, Horwitz AA, Peisajovich SG, Lim
WA (2010) Rewiring cells: synthetic biology as
a tool to interrogate the organizational princi-
ples of living systems. Annu Rev Biophys
39:515–537

 3. Pawson T, Nash P (2003) Assembly of cell
regulatory systems through protein interaction
domains. Science 300(5618):445–452

 4. Kuriyan J, Cowburn D (1997) Modular pep-
tide recognition domains in eukaryotic signal-
ing. Annu Rev Biophys Biomol Struct
26:259–288

 5. Neduva V, Linding R, Su-Angrand I, Stark A,
de Masi F, Gibson TJ, Lewis J, Serrano L,
Russell RB (2005) Systematic discovery of new
recognition peptides mediating protein inter-
action networks. PLoS Biol 3(12):2090–2099

 6. Tonikian R, Zhang YN, Sazinsky SL, Currell
B, Yeh JH, Reva B, Held HA, Appleton BA,
Evangelista M, Wu Y, Xin XF, Chan AC,
Seshagiri S, Lasky LA, Sander C, Boone C,
Bader GD, Sidhu SS (2008) A specificity map
for the PDZ domain family. PloS Biol
6(9):2043–2059

 7. Stiffler MA, Chen JR, Grantcharova VP, Lei Y,
Fuchs D, Allen JE, Zaslavskaia LA, MacBeath
G (2007) PDZ domain binding selectivity is
optimized across the mouse proteome. Science
317(5836):364–369

 8. Jones RB, Gordus A, Krall JA, MacBeath G
(2006) A quantitative protein interaction net-
work for the ErbB receptors using protein
microarrays. Nature 439(7073):168–174

 9. Birnbaum ME, Mendoza JL, Sethi DK, Dong
S, Glanville J, Dobbins J, Ozkan E, Davis MM,

Wucherpfennig KW, Garcia KC (2014)
Deconstructing the peptide-MHC specificity
of T cell recognition. Cell 157(5):1073–1087

 10. Chen JR, Chang BH, Allen JE, Stiffler MA,
MacBeath G (2008) Predicting PDZ domain-
peptide interactions from primary sequences.
Nat Biotechnol 26(9):1041–1045

 11. Kamisetty H, Ghosh B, Langmead CJ, Bailey-
Kellogg C (2014) Learning sequence determi-
nants of protein: protein interaction specificity
with sparse graphical models, Research in
computational molecular biology. Springer,
New York, pp 129–143

 12. London N, Lamphear CL, Hougland JL,
Fierke CA, Schueler-Furman O (2011)
Identification of a Novel Class of Farnesylation
Targets by Structure-Based Modeling of
Binding Specificity. PloS Comput Biol
7(10):e1002170

 13. London N, Gulla S, Keating AE, Schueler-
Furman O (2012) In silico and in vitro eluci-
dation of BH3 binding specificity toward
Bcl-2. Biochemistry 51(29):5841–5850

 14. Roberts KE, Cushing PR, Boisguerin P,
Madden DR, Donald BR (2012)
Computational design of a PDZ domain pep-
tide inhibitor that rescues CFTR activity. PloS
Comput Biol 8(4)

 15. Yanover C, Bradley P (2011) Large-scale char-
acterization of peptide-MHC binding land-
scapes with structural simulations. Proc Natl
Acad Sci U S A 108(17):6981–6986

 16. DeBartolo J, Dutta S, Reich L, Keating AE
(2012) Predictive Bcl-2 family binding models
rooted in experiment or structure. J Mol Biol
422(1):124–144

 17. DeBartolo J, Taipale M, Keating AE (2014)
Genome-wide prediction and validation of

Fan Zheng and Gevorg Grigoryan

263

peptides that bind human prosurvival Bcl-2
proteins. PloS Comput Biol 10(6)

 18. King CA, Bradley P (2010) Structure-based
prediction of protein-peptide specificity in
Rosetta. Proteins 78(16):3437–3449

 19. Zheng F, Jewell H, Fitzpatrick J, Zhang J,
Mierke DF, Grigoryan G (2015)
Computational design of selective peptides to
discriminate between similar PDZ domains in
an oncogenic pathway. J Mol Biol
427(2):491–510

 20. Grigoryan G, Zhou F, Lustig SR, Ceder G,
Morgan D, Keating AE (2006) Ultra-fast eval-
uation of protein energies directly from
sequence. PloS Comput Biol 2(6):551–563

 21. Grigoryan G, Reinke AW, Keating AE (2009)
Design of protein-interaction specificity gives
selective bZIP-binding peptides. Nature
458(7240):859–U852

 22. Leaver-Fay A, Tyka M, Lewis SM, Lange OF,
Thompson J, Jacak R, Kaufman K, Renfrew
PD, Smith CA, Sheffler W, Davis IW, Cooper
S, Treuille A, Mandell DJ, Richter F, Ban YEA,
Fleishman SJ, Corn JE, Kim DE, Lyskov S,
Berrondo M, Mentzer S, Popovic Z, Havranek
JJ, Karanicolas J, Das R, Meiler J, Kortemme
T, Gray JJ, Kuhlman B, Baker D, Bradley P
(2011) Rosetta3: an object-oriented software
suite for the simulation and design of macro-
molecules. Methods Enzymol 487:545–574

 23. Chaudhury S, Lyskov S, Gray JJ (2010)
PyRosetta: a script-based interface for imple-
menting molecular modeling algorithms using
Rosetta. Bioinformatics 26(5):689–691

 24. Arnold K, Bordoli L, Kopp J, Schwede T
(2006) The SWISS-MODEL workspace: a
web-based environment for protein structure
homology modelling. Bioinformatics
22(2):195–201

 25. Eswar N, Webb B, Marti-Renom MA,
Madhusudhan MS, Eramian D, Shen MY,
Pieper U, Sali A (2006) Comparative protein
structure modeling using Modeller. Current
protocols in bioinformatics Chapter 5: Unit 5 6

 26. Zhou J, Grigoryan G (2015) Rapid search for
tertiary fragments reveals protein sequence-
structure relationships. Protein Sci
24(4):508–524

 27. Raveh B, London N, Zimmerman L, Schueler-
Furman O (2011) Rosetta FlexPepDock ab-
initio: simultaneous folding, docking and
refinement of peptides onto their receptors.
PloS One 6(4)

 28. Fawcett T (2006) An introduction to ROC
analysis. Pattern Recogn Lett 27(8):861–874

 29. Hahn S, Ashenberg O, Grigoryan G, Keating
AE (2010) Identifying and reducing error in
cluster- expansion approximations of protein
energies. J Comput Chem 31(16):2900–2914

 30. He L, Friedman AM, Bailey-Kellogg C (2012)
A divide-and-conquer approach to determine
the Pareto frontier for optimization of protein
engineering experiments. Proteins
80(3):790–806

 31. Wang CK, Pan LF, Chen J, Zhang MJ (2010)
Extensions of PDZ domains as important
structural and functional elements. Protein
Cell 1(8):737–751

Protein-Peptide Binding Design

265

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_16, © Springer Science+Business Media New York 2016

 Chapter 16

 Computational Design of DNA-Binding Proteins

 Summer Thyme and Yifan Song

 Abstract

 Predicting the outcome of engineered and naturally occurring sequence perturbations to protein–DNA
interfaces requires accurate computational modeling technologies. It has been well established that com-
putational design to accommodate small numbers of DNA target site substitutions is possible. This chapter
details the basic method of design used in the Rosetta macromolecular modeling program that has been
successfully used to modulate the specifi city of DNA-binding proteins. More recently, combining compu-
tational design and directed evolution has become a common approach for increasing the success rate of
protein engineering projects. The power of such high-throughput screening depends on computational
methods producing multiple potential solutions. Therefore, this chapter describes several protocols for
increasing the diversity of designed output. Lastly, we describe an approach for building comparative mod-
els of protein–DNA complexes in order to utilize information from homologous sequences. These models
can be used to explore how nature modulates specifi city of protein–DNA interfaces and potentially can
even be used as starting templates for further engineering.

 Key words Protein–DNA interactions , Computational design , Rosetta , Specifi city , In silico predic-
tion , Direct readout , Homology model

1 Introduction

 Sequence-specifi c protein–DNA interactions play a key role in fun-
damental cellular processes. Alterations to gene regulatory net-
works, via changes to transcription factor binding site affi nity , drive
disease progression [1 – 5] and potentially species evolution [6 – 10].
Being able to accurately model these interactions can enhance
understanding of the biophysical basis behind such changes [1],
enabling the development of tools to test predictions and modu-
late the interactions. The Rosetta program for macromolecular
modeling and design [11], the focus of this chapter, has been used
to redesign protein–DNA interfaces. The design algorithm in
Rosetta searches protein sequence and rotameric [12] (see Note 1)
space, fi nding amino acid combinations that are energetically com-
patible with the DNA sequence being targeted. Evaluation of each

266

amino acid combination with a physically based energy function
identifi es the lowest-energy designed sequence [11 , 13].

 Proteins recognize DNA partners through direct interactions
between side chains and bases, water-mediated contacts, and indi-
rect readout, the sequence-dependent shape, and conformation of
the DNA [14 , 15]. High specifi city positions in the binding sites of
many DNA-interacting proteins, where one nucleotide is much
preferred over others, are often characterized by strong direct con-
tacts that are disrupted when the favored base is replaced [14 , 16 ,
 17]. Computational protein–DNA interface design has mainly
been successful at altering these direct interactions to shift binding
specifi city for small numbers of nucleotide substitutions [18 – 22].
The main drivers of direct readout are hydrogen bonding and
hydrophobic packing, both crucial components of computational
design algorithms that are actively being improved upon [23 – 25].
Water-mediated interactions are generally captured through
 implicit solvent models [26 , 27], although explicit water molecules
have recently been incorporated into computational design algo-
rithms [28]. Modeling indirect readout is arguably the current big-
gest challenge for computational protein–DNA design. All previous
redesign successes maintained the DNA backbone conformation
from the starting crystal structure, although it is clear from crystal
structures of computational designs [22] and evolved interfaces
that extensive movements of the DNA can occur [29 – 31]. There is
some knowledge of how DNA bending preferences infl uence tar-
get site specifi city [14 , 15], but these energetic components are
just beginning to be incorporated into the Rosetta program [27]
(see Note 2).

 One way to go beyond limits in state-of-the-art computational
models, while simultaneously gathering experimental data to
improve them, is to combine design with directed evolution .
Computational design results can be used for low-activity starting
points for directed evolution [32 – 35] or can guide initial library
design. Directed evolution is itself limited in how many amino
acids can be simultaneously randomized, and computational design
can enable many more positions to be concurrently explored by
suggesting the inclusion of only certain amino acid types at each
position in a protein library [36 – 39]. There are a number of
approaches for directed evolution of protein–DNA interactions
[29 , 36 , 40 – 43] that can be used in conjunction with computa-
tional design to increase the likelihood of engineering success and
potentially feedback to the models to improve future outcomes.

 Utilizing all available information about a particular protein
sequence is important for success in protein engineering, particularly
if the information can be merged with a high-throughput screening
method. In this chapter we describe several protocols to diversify
computational design results over the standard fi xed- backbone

Summer Thyme and Yifan Song

267

approach: using libraries of native-like interactions (called motifs) to
guide rotamer sampling [13 , 36 , 44 , 45], explicit design for specifi c-
ity using a genetic algorithm [20 , 22], and fl exibility of the protein
backbone [22]. In addition to these methods for increased design
diversity, sequence information from protein homologues can
increase our understanding of how the specifi cities of a protein of
interest are modulated by natural evolution [46 – 48]. One way to
incorporate this information into the design process is by building
high-resolution homology models of protein–DNA complexes and
predicting specifi cities of homologues from the models [27 , 47].
Here we describe protein–DNA homology modeling and target site
prediction with Rosetta. Homology models can be used in conjunc-
tion with directed evolution in engineering pipelines [49] and can
potentially even be used as starting templates for computational
design.

2 Materials

 1. The Rosetta software suite. The release version of Rosetta
(Rosetta 2015.19 as of May, 2015) is free of charge for aca-
demics and nonprofi t users and is available from https://www.
rosettacommons.org/software/license-and-download . While
the majority of the protocols described in this chapter can be
completed with this release version, some advanced design
modes, such as using motifs [13 , 36 , 44 , 45], require the
developer’s version of Rosetta. Access to the developer’s repos-
itory can be obtained through a sponsor from or collaboration
with a lab that is a member of RosettaCommons (see Note 3),
and protocols that require these extended capabilities are noted
throughout.

 2. Python (version ≥ 2.4 and <3.0) to compile the Rosetta code.
A local version of the compiling software SCons comes pack-
aged with Rosetta and is run via the scons.py script that is also
included with the Rosetta download (see Note 4).

 3. A Unix or Linux server or cluster for running Rosetta jobs (see
 Note 5). The Rosetta software can run on multiple platforms
(see Note 6), however they may not all be fully supported. The
majority of experiments, any protocols other than the standard
design method (Subheading 3.1), will require submitting
many runs in parallel to a Unix or Linux cluster to achieve
adequate results with reasonable calculation times.

 4. A high-resolution (preferably <3.0 Å) structure of a protein–
DNA complex. Alternatively, a homology model can be used if
a protein–DNA complex of a related protein is available to use
as a template.

Design of DNA Binding Proteins

https://www.rosettacommons.org/software/license-and-download
https://www.rosettacommons.org/software/license-and-download

268

 5. The homology modeling protocol (Subheading 3.4) currently
requires several in-house scripts (see Note 7) and the following
databases: NCBI NR (see Note 8) and HH-suite (see Note 9).

3 Methods

 1. Open a terminal window (see Note 5).
 2. Enter the Rosetta source directory that contains the scons.py

fi le. Compile a version of the code that can be ported to a dif-
ferent computer system and operating platform by typing
“scons bin mode=release extras=static” (see Notes 10 and 11).

 3. Make a directory where the code will be run and the output
collected by typing “mkdir nameofdirectory” (see Notes 12
and 13).

 4. Make a fi le that contains the arguments read by Rosetta (Fig. 1)
with your favorite text editor. The text editor Vi (see Note 14)
is likely present in your Linux/Unix system. To make the argu-
ments fi le using Vi by typing “vi nameofargsfi le”, entering
insertion mode by typing “i”, and then typing the desired fl ags
using Fig. 1 as a guide.

 5. Make an XML script fi le (see Note 15) that contains protocol
instructions given to the program through RosettaScripts
[51], using Fig. 2 as a guide for the content.

 6. The amino acid positions in the protein–DNA interfaces that
will be designed are automatically calculated based on the
“dna_defs” and “z_cutoff” fl ags that are part of the operations
(TASKOPERATIONS) included in the XML fi le (Fig. 2). If
the user would instead prefer to only allow a subset of amino
acid types and designed positions, a resfi le (Fig. 3) can be used.
The resfi le will override automatic detection of interface resi-
dues by the addition of the line “-resfi le nameoffi le” to the args
fi le (Fig. 1). The XML script should also be modifi ed to add
the task operation “<ReadResfi le name=RRF/>” and replace
the use of AUTOprot with RRF in the mover. The “dna_def”
option in the DnaInt operation is no longer necessary because
the target base is specifi ed in the resfi le.

 7. Choose an energy function that is optimized for protein–DNA
interactions (see Note 16), and make a fi le containing the nec-
essary weights for energy function components (Fig. 4). The
name of the weights fi le is the input for the fl ag “-score::weights
nameoffi le” (Fig. 1).

 8. If necessary, modify the Rosetta database to go with the energy
function shown in Fig. 4 . Previously used optimized energy
functions [13] have required database changes (see Note 17).

3.1 Standard
Protein–DNA Interface
Design

Summer Thyme and Yifan Song

269

 9. Run code by submitting to whatever computer cluster you are
using or by typing “rosettaDNA.static.linuxgccrelease @
nameofargsfi le” (see Notes 18 and 19).

 Calculations of specifi city and binding energy are used to identify
designed sequences with properties of interest (see Note 20).
These methods can also be used to predict the binding sites for
proteins with unknown target preferences.

 The simplest method of specifi city prediction [1 , 16] is the addi-
tion of the two lines to the XML fi le. This method is not suitable
for protocols that involve any backbone movement because the
backbone is optimized for the base-pair originally designed for and
the energy would be biased for this base-pair.

3.2 Assessment
of Designs Using
Specifi city
and Binding Energy
Calculations

3.2.1 Automatic
Specifi city and Binding
Energy Prediction
Following Fixed-
Backbone Design

-in:ignore_unrecognized_res # ignore anything in the pdb structure that is
not recognizable
- 2QOJ.pdb # input structure
-mute all
and include for large-scale runs
-unmute protocols.dna # unmute a subset of the output if desired
-score::weights rosetta_database/scoring/weights/optimizedenergyfxn.wts
energy function for evaluating structures (see Fig. 5)
-score:output_residue_energies # include information in the pdb about the
interaction energies of residues in the design
-run:output_hbond_info # include information in the pdb about the
hydrogen bonding of residues in the design
-database rosetta_database # required Rosetta database, see Note 17 for
useful changes to the database
-ex1 # extra rotamer sampling around chi angle 1
-ex2 # extra rotamer sampling around chi angle 2
-ex1aro::level 6 # even more extra rotamer sampling for aromatic residues

can have large repulsion scores if the rotamer is not in the optimal position.
-ex2aro::level 6 # even more extra rotamer sampling for aromatic residues
around chi angle 2
-exdna::level 4 # use DNA rotamers and include extra sampling (inclusion

-jd2:dd_parser # use the parser protocols
-parser:protocol # XML script (see Fig. 3)
-overwrite # if a pdb with the same name already exists in the directory
where the design occurring, then overwrite the old pdb
- design_

 Fig. 1 Example arguments fi le. This fi le controls the parameters of the design run or specifi city calculation. All
writing after the # mark is a comment that is not read in by the Rosetta program. This fi gure is reproduced with
publisher’s permission from Ref. [50]

Design of DNA Binding Proteins

270

 1. Follow instructions in Subheading 3.1 with the following
described variations to the XML script (Fig. 2) and arguments
fi les (Fig. 1).

 2. Replace line a with line b in the XML fi le (Fig. 2) and run the
protocol exactly as described in Subheading 3.1 , but with this
new XML fi le instead of the original.
 line a : <DnaInterfacePacker name=DnaPack scorefxn=DNA
task_operations=IFC,IC,AUTOprot,DnaInt/>

 line b : <DnaInterfacePacker name=DnaPack scorefxn=DNA
task_operations=IFC,IC,AUTOprot,DnaInt binding=1 probe_
specifi city=3/>

 3. The number following the added options refers to the number
of “repacks,” the lowest energy of which is used in the calcula-
tions. A repack is a search similar to the design procedure
except that only rotameric state is varied while amino acid
types are fi xed. The recommended number of repacks is at least
three, to reduce noise in the resulting energies.

 4. The calculation results are located inside the output pdb fi le
for each design. Open the fi le with a text-editing program to
view the data. If multiple fi les need to be analyzed, a script may
be necessary to parse the information.

<dock_design>
 <TASKOPERATIONS>
 <InitializeFromCommandline name=IFC/> # use the information in the args
 <IncludeCurrent name=IC/> # includes the rotamers in the input structure (may not want to use)
 <RestrictDesignToProteinDNAInterface name=DnaInt base_only=1 z_cutoff=6.0 dna_defs=Z.409.GUA/> #
make the target site substitution of interest (chainID.crystalposition.type) and designate the sphere of residues
surrounding it that are designable and packable
 <OperateOnCertainResidues name=AUTOprot> # works with the DnaInt operation to enable residues to be
chosen for design and packing if they are marked as AUTO
 <AddBehaviorRLT behavior=AUTO/>
 <ResidueHasProperty property=PROTEIN/>
 </OperateOnCertainResidues>
 </TASKOPERATIONS>
 <SCOREFXNS>
 <DNA weights=optimizedenergyfxn/>
directory (ie, rosetta_database/scoring/weights/optimizedenergyfxn.wts)
 </SCOREFXNS>
 <FILTERS>
 <FalseFilter name= /> # RosettaScripts has the ability to only output designs that pass a designated

 </FILTERS>
 <MOVERS>
 <DnaInterfacePacker name=DnaPack scorefxn=DNA task_operations=IFC,IC,AUTOprot,DnaInt/>
 </MOVERS>
 <PROTOCOLS>
 <Add mover_name=DnaPack/>
 </PROTOCOLS>
</dock_design>

 Fig. 2 Example RosettaScripts XML fi le. This fi le can be used to set up and modify Rosetta protocols with. All
writing after the # mark is a comment that is not read in by the Rosetta program. This fi gure is reproduced with
publisher’s permission from Ref. [50]

Summer Thyme and Yifan Song

271

 The main goal of a specifi city calculation is to fi nd and compare the
energy of a set of given sequences by exploring rotameric and
potentially backbone space. The computational program used to
generate a design is not always the best choice for the specifi city
prediction. For example, a crystal structure backbone may have an
energetic bias for the native base-pair and a fl exible backbone
 specifi city calculation can overcome this bias by enabling the pro-
tein backbone to be optimized for each base.

3.2.2 Protocol
for Specifi city Calculation
that Is Suitable
Following Any Design
Procedure

AUTO # all protein positions not
explicitly noted are to be marked as
AUTO, the same as using the
AUTOprot operation
start
28 A PIKAA L # forces amino acid L
at position 28 on chain A
83 A PIKAA R
-12 C NATRO # g
rotamer
-11 C NATRO # c
-10 C NATRO # a
-9 C NATRO # g
-8 C NATRO # a
-7 C NATAA
residue type, but allows different
rotamers
-6 C TARGET GUA # c, target
base, same as using the dna_def
option, but DNA is required to be
explicit in the
-5 C NATAA # g
-4 C NATRO # t
-3 C NATRO # c
-2 C NATRO # g
-1 C NATRO # t
1 D NATRO # a
2 D NATRO # c
3 D NATRO # g
4 D NATRO # a
5 D NATAA # c
6 D TARGET CYT # g
7 D NATAA # t
8 D NATRO # t
9 D NATRO # c
10 D NATRO # t
11 D NATRO # g
12 D NATRO # c

 Fig. 3 Example resfi le. This fi le is used if specifi c protein positions or amino acid
types need to be forced in the design run. It is an alternative to allowing the loca-
tion of the target substitution to control the designable protein positions. All writ-
ing after the # mark is a comment that is not read in by the Rosetta program. This
fi gure is reproduced with publisher’s permission from Ref. [50]

Design of DNA Binding Proteins

272

 1. Modify the XML script to fi x the protein sequence of the struc-
ture being analyzed. In the TASKOPERATIONS section of
the XML fi le, the operation to fi x the protein sequence is added
with the following four lines:

 <OperateOnCertainResidues name=ProtNoDes>
 <RestrictToRepackingRLT/>
 <ResidueHasProperty property=PROTEIN/>
 </OperateOnCertainResidues>
 To use this operation, the DnaInterfacePacker mover must
be changed to the following:
 <DnaInterfacePacker name=DnaPack scorefxn=DNA task_
operations=IFC,IC,AUTOprot,ProtNoDes,DnaInt/>

 2. If desired, modify the arguments fi le to increase the number of
 rotamers (see Note 21). The addition of the fl ags “-ex3” and
“-ex4” is a reasonable increase. Further increases can be
enabled by using the “::level #” addition to any of the -ex fl ags.
The available levels are 1–7 (see Note 22).

METHOD_WEIGHTS ref -0.3 -0.7 -0.75 -0.51 0.95 -0.2 0.8
-0.7 -1.1 -0.65 -0.9 -0.8 -0.5 -0.6 -0.45 -0.9 -1.0 -0.7 2.3 1.1 #
reference weights that are for each amino acid type

fa_atr 0.95 # attractive forces between residues
fa_rep 0.44 # repulsive forces between residues
fa_intra_rep 0.004 # repulsion within a sidechain
fa_sol 0.65 # one component of desolvation
lk_ball 0.325 # newer orientation-dependent desolvation
lk_ball_iso -0.325 # newer orientation-dependent desolvation
hack_elec 0.5 # coulombic electrostatics
fa_dun 0.56 # probability for each approximated rotamer
ref 1 # weight for the reference energies
hbond_lr_bb 1.17 # hydrogen bonding
hbond_sr_bb 1.17 # hydrogen bonding
hbond_bb_sc 1.17 # hydrogen bonding
hbond_sc 1.17 # hydrogen bonding
p_aa_pp 0.64 # probability of amino acid type given
backbone
dslf_ss_dst 0.5 # disulphides
dslf_cs_ang 2 # disulphides
dslf_ss_dih 5 # disulphides
dslf_ca_dih 5 # disulphides
pro_close 1.0 # proline ring closure

 Fig. 4 Example energy function fi le. This energy function was optimized to produce
high sequence recovery of protein–DNA interactions over a benchmark set of pro-
teins [13]. All writing after the # mark is a comment that is not read in by the Rosetta
program. This fi gure is reproduced with publisher’s permission from Ref. [50]

Summer Thyme and Yifan Song

273

 3. Set up four runs, one for each base type (or more if the target
has multiple base-pair substitutions, do runs for whichever
competing states are to be compared).

 4. Complete a minimum of 10 runs per base type for a fi xed-
backbone approach and at least 50 (×4 or more) for any
approach involving fl exible backbone (see Subheading 3.3.3).

 5. Collect the total_score value from inside of each pdb (see Note
23). The specifi city can be calculated from the lowest-energy
structure or from the mean or median of the energies of all
structures. A comparison of all these three specifi city calcula-
tions is most informative (see Notes 24 and 25).

 Using computation to guide directed evolution libraries depends
on having multiple designs to combine in the selection process.
The standard fi xed-backbone approach yields a single or very lim-
ited number of design solutions with a given energy function. This
most energetically favorable computational model is not always the
optimal experimental solution, yet it can contain individual high-
quality interactions. Incorporating information from multiple low-
energy solutions by using directed evolution is one way to more
fully take advantage of the information available from modeling.

 Design procedures are computationally limited in how many rota-
mers can be included in the design search. This reliance of design
on the rotamer approximation means that sometimes energetically
favorable interactions will be missed. One way to get around this
limit is to increase rotamer sampling in regions likely to form favor-
able interactions by using motifs [13 , 36 , 44 , 45], libraries of inter-
actions seen in crystal structures. In one type of motif-based
protocol a vastly expanded rotamer set is compared to the motif
library, and those rotamers that can form one of these native-like
interactions with a target base-pair are identifi ed. The design pro-
cedure can then be biased with these favorable rotamers by adding
them to the standard rotamer set and giving them an energetic
bonus, overcoming rotamer sampling limitations and also poten-
tial inaccuracies in the energy function. Expanded instructions for
running this protocol are available in Ref. [13].

 1. Acquire access to the developer’s version of the code (see
Subheading 2).

 2. Compile the dna_motif_collector application in order to build
a library of protein–DNA motifs.

 3. Download all crystallized protein–DNA complexes under
some resolution cutoff (<2.8 is reasonable).

 4. Run the following command (or a slight variation of it): /rosetta/
bin/dna_motifs_collector.linuxgccrelease - motif_output_direc-
tory < directory name> - ignore_unrecognized_res - adducts dna_

3.3 Rosetta Modes
for Increasing
Diversity of Designed
Sequences

3.3.1 Motifs

Design of DNA Binding Proteins

274

major_groove_water - database <rosetta database> - l <name of
output motif list>

 5. Compile the motif_dna_packer_design app.
 6. Add the line “special_rot 1.0” to the energy function (Fig. 4).
 7. Add the line “-patch_selectors SPECIAL_ROT” to the args

fi le (Fig. 1).
 8. Add fl ags to the args fi le (Fig. 1) to load in the motif library, set

up cutoffs for acceptance of a motif rotamer , pick a rotamer
level for the expanded motif rotamer library, and pick the ener-
getic bonuses to try for these added rotamers . An example
command line is shown in the following step. All command
line options are explored in extensive detail in the supplemen-
tal methods of Ref. [13].

 9. /rosetta/bin/motif_dna_packer_design.linuxgccrelease - run_
motifs - dtest 2.0 - z1 0.97 - z2 0.97 - r1 1.0 - r2 1.0 - dna::design::z_
cutoff 6.0 - motifs::rotlevel 8 - motifs::list_motifs <name of output
motif list> - motifs::output_fi le <output fi le for motifs> - s <PDB
fi le being designed> - score::weights <energy function fi le>
- ignore_unrecognized_res - database <rosetta database> - ex1
- ex2 - ex1aro::level 6 - ex2aro::level 6 - extrachi_cutoff 0 -
 dna::design::dna_defs <position being designed with motifs,
e.g. X.409.CYT> - special_rotweight <weight for motif rotam-
ers, e.g. -1.25> - num_repacks 4

 Multistate design relies on a genetic algorithm method to explicitly
design for one state and against others [52 – 54]. In protein–DNA
design, those states are the targeted bases and the alternative pos-
sible bases [20 , 22].

 1. Follow instructions in Subheading 3.1 with the following vari-
ations to the XML script (Fig. 2).

 2. Modify the XML fi le by replacing the standard DNA design
mover with the following mover for doing multistate:

 <DnaInterfaceMultiStateDesign name=msd scorefxn=
DNA task_operations=IFC,IC,AUTOprot,DnaInt pop_
size=20 num_packs=1 numresults=0 boltz_temp=2
anchor_offset=15 mutate_rate=0.8 generations=5/>

 3. Additionally, the line “<Add mover_name=DnaPack/>” must
be replaced with the line:

 <Add mover_name=msd/>

 4. All of the parameters of the genetic algorithm can be varied,
and the ones in the above line are parameters to test the proce-
dure, rather than do a complete run. Refer to cited literature
[20 , 22 , 52] to identify reasonable starting parameters.

3.3.2 Multistate Design

Summer Thyme and Yifan Song

275

 1. Follow instructions in Subheading 3.1 with the following
described variations to the XML script (Fig. 2) and arguments
fi les (Fig. 1).

 2. Modify the XML fi le to include a second mover before the
standard design mover (DnaInterfacePacker). The line to add
is:

 <DesignProteinBackboneAroundDNA name=bb scorefxn=
DNA task_operations=IFC,IC,AUTOprot,DnaInt type=ccd
gapspan=4 spread=3 cycles_outer=3 cycles_inner=1
temp_initial=2 temp_fi nal=0.6/>

 3. Additionally, the following line must be added after the line
“<Add mover_name=DnaPack/>”:

 <Add mover_name=bb/>

 4. The DesignProteinBackboneAroundDNA enables the ccd
backbone movement [55 , 56]. An advanced user of Rosetta
and RosettaScripts format could explore protein backbone
space with alternative protocols [57 – 61] and then use those
structures as input for standard design (see Note 26).

 5. Many more design runs, at least 50 for a single base-pair sub-
stitutions, are required to explore the range of design possibili-
ties when using fl exible backbone simulation, as the diversity of
results will be signifi cantly increased.

 The High-Temp packer approach increases the temperature that
the simulated annealing algorithm driving the design process con-
verges to. Using this approach increases the chance of producing a
design that is low-energy, but not the absolute lowest energy. The
supplemental methods of Ref. [13] describes the two code changes
required to use this method. These changes can be made to any
version of Rosetta and then the code must be recompiled.

 The current protocol of protein–DNA complex homology mod-
eling is based on a modifi ed version of RosettaCM [62]. It mod-
els proteins structures in the same way as RosettaCM and treats
the DNA as a rigid body. The interactions between protein and
DNA are optimized during the RosettaCM protein structure
modeling. This procedure requires that there is a homologue of
the protein of interest that has been crystallized bound to
DNA. In this example, we use the structure of I-OnuI (PDB
code: 3QQY).

 1. Set up standard homology modeling input fi les by running
“setup_cm.pl sequence_fi le” (see Note 7).

 2. Choose a template structure of which the DNA structure
(example, 3qqy) will be used for modeling.

3.3.3 Protein Flexibility

3.3.4 High-Temp Packer

3.4 Design Starting
from Homology
Models of Protein–
DNA Complexes

Design of DNA Binding Proteins

276

 3. Superimpose all input templates for the protein homology
modeling onto the template structure with the DNA, using
 pymol or superposition scripts.

 4. Thread the new DNA sequence onto the structure with DNA
“change_base.py --inpdb 3QQY.pdb --dna_seq ACGT --out-
pdb out.pdb --chain B” (chain B is the DNA chain grafted
from 3QQY, dna_seq gives the DNA sequence input being
threaded to chain B of 3QQY.pdb).

 5. Copy and paste DNA coordinates from 3QQY to all the super-
imposed template structures in a text editor.

 6. If any protein segments in template structures clashes with
DNA (this can be visually identifi ed in pymol), remove the
coordinates of the clashed segments in a text editor.

 7. A rosetta_scripts xml input is created in step 1 . Edit the xml
input and add “add_hetatm=1” to the <Hybridize …> line, so
that DNA structure from the templates is added for
modeling.

 8. Run RosettaCM using the fl ags set up by step 1 . (rosetta_
scripts.xxx @fl ags_common @fl ags0_C1 -nstruct 100 (generat-
ing 100 models)

 9. Using the energy output (score.sc) to identify 20 lowest-
energy models.

 10. Using the ∆∆G protocol (see rosetta scripts documentation) to
calculate the interaction between protein and DNA of the 20
low-energy models (Fig. 5), select the model with the stron-
gest interaction.

4 Notes

 1. A rotamer is a low-energy conformation of an amino acid [12].
The protocol to identify the lowest-energy design is based in a
simulated annealing algorithm [11].

 2. The DNA movement protocols in Rosetta are currently experi-
mental and undergoing development. Contact Philip Bradley
at pbradley@fhcrc.org for information on the most up-to-date
methods for designing with DNA fl exibility .

 3. See https://www.rosettacommons.org/about for a compre-
hensive list of all members of RosettaCommons available for
collaborations.

 4. Other compilation software, such as CMake, can be used but
are not as well supported. Further details on building Rosetta
can be found here: https://www.rosettacommons.org/docs/
latest/Build-Documentation.html .

Summer Thyme and Yifan Song

https://www.rosettacommons.org/about
https://www.rosettacommons.org/docs/latest/Build-Documentation.html
https://www.rosettacommons.org/docs/latest/Build-Documentation.html

277

 5. Running Rosetta requires a basic understanding of Linux/
Unix commands. There are many available resources, and one
tutorial for a beginner user is located at the following web
address: http://www.ee.surrey.ac.uk/Teaching/Unix/ .

 6. A partial list of the supported platforms is available at the fol-
lowing web address: https://www.rosettacommons.org/docs/
latest/platforms.html .

 7. Contact Yifan Song at Cyrus Biotechnology, Inc. (yifan@cyrus-
bio.com).

 8. This database can be downloaded at the following web address:
 ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz .

 9. More information on the program and a download of the data-
base is available at the following web address: http://toolkit.
tuebingen.mpg.de/ .

 10. The mode=release command builds the release version, and it
is at least 10 times faster of an executable than the default
debug version. The only reason to leave out the “mode=release”
command is if you are developing code that will need to be
debugged. The “extras=static” command enables porting of
the complied code to other platforms because static linking of
shared libraries is completed. The only downside to the static
complication is that the executable size is large. The command
“-j #” can be used to parallelize the build into multiple threads
if you are compiling on a multiprocessor machine (ie, -j 20 for
splitting compilation over 20 machines).

 11. If the code is going to be run on a different computer system than
it was compiled, the rosettaDNA executable and entire rosetta_

 Fig. 5 Example prediction of target site preferences for a homology model. A pro-
tein–DNA complex was modeled for the homing endonuclease homologue Gin027,
and the interface binding energy (∆∆G) was calculated for the model with 34
possible target site orientations [47]. The predicted target site for this endonucle-
ase is highlighted with a magenta bar and corroborated by experimental charac-
terization [47]. The reverse complement of this target, a binding mode that cannot
be ruled out without a crystal structure, is shown with a gray dashed line

Design of DNA Binding Proteins

http://www.ee.surrey.ac.uk/Teaching/Unix/
https://www.rosettacommons.org/docs/latest/platforms.html
https://www.rosettacommons.org/docs/latest/platforms.html
ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz
http://toolkit.tuebingen.mpg.de/
http://toolkit.tuebingen.mpg.de/

278

database folder be moved to that system by typing “scp ./bin/
rosettaDNA.static.linuxgccrelease computerwhereitwillberun”
and “scp -r ../rosetta_database/ computerwhereitwillberun”.

 12. If the user plans on running parallel multiple trajectories of the
same code, the output of these trajectories needs to go into
different directories so that the output fi les do not overwrite
each other. One strategy is to create directories labeled job0-
job55 (if 55 trajectories are being completed) by using the
Unix command “mkdir job {0..55}”. A second, but much less
time-effective, option is to run jobs sequentially by using com-
mands in the arguments fi le or by using capabilities within
RosettaScripts [51]. This approach is not recommended if the
job is long, such as for multiple base-pair designs in which
many interface positions must be designed simultaneously.

 13. If you are running on a multiprocessor system that does not
have a job submission system, the program GNU parallel [63]
is a highly recommended way to run parallelized jobs. The
website explaining the program is http://www.gnu.org/soft-
ware/parallel/ . The following example command will use
GNU parallel to submit jobs 5 and have the results go into
separate job# directories: nice -19 ./bin/parallel -j 5 'cd {.}ƒ;
./bin/rosettaDNA.static.linuxgccrelease @../args > log;cd
../' ::: job* &.

 14. Many beginner Vi tutorials are available online (i.e., http://
www.infobound.com/vi.html).

 15. The XML fi les are a part of RosettaScripts [51]. This system
for protocol development provides a fl exible environment in
which movers and operations can be recombined into different
algorithms without having to recompile Rosetta.

 16. The energy function used in modeling makes a substantial dif-
ference in the design outcome. Energy functions optimized
specifi cally for protein–DNA interactions should be used in
protein–DNA design calculations for best results [13]. There
have been recent advancements in the Rosetta program, such
as the development of a new way to capture hydrogen- bonding
interactions [23], however the energy function must go
through an optimization process [13 , 64] for the problem of
interest before using new functionality.

 17. Change the 5 th and 7 th columns of the following fi ve lines in
the atom_properties.txt fi le (./rosetta_database/chemical/
atom_type_sets/fa_standard/atom_properties.txt) to the val-
ues shown here:

 Phos P 2.1500 0.5850 -4.1000 3.5000 14.7000
 Narg N 1.7500 0.2384 -10.0000 6.0000 11.2000
DONOR ORBITALS

Summer Thyme and Yifan Song

http://www.gnu.org/software/parallel/
http://www.gnu.org/software/parallel/
http://www.infobound.com/vi.html
http://www.infobound.com/vi.html

279

 NH2O N 1.7500 0.2384 -7.8000 3.5000 11.2000
DONOR ORBITALS
 Nlys N 1.7500 0.2384 -16.0000 6.0000 11.2000 DONOR
 ONH2 O 1.5500 0.1591 -5.8500 3.5000 10.8000
ACCEPTOR SP2_HYBRID ORBITALS
 Also change the fi fth column of the three HC atoms in the
LYS.params fi le to the value 0.48 from 0.33 to increase
the positive charge of lysine. The LYS.params fi le is found
here:
 “./rosetta_database/chemical/residue_type_sets/fa_
standard/residue_types/l-caa/LYS.params”.

 18. If running many jobs on a multiprocessor system, always sub-
mit a single test run to confi rm that all paths are correct and
that all necessary fi les are included.

 19. The number of runs that should be completed depends on how
many base pairs are being mutated in the target site. The num-
ber of base pairs controls the number of interface positions that
are designed (unless a resfi le is used, see Fig. 4). As a starting
point, a minimum of 10 runs should be completed for a fi xed-
backbone standard design for a one base-pair substitution. At
least 50 runs should be completed for a single base- pair pocket
with fl exibility (either protein or DNA). A triple base-pair
pocket with backbone fl exibility needs several hundred runs
(300–500) to assess the full range of low-energy solutions.

 20. DNA-interacting proteins can have either or both high activity
and specifi city [16]. Even without explicit design for specifi c-
ity, computational design procedures are biased to generate
high specifi city designs if it is possible because they optimize
for direct base-pair interactions. Nonspecifi c proteins, such as
DNA polymerase, often use DNA backbone contacts to gain
binding energy.

 21. The discreteness of rotamers is an approximation that is neces-
sary because of computational limits when all amino acids are
being considered. Increasing the number of rotamers can
improve design results [13]. When the amino acid sequence is
fi xed the number of rotamers included in the calculation can
be greatly increased and any negative effect of the approxima-
tion is lessened.

 22. An advanced Rosetta XML user can add the extra rotamers
through the ExtraRotamersGeneric operation and complete
this specifi city calculation directly after design in one run.

 23. The simplest way to access these values without writing a script
is to execute the command “grep total_score *pdb” in the direc-
tory that contains the pdbs you are interested in analyzing.

Design of DNA Binding Proteins

280

 24. For specifi city predictions, it is recommended that either the
mean or median value of the total_energy over many structures
be used, rather than the score of the lowest-energy structure.
This recommendation is especially true for protocols involving
any amount of backbone fl exibility , as design protocols can
generate outlier structures with energies much lower than the
majority and these outliers are not likely to represent that
actual energetic and structural state of the complex.

 25. The calculation of specifi city is based on the Boltzmann distri-
bution. The value of k B T can be changed, but a value of 1 is
reasonable. The equation for calculating specifi city for a gua-
nine base-pair is (2.718^0) / (2.718^0 + 2.178^(-ΔE G-A) +
2.178^(-ΔE G-C) + 2.178^(-ΔE G-T)).

 26. Only the DesignProteinBackboneAroundDNA mover will
limit protein backbone movement to around the target base-
pair. Other methods of protein backbone movement will
require another way of designating the regions that should be
fl exible.

 Acknowledgements

 The authors would like to thank Justin Ashworth, Phil Bradley,
and Jim Havranek for their vast contributions to improving pro-
tein–DNA interface design, as well as the entire ROSETTA
Commons community for contributions to the Rosetta code base.
This work was supported by the US National Institutes of Health
(#GM084433 and #RL1CA133832 to D.B.), the Foundation for
the National Institutes of Health through the Gates Foundation
Grand Challenges in Global Health Initiative, and the Howard
Hughes Medical Institute.

 References

 1. Alibes A, Nadra AD, De Masi F, Bulyk ML,
Serrano L, Stricher F (2010) Using protein
design algorithms to understand the molecu-
lar basis of disease caused by protein–DNA
interactions: the Pax6 example. Nucleic Acids
Res 38(21):7422–7431. doi: 10.1093/nar/
gkq683

 2. Epstein DJ (2009) Cis-regulatory mutations
in human disease. Brief Funct Genomics
8(4):310–316. doi: 10.1093/bfgp/elp021

 3. VanderMeer JE, Ahituv N (2011) cis- regulatory
mutations are a genetic cause of human limb
malformations. Dev Dyn 240(5):920–930.
doi: 10.1002/dvdy.22535

 4. Muller PA, Vousden KH (2013) p53 muta-
tions in cancer. Nat Cell Biol 15(1):2–8.
doi: 10.1038/ncb2641

 5. D'Elia AV, Tell G, Paron I, Pellizzari L, Lonigro
R, Damante G (2001) Missense mutations of
human homeoboxes: a review. Hum Mutat
18(5):361–374. doi: 10.1002/humu.1207

 6. Wray GA (2007) The evolutionary signifi cance
of cis-regulatory mutations. Nat Rev Genet
8(3):206–216. doi: 10.1038/nrg2063

 7. Wittkopp PJ, Kalay G (2012) Cis-regulatory
elements: molecular mechanisms and evolution-
ary processes underlying divergence. Nat Rev
Genet 13(1):59–69. doi: 10.1038/nrg3095

Summer Thyme and Yifan Song

http://dx.doi.org/10.1093/nar/gkq683
http://dx.doi.org/10.1093/nar/gkq683
http://dx.doi.org/10.1093/bfgp/elp021
http://dx.doi.org/10.1002/dvdy.22535
http://dx.doi.org/10.1038/ncb2641
http://dx.doi.org/10.1002/humu.1207
http://dx.doi.org/10.1038/nrg2063
http://dx.doi.org/10.1038/nrg3095

281

 8. Borneman AR, Gianoulis TA, Zhang ZD, Yu
H, Rozowsky J, Seringhaus MR, Wang LY,
Gerstein M, Snyder M (2007) Divergence of
transcription factor binding sites across related
yeast species. Science 317(5839):815–819.
doi: 10.1126/science.1140748

 9. Schmidt D, Wilson MD, Ballester B, Schwalie
PC, Brown GD, Marshall A, Kutter C, Watt S,
Martinez-Jimenez CP, Mackay S, Talianidis I,
Flicek P, Odom DT (2010) Five-vertebrate
ChIP-seq reveals the evolutionary dynamics of
transcription factor binding. Science
328(5981):1036–1040. doi: 10.1126/science.
1186176

 10. Prud'homme B, Gompel N, Carroll SB (2007)
Emerging principles of regulatory evolution.
Proc Natl Acad Sci U S A 104(Suppl 1):8605–
8612. doi: 10.1073/pnas.0700488104

 11. Leaver-Fay A, Tyka M, Lewis SM, Lange OF,
Thompson J, Jacak R, Kaufman K, Renfrew
PD, Smith CA, Sheffl er W, Davis IW, Cooper S,
Treuille A, Mandell DJ, Richter F, Ban YE,
Fleishman SJ, Corn JE, Kim DE, Lyskov S,
Berrondo M, Mentzer S, Popovic Z, Havranek
JJ, Karanicolas J, Das R, Meiler J, Kortemme T,
Gray JJ, Kuhlman B, Baker D, Bradley P (2011)
ROSETTA3: an object-oriented software suite
for the simulation and design of macromole-
cules. Methods Enzymol 487:545–574.
doi: 10.1016/B978-0-12-381270-4.00019-6

 12. Dunbrack RL Jr, Cohen FE (1997) Bayesian
statistical analysis of protein side-chain rotamer
preferences. Protein Sci 6(8):1661–1681.
doi: 10.1002/pro.5560060807

 13. Thyme SB, Baker D, Bradley P (2012)
Improved modeling of side-chain--base inter-
actions and plasticity in protein–DNA inter-
face design. J Mol Biol 419(3-4):255–274.
doi: 10.1016/j.jmb.2012.03.005

 14. Rohs R, Jin X, West SM, Joshi R, Honig B,
Mann RS (2010) Origins of specifi city in pro-
tein–DNA recognition. Annu Rev Biochem
79:233–269. doi: 10.1146/annurev-biochem-
060408-091030

 15. Harteis S, Schneider S (2014) Making the
bend: DNA tertiary structure and protein–
DNA interactions. Int J Mol Sci 15(7):12335–
12363. doi: 10.3390/ijms150712335

 16. Ashworth J, Baker D (2009) Assessment of the
optimization of affi nity and specifi city at pro-
tein–DNA interfaces. Nucleic Acids Res
37(10), e73. doi: 10.1093/nar/gkp242

 17. Morozov AV, Havranek JJ, Baker D, Siggia ED
(2005) Protein-DNA binding specifi city predic-
tions with structural models. Nucleic Acids Res
33(18):5781–5798. doi: 10.1093/nar/gki875

 18. Ashworth J, Havranek JJ, Duarte CM,
Sussman D, Monnat RJ Jr, Stoddard BL, Baker
D (2006) Computational redesign of endo-
nuclease DNA binding and cleavage specifi city.
Nature 441(7093):656–659. doi: 10.1038/
nature04818

 19. Nadra AD, Serrano L, Alibes A (2011) DNA-
binding specifi city prediction with FoldX.
Methods Enzymol 498:3–18. doi: 10.1016/
B978-0-12-385120-8.00001-2

 20. Thyme SB, Jarjour J, Takeuchi R, Havranek JJ,
Ashworth J, Scharenberg AM, Stoddard BL,
Baker D (2009) Exploitation of binding energy
for catalysis and design. Nature 461(7268):1300–
1304. doi: 10.1038/nature08508

 21. Ulge UY, Baker DA, Monnat RJ Jr (2011)
Comprehensive computational design of
mCreI homing endonuclease cleavage specifi c-
ity for genome engineering. Nucleic Acids Res
39(10):4330–4339. doi: 10.1093/nar/gkr022

 22. Ashworth J, Taylor GK, Havranek JJ, Quadri
SA, Stoddard BL, Baker D (2010)
Computational reprogramming of homing
endonuclease specifi city at multiple adjacent
base pairs. Nucleic Acids Res 38(16):5601–
5608. doi: 10.1093/nar/gkq283

 23. O'Meara MJ, Leaver-Fay A, Tyka M, Stein A,
Houlihan K, DiMaio F, Bradley P, Kortemme
T, Baker D, Snoeyink J, Kuhlman B (2015) A
combined covalent-electrostatic model of
hydrogen bonding improves structure predic-
tion with Rosetta. J Chem Theory Comput
11(2):609–622. doi: 10.1021/ct500864r

 24. Sheffl er W, Baker D (2010) RosettaHoles2: a
volumetric packing measure for protein struc-
ture refi nement and validation. Protein Sci
19(10):1991–1995. doi: 10.1002/pro.458

 25. Borgo B, Havranek JJ (2012) Automated
selection of stabilizing mutations in designed
and natural proteins. Proc Natl Acad Sci U S A
109(5):1494–1499. doi: 10.1073/pnas.11151
72109

 26. Lazaridis T, Karplus M (1999) Effective energy
function for proteins in solution. Proteins
35(2):133–152

 27. Yanover C, Bradley P (2011) Extensive protein
and DNA backbone sampling improves
structure- based specifi city prediction for C2H2
zinc fi ngers. Nucleic Acids Res 39(11):4564–
4576. doi: 10.1093/nar/gkr048

 28. Li S, Bradley P (2013) Probing the role of inter-
facial waters in protein–DNA recognition using a
hybrid implicit/explicit solvation model. Proteins
81(8):1318–1329. doi: 10.1002/prot.24272

 29. Redondo P, Prieto J, Munoz IG, Alibes A,
Stricher F, Serrano L, Cabaniols JP, Daboussi

Design of DNA Binding Proteins

http://dx.doi.org/10.1126/science.1140748
http://dx.doi.org/10.1126/science.1186176
http://dx.doi.org/10.1126/science.1186176
http://dx.doi.org/10.1073/pnas.0700488104
http://dx.doi.org/10.1016/B978-0-12-381270-4.00019-6
http://dx.doi.org/10.1002/pro.5560060807
http://dx.doi.org/10.1016/j.jmb.2012.03.005
http://dx.doi.org/10.1146/annurev-biochem-060408-091030
http://dx.doi.org/10.1146/annurev-biochem-060408-091030
http://dx.doi.org/10.3390/ijms150712335
http://dx.doi.org/10.1093/nar/gkp242
http://dx.doi.org/10.1093/nar/gki875
http://dx.doi.org/10.1038/nature04818
http://dx.doi.org/10.1038/nature04818
http://dx.doi.org/10.1016/B978-0-12-385120-8.00001-2
http://dx.doi.org/10.1016/B978-0-12-385120-8.00001-2
http://dx.doi.org/10.1038/nature08508
http://dx.doi.org/10.1093/nar/gkr022
http://dx.doi.org/10.1093/nar/gkq283
http://dx.doi.org/10.1021/ct500864r
http://dx.doi.org/10.1002/pro.458
http://dx.doi.org/10.1073/pnas.1115172109
http://dx.doi.org/10.1073/pnas.1115172109
http://dx.doi.org/10.1093/nar/gkr048
http://dx.doi.org/10.1002/prot.24272

282

F, Arnould S, Perez C, Duchateau P, Paques F,
Blanco FJ, Montoya G (2008) Molecular basis
of xeroderma pigmentosum group C DNA
recognition by engineered meganucleases.
Nature 456(7218):107–111. doi: 10.1038/
nature07343

 30. Takeuchi R, Lambert AR, Mak AN, Jacoby K,
Dickson RJ, Gloor GB, Scharenberg AM,
Edgell DR, Stoddard BL (2011) Tapping nat-
ural reservoirs of homing endonucleases for
targeted gene modifi cation. Proc Natl Acad Sci
U S A 108(32):13077–13082. doi: 10.1073/
pnas.1107719108

 31. Grizot S, Duclert A, Thomas S, Duchateau P,
Paques F (2011) Context dependence between
subdomains in the DNA binding interface of
the I-CreI homing endonuclease. Nucleic
Acids Res 39(14):6124–6136. doi: 10.1093/
nar/gkr186

 32. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus
C, Corn JE, Strauch EM, Wilson IA, Baker D
(2011) Computational design of proteins target-
ing the conserved stem region of infl uenza hem-
agglutinin. Science 332(6031):816–821.
doi: 10.1126/science.1202617

 33. Strauch EM, Fleishman SJ, Baker D (2014)
Computational design of a pH-sensitive IgG
binding protein. Proc Natl Acad Sci U S A
111(2):675–680. doi: 10.1073/
pnas.1313605111

 34. Azoitei ML, Correia BE, Ban YE, Carrico C,
Kalyuzhniy O, Chen L, Schroeter A, Huang
PS, McLellan JS, Kwong PD, Baker D, Strong
RK, Schief WR (2011) Computation-guided
backbone grafting of a discontinuous motif
onto a protein scaffold. Science 334(6054):373–
376. doi: 10.1126/science.1209368

 35. Rothlisberger D, Khersonsky O, Wollacott
AM, Jiang L, DeChancie J, Betker J, Gallaher
JL, Althoff EA, Zanghellini A, Dym O, Albeck
S, Houk KN, Tawfi k DS, Baker D (2008)
Kemp elimination catalysts by computational
enzyme design. Nature 453(7192):190–195.
doi: 10.1038/nature06879

 36. Thyme SB, Boissel SJ, Arshiya Quadri S, Nolan
T, Baker DA, Park RU, Kusak L, Ashworth J,
Baker D (2014) Reprogramming homing
endonuclease specifi city through computa-
tional design and directed evolution. Nucleic
Acids Res 42(4):2564–2576. doi: 10.1093/
nar/gkt1212

 37. Voigt CA, Mayo SL, Arnold FH, Wang ZG
(2001) Computational method to reduce the
search space for directed protein evolution.
Proc Natl Acad Sci U S A 98(7):3778–3783.
doi: 10.1073/pnas.051614498

 38. Chen MM, Snow CD, Vizcarra CL, Mayo SL,
Arnold FH (2012) Comparison of random

mutagenesis and semi-rational designed librar-
ies for improved cytochrome P450 BM3-
catalyzed hydroxylation of small alkanes.
Protein Eng Des Sel 25(4):171–178.
doi: 10.1093/protein/gzs004

 39. Khersonsky O, Rothlisberger D, Wollacott
AM, Murphy P, Dym O, Albeck S, Kiss G,
Houk KN, Baker D, Tawfi k DS (2011)
Optimization of the in-silico-designed kemp
eliminase KE70 by computational design and
directed evolution. J Mol Biol 407(3):391–
412. doi: 10.1016/j.jmb.2011.01.041

 40. Jarjour J, West-Foyle H, Certo MT, Hubert
CG, Doyle L, Getz MM, Stoddard BL,
Scharenberg AM (2009) High-resolution pro-
fi ling of homing endonuclease binding and
catalytic specifi city using yeast surface display.
Nucleic Acids Res 37(20):6871–6880.
doi: 10.1093/nar/gkp726

 41. Takeuchi R, Certo M, Caprara MG,
Scharenberg AM, Stoddard BL (2009)
Optimization of in vivo activity of a bifunc-
tional homing endonuclease and maturase
reverses evolutionary degradation. Nucleic
Acids Res 37(3):877–890. doi: 10.1093/nar/
gkn1007

 42. Chames P, Epinat JC, Guillier S, Patin A,
Lacroix E, Paques F (2005) In vivo selection
of engineered homing endonucleases using
double- strand break induced homologous
recombination. Nucleic Acids Res 33(20),
e178. doi: 10.1093/nar/gni175

 43. Doyon JB, Pattanayak V, Meyer CB, Liu DR
(2006) Directed evolution and substrate speci-
fi city profi le of homing endonuclease I-SceI. J
Am Chem Soc 128(7):2477–2484.
doi: 10.1021/ja057519l

 44. Havranek JJ, Baker D (2009) Motif-directed
fl exible backbone design of functional interac-
tions. Protein Sci 18(6):1293–1305.
doi: 10.1002/pro.142

 45. Borgo B, Havranek JJ (2014) Motif-directed
redesign of enzyme specifi city. Protein Sci
23(3):312–320. doi: 10.1002/pro.2417

 46. Szeto MD, Boissel SJ, Baker D, Thyme SB
(2011) Mining endonuclease cleavage deter-
minants in genomic sequence data. J Biol
Chem 286(37):32617–32627. doi: 10.1074/
jbc.M111.259572

 47. Thyme SB, Song Y, Brunette TJ, Szeto MD,
Kusak L, Bradley P, Baker D (2014) Massively
parallel determination and modeling of endo-
nuclease substrate specifi city. Nucleic Acids
Res 42(22):13839–13852. doi: 10.1093/nar/
gku1096

 48. Combs SA, Deluca SL, Deluca SH, Lemmon
GH, Nannemann DP, Nguyen ED, Willis JR,
Sheehan JH, Meiler J (2013) Small-molecule

Summer Thyme and Yifan Song

http://dx.doi.org/10.1038/nature07343
http://dx.doi.org/10.1038/nature07343
http://dx.doi.org/10.1073/pnas.1107719108
http://dx.doi.org/10.1073/pnas.1107719108
http://dx.doi.org/10.1093/nar/gkr186
http://dx.doi.org/10.1093/nar/gkr186
http://dx.doi.org/10.1126/science.1202617
http://dx.doi.org/10.1073/pnas.1313605111
http://dx.doi.org/10.1073/pnas.1313605111
http://dx.doi.org/10.1126/science.1209368
http://dx.doi.org/10.1038/nature06879
http://dx.doi.org/10.1093/nar/gkt1212
http://dx.doi.org/10.1093/nar/gkt1212
http://dx.doi.org/10.1073/pnas.051614498
http://dx.doi.org/10.1093/protein/gzs004
http://dx.doi.org/10.1016/j.jmb.2011.01.041
http://dx.doi.org/10.1093/nar/gkp726
http://dx.doi.org/10.1093/nar/gkn1007
http://dx.doi.org/10.1093/nar/gkn1007
http://dx.doi.org/10.1093/nar/gni175
http://dx.doi.org/10.1021/ja057519l
http://dx.doi.org/10.1002/pro.142
http://dx.doi.org/10.1002/pro.2417
http://dx.doi.org/10.1074/jbc.M111.259572
http://dx.doi.org/10.1074/jbc.M111.259572
http://dx.doi.org/10.1093/nar/gku1096
http://dx.doi.org/10.1093/nar/gku1096

283

ligand docking into comparative models with
Rosetta. Nat Protoc 8(7):1277–1298.
doi: 10.1038/nprot.2013.074

 49. Jha RK, Chakraborti S, Kern TL, Fox DT,
Strauss CE (2015) Rosetta comparative mod-
eling for library design: Engineering alterna-
tive inducer specifi city in a transcription factor.
Proteins. doi: 10.1002/prot.24828

 50. Thyme S, Baker D (2014) Redesigning the
specifi city of protein–DNA interactions with
Rosetta. Methods Mol Biol 1123:265–282.
doi: 10.1007/978-1-62703-968-0_17

 51. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch
EM, Khare SD, Koga N, Ashworth J, Murphy
P, Richter F, Lemmon G, Meiler J, Baker D
(2011) RosettaScripts: a scripting language
interface to the Rosetta macromolecular mod-
eling suite. PLoS One 6(6):e20161.
doi: 10.1371/journal.pone.0020161

 52. Havranek JJ, Harbury PB (2003) Automated
design of specifi city in molecular recognition.
Nat Struct Biol 10(1):45–52. doi: 10.1038/
nsb877

 53. Mitchell M (1996) An introduction to genetic
algorithms. Complex adaptive systems. MIT
Press, Cambridge, MA

 54. Coley DA (2010) An introduction to genetic
algorithms for scientists and engineers. World
Scientifi c, River Edge, NJ

 55. Canutescu AA, Dunbrack RL Jr (2003) Cyclic
coordinate descent: a robotics algorithm for
protein loop closure. Protein Sci 12(5):963–
972. doi: 10.1110/ps.0242703

 56. Wang C, Bradley P, Baker D (2007) Protein-
protein docking with backbone fl exibility.
J Mol Biol 373(2):503–519. doi: 10.1016/j.
jmb.2007.07.050

 57. Smith CA, Kortemme T (2008) Backrub-like
backbone simulation recapitulates natural pro-

tein conformational variability and improves
mutant side-chain prediction. J Mol Biol
380(4):742–756. doi: 10.1016/j.
jmb.2008.05.023

 58. Mandell DJ, Coutsias EA, Kortemme T
(2009) Sub-angstrom accuracy in protein loop
reconstruction by robotics-inspired conforma-
tional sampling. Nat Methods 6(8):551–552.
doi: 10.1038/nmeth0809-551

 59. Huang PS, Ban YE, Richter F, Andre I, Vernon
R, Schief WR, Baker D (2011) RosettaRemodel:
a generalized framework for fl exible backbone
protein design. PLoS One 6(8), e24109.
doi: 10.1371/journal.pone.0024109

 60. Ollikainen N, Smith CA, Fraser JS, Kortemme
T (2013) Flexible backbone sampling methods
to model and design protein alternative con-
formations. Methods Enzymol 523:61–85.
doi: 10.1016/B978-0-12-394292-0.00004-7

 61. Das R (2013) Atomic-accuracy prediction of
protein loop structures through an RNA-
inspired Ansatz. PLoS One 8(10):e74830.
doi: 10.1371/journal.pone.0074830

 62. Song Y, DiMaio F, Wang RY, Kim D, Miles C,
Brunette T, Thompson J, Baker D (2013)
High-resolution comparative modeling with
RosettaCM. Structure 21(10):1735–1742.
doi: 10.1016/j.str.2013.08.005

 63. Tange O (2011) GNU Parallel - the command-
line power tool. The USENIX Magazine:
pp. 42–47

 64. Leaver-Fay A, O’Meara MJ, Tyka M, Jacak R,
Song Y, Kellogg EH, Thompson J, Davis IW,
Pache RA, Lyskov S, Gray JJ, Kortemme T,
Richardson JS, Havranek JJ, Snoeyink J, Baker
D, Kuhlman B (2013) Scientifi c benchmarks for
guiding macromolecular energy function
improvement. Methods Enzymol 523:109–143.
 doi: 10.1016/B978-0-12-394292-0.00006-0

Design of DNA Binding Proteins

http://dx.doi.org/10.1038/nprot.2013.074
http://dx.doi.org/10.1002/prot.24828
http://dx.doi.org/10.1007/978-1-62703-968-0_17
http://dx.doi.org/10.1371/journal.pone.0020161
http://dx.doi.org/10.1038/nsb877
http://dx.doi.org/10.1038/nsb877
http://dx.doi.org/10.1110/ps.0242703
http://dx.doi.org/10.1016/j.jmb.2007.07.050
http://dx.doi.org/10.1016/j.jmb.2007.07.050
http://dx.doi.org/10.1016/j.jmb.2008.05.023
http://dx.doi.org/10.1016/j.jmb.2008.05.023
http://dx.doi.org/10.1038/nmeth0809-551
http://dx.doi.org/10.1371/journal.pone.0024109
http://dx.doi.org/10.1016/B978-0-12-394292-0.00004-7
http://dx.doi.org/10.1371/journal.pone.0074830
http://dx.doi.org/10.1016/j.str.2013.08.005
http://dx.doi.org/10.1016/B978-0-12-394292-0.00006-0

285

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_17, © Springer Science+Business Media New York 2016

 Chapter 17

 Motif-Driven Design of Protein–Protein Interfaces

 Daniel-Adriano Silva , Bruno E. Correia , and Erik Procko

 Abstract

 Protein–protein interfaces regulate many critical processes for cellular function. The ability to accurately
control and regulate these molecular interactions is of major interest for biomedical and synthetic biology
applications, as well as to address fundamental biological questions. In recent years, computational protein
design has emerged as a tool for designing novel protein–protein interactions with functional relevance.
Although attractive, these computational tools carry a steep learning curve. In order to make some of these
methods more accessible, we present detailed descriptions and examples of ROSETTA computational
protocols for the design of functional protein binders using seeded protein interface design. In these pro-
tocols, a motif of known structure that interacts with the target site is grafted into a scaffold protein, fol-
lowed by design of the surrounding interaction surface.

 Key words Computational protein design , Protein–protein interaction , ROSETTA , Motif grafting ,
 Interface design

1 Introduction

 Computational design of protein–protein interactions has steadily
progressed in recent years, including the creation of inhibitors that
block enzymatic sites [1], small proteins that prevent viral entry
[2], and antitumor agents that sequester oncogenic factors [3].
The ability to design in silico new functional binding proteins from
minimal starting components opens tremendous possibilities for
engineering innovative therapeutics and may eventually challenge
antibody technology as the premiere method for generating pro-
tein-based drugs. However, designing a truly de novo protein–
protein interface is a challenging problem that remains largely
unsolved. This is due to several factors, most importantly the inac-
curacies in energy functions used to evaluate protein designs and
the intrinsic diffi culties in effi ciently sampling docked protein con-
fi gurations that allow the design of side chains for favorable inter-
actions. Therefore, to overcome these limitations, protein designers
often use a “seeded interface design ” approach, in which a small

286

motif of known structure that binds to the target site is used to
initiate the design process. This motif is then grafted (i.e., embed-
ded) into a larger protein scaffold that in turn is designed to achieve
optimal packing and interactions with the target protein. This
approach solves two problems: (1) by beginning with a motif that
is known to bind the target, the design immediately starts with
some favorable interactions, and (2) the scaffold orientation against
the target surface is guided by the motif itself. By using this infor-
mation, the design is biased toward sampling only a small number
of permissible docked confi gurations. Seeded protein–protein
 interface design strategies are indeed extremely powerful for creat-
ing novel protein binders, but the methods are also daunting for
newcomers.

 In this chapter, we describe a step-by-step workfl ow for the
design of new protein binders based on motif grafting and “seeded”
 interface design . The majority of the protocols described can easily
be run on a single personal computer, though large clusters and
supercomputers will increase sampling and help fi nd better
solutions.

2 Materials (Required Software)

 ROSETTA . The ROSETTA software suite includes algorithms for
protein modeling and design [4]. ROSETTA is free for academic
users and can be downloaded from: https://www.rosettacom-
mons.org/software .

 In the examples given here, ROSETTA was compiled and exe-
cuted on a MacBook Pro with a 2.5 GHz quad-core Intel i7 pro-
cessor. Basic knowledge of UNIX-style terminal commands is
necessary.

 For any design or structure prediction problem within
ROSETTA, the potential energy is calculated using ROSETTA’s
energy function, which includes terms for attributes such as rota-
mer energies, van der Waals interactions, and hydrogen bonding,
among others [5]; the process of applying the energy function to a
 given protein conformation is simply referred to as “scoring.” As
with free energy, a conformation or sequence with a lower energy
in ROSETTA is more favorable. During protein structure predic-
tion, the conformation of lowest energy is determined for a given
amino acid sequence. During protein–protein interface design , the
problem is reversed. Since the basic docked confi guration of the
binding partners is now known, the aim is to design the lowest
energy sequence to stabilize the bound state of the two proteins.

 ROSETTA and RosettaScripts . ROSETTA protocols are writ-
ten in an XML-script format. The script is interpreted using the
RosettaScripts parser, which is packaged within the ROSETTA
suite [6]. Using a simple analogy, RosettaScripts protocols are like

D. Silva et al.

https://www.rosettacommons.org/software
https://www.rosettacommons.org/software

287

cooking recipes; they fi rst defi ne the ingredients (energy functions,
task operations, fi lters, and movers) and then outline the protocol
by which these are combined. RosettaScripts is easy to use, even for
novices with minimal programming experience. Wiki-style docu-
mentation can be accessed at: https://www.rosettacommons.org/
docs/latest/scripting_documentation/RosettaScripts/
RosettaScripts .

 This website provides an index of available operations and is an
excellent resource when creating or modifying scripts.

 Important : For the examples presented here, command lines
contain the environment variable ${Rosetta} , which means the
directory path in which ROSETTA is installed on the user’s
computer.

 Molecular Visualization . A molecular graphics-viewing pro-
gram is required. PyMol (Schrödinger, LLC) is recommended, as
it has excellent and easy-to-use features for visualization, simple
structural alignments, and even allows modifying proteins. A lim-
ited educational version (precompiled for several platforms) is
available for free from: https://www.pymol.org/ .

 A full-featured open-source branch from SourceForge
(Slashdot Media, requires compilation) is available at: http://
sourceforge.net/projects/pymol/ .

3 Methods

 The workfl ow (Fig. 1) for computational interface design using
 motif grafting is comprised of the following steps:

 1. Defi nition of the binding motif for seeded interface design.
 2. Preparing a scaffold database.
 3. Matching for putative scaffolds (i.e., motif grafting).
 4. Sequence design.
 5. Selection and improvement of designs.

 To guide readers through each of these steps, we present the exam-
ple of designing a protein binder for the estrogen receptor (ERα)
based on a known peptide interaction. The crystal structure of
ERα has been solved with a bound helical peptide from a transcrip-
tional coactivator (PDB ID 1GWQ; Fig. 2) [7]. This natural pro-
tein–peptide complex provides an initial structural motif for seeded
 interface design . The bound peptide provides the core of the inter-
face, and the design process involves transplanting/grafting the
motif into alternative protein scaffolds, followed by design of
neighboring residues close to the target protein surface, creating
an extended interface for improved affi nity and specifi city.

3.1 Defi nition
of the Binding Motif
for Seeded Interface
Design

Design of Protein-Protein Binding

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/RosettaScripts
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/RosettaScripts
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/RosettaScripts
https://www.pymol.org/
http://sourceforge.net/projects/pymol/
http://sourceforge.net/projects/pymol/

288

 ERα is a steroid hormone-activated transcription factor that
recruits coactivators to a target gene [8]. The ERα-coactivator
interaction is established through a helical motif that bears the sig-
nature sequence LXXLL (where L is leucine and X is any amino
acid), with the leucine residues (hot spots) binding a hydrophobic
cleft on the ERα surface (Fig. 2b) [7]. In the following sections,
we show how to graft the helical motif into a new protein scaffold.
The assumptions guiding this design strategy are: (1) stabilization
of the bound conformation of the LXXLL motif by embedding it
within a stable scaffold reduces the entropic penalty of binding a
fl exible peptide, and (2) expanding the interfacial contact area can
create new favorable interactions with the target. If successful, a
design that combines these two factors can achieve an interaction
with enhanced affi nity and specifi city.

 First, the PDB of the protein–peptide complex is formatted for
compatibility with ROSETTA and the structure is minimized (see

 Fig. 1 Workfl ow for seeded interface design. In the inset panels , the target pro-
tein surface is colored in green , the motif to be grafted in orange , and scaffolds
are shown in grey

D. Silva et al.

289

 Note 1 at the end for a detailed description on preparing input
PDB fi les). Next, the structure is divided into two new PDB fi les,
referred to as the “context” and “motif.” The “context” fi le con-
tains the target structure (i.e., ERα; only chain A of PDB ID
1GWQ), while the “motif” fi le contains the LXXLL peptide (chain
C of PDB ID 1GWQ). In different scenarios, the motif could also
be a small segment of a much larger protein, for example, an inter-
acting loop extracted from an antibody–antigen structure.

 To prepare an inclusive scaffold database that can be searched for a
variety of structural motifs, we downloaded 1519 structures from the
PDB (www.rcsb.org) based on the following four criteria: (1) crystal
structures with high-resolution x-ray diffraction data (<2.5 Å), (2)
the proteins had been reported to be expressable in E. coli (this sim-
plifi es later experimental characterization), (3) a single protein chain
in the asymmetric unit (MotifGraft only works with monomeric scaf-
folds as grafting targets), and (4) no bound ligands or modifi ed resi-
dues. The scaffold PDB fi les were formatted for ROSETTA and
subjected to an energy minimization step (see Note 2).

 In some circumstances, a focused scaffold library may produce
more useful matches. For our particular example, the peptide that
seeds interface design has an α-helical conformation. Therefore,
we also prepared a small focused scaffold library of 28 helical
proteins.

3.2 Preparing
a Scaffold Database

 Fig. 2 The ERα-LXXLL peptide complex. (a) The crystal structure of the ligand-binding domain of ERα (a dimer;
two chains are shown in light and dark green) bound to the aroylbenzothiophene core of raloxifene (grey
spheres) and a peptide (orange) spanning the helical LXXLL motif from the transcriptional coactivator TIF2
(PDB 1GWQ). PDB fi les of the motif (chain C) and target (chain A) are prepared. (b) The three conserved leu-
cines of the LXXLL motif interact with a hydrophobic cavity on the ERα surface, while glu-542 of ERα caps the
peptide’s N-terminus

Design of Protein-Protein Binding

http://www.rcsb.org/

290

 The scaffold library is computationally scanned for possible graft
sites. If the motif and scaffold backbones superimpose with very
low root mean squared deviation (RMSD < 0.5 A), then only hot
spot side chains need be transplanted from the motif to the corre-
sponding positions in the matching site of the scaffold [9 , 10].
This is known as “side chain grafting.” Subsequently, surrounding
residues on the scaffold surface that are in contact with the target
are designed for favorable interactions [3]. We suggest that side
chain grafting should be attempted fi rst, as it makes the minimal
number of changes to the scaffold, increasing the chances of
obtaining correctly folded designs during experimental validation.
However, often side chain grafting is not possible because the
motif and scaffold structures are too dissimilar. In these cases, even
though the motif and scaffold may have very different structures,
it is still possible to use an alternative method known as “backbone
grafting” [11 , 12].

 During backbone grafting, the algorithm looks for segments of
the scaffold backbone that align closely to the termini of the motif
(both N- and C-terminal sides), and then the scaffold segment
between these alignment points is replaced by the motif. This tech-
nique is extremely versatile, for example, a loop in the scaffold
might be replaced by a peptide motif with different secondary
structure, or even with a different amino acid length. Since the
changes to the scaffold structure following backbone grafting can
disrupt the overall fold, it is important to design the hydrophobic
core to support the new backbone structure of the scaffold, fol-
lowed by design of the protein–protein interface. The backbone
grafting procedure often introduces many mutations to the scaf-
fold, requiring careful fi ltering of designs to select those that pres-
ent quality interfaces and high stability of the new scaffold.

 The fl ow chart in Fig. 1 details the steps involved for both
design strategies. We begin by describing side chain grafting, fol-
lowed by backbone grafting.

 Motif matching and interface design are distinct conceptual steps,
but due to the fl exibility of the RosettaScripts framework, both can
be included in a single computational step. First, a list is generated
containing all PDB fi les within the scaffold database:
 #> ls -1 scaffolds_directory/*.pdb > scaffolds.list

 Then RosettaScript s is executed using the following
command:
 #> ${Rosetta}/main/src/bin/rosetta_scripts -database
${Rosetta}/main/database/ -l scaffolds.list -use_input_
sc -ex1 -ex2 -nstruct 1 -parser:protocol MotifGraft_
sc.xml

3.3 Matching
for Putative
Scaffolds

3.4 Sequence Design

3.4.1 Side Chain Grafting
with RosettaScripts

D. Silva et al.

291

 The command line includes several important options. First,
the location of the ROSETTA database must be specifi ed using
 -database . Option -l scaffolds.list specifi es the input list
of scaffold PDB fi les. (Option -s scaffold.pdb would specify
a single PDB fi le.) The options -ex1 and -ex2 allow ROSETTA
to explore additional side chain rotamers, and -use_input_sc
means that rotamers in the input structure are included in the rota-
mer library. Finally, option -nstruct 1 means that the design
script will be launched once per input scaffold. This can be increased
if the user wishes to fi lter through more designs, but requires usage
of the MultiplePoseMover in the XML script (for further informa-
tion see RosettaScripts documentation).

 In the case of grafting by side chain replacement, it took less
than an hour to scan through the focused scaffold library of 28
helical proteins on a laptop computer and generate 23 designs.
(Since several steps in the design process are stochastic, the num-
ber of results that pass the fi lters might vary if the protocol is re-
executed.). The XML fi le MotifGraft_sc.xml reads as follows:
 <ROSETTASCRIPTS>
 <TASKOPERATIONS>
 <ProteinInterfaceDesign name=pido repack_chain1=1
repack_chain2=1 design_chain1=0 design_chain2=1
interface_distance_cutoff=8.0/>

 <OperateOnCertainResidues name="hotspot_repack">
 <RestrictToRepackingRLT/>
 <ResiduePDBInfoHasLabel property="HOTSPOT"/>
 </OperateOnCertainResidues>
 </TASKOPERATIONS>
 <SCOREFXNS>
 </SCOREFXNS>
 <FILTERS>
 <Ddg name=ddg confi dence=0/>
 <BuriedUnsatHbonds name=unsat confi dence=0/>
 <ShapeComplementarity name=Sc confi dence=0/>
 </FILTERS>
 <MOVERS>
 <MotifGraft name="motif_grafting" context_structure=
"context.pdb" motif_structure="motif.pdb" RMSD_toler-
ance="0.3" NC_points_RMSD_tolerance="0.5" clash_score_
cutoff="5" clash_test_residue="GLY" hotspots="3:7"
combinatory_fragment_size_delta="2:2" full_motif_bb_
alignment="1"graft_only_hotspots_by_replacement="1"
revert_graft_to_native_sequence="1"/>

 <build_Ala_pose name=ala_pose partner1=0 partner2=1
i n t e r f a c e _ c u t o f f _ d i s t a n c e = 8 . 0
task_operations=hotspot_repack/>

 <Prepack name=ppk jump_number=0/>
 <PackRotamersMover name=design task_operations=
hotspot_repack,pido/>

 <MinMover name=rb_min bb=0 chi=1 jump=1/>
 </MOVERS>

Design of Protein-Protein Binding

292

 <PROTOCOLS>
 <Add mover_name=motif_grafting/>
 <Add mover_name=ala_pose/>
 <Add mover_name=ppk/>
 <Add mover_name=design/>
 <Add mover_name=rb_min/>
 <Add mover_name=design/>
 <Add fi lter_name=unsat/>
 <Add fi lter_name=ddg/>
 <Add fi lter_name=Sc/>
 </PROTOCOLS>
 </ROSETTASCRIPTS>

 Within the XML fi le, the user may fi rst specify which score/
energy function to use from the ROSETTA database or reweight
specifi c score terms; if no score function is defi ned, the default is
used (currently “talaris2013,” but this will likely change in future
ROSETTA releases). Next, task operations defi ne which residues
can be altered. The ProteinInterfaceDesign task operation restricts
design to residues of chain 2 (the scaffold) within 8 Å of the inter-
face, while target residues within 8 Å of the interface may repack to
alternative low- energy rotamers. By default, the design of nonna-
tive prolines, glycines, and cysteines (which can have important
structural consequences) is forbidden. The second task operation,
RestrictToRepackingRLT, prevents the two grafted hot spot leu-
cines from being mutated in later design steps, though they can
repack to alternative rotamers . (For polar hot spot residues, alter-
native rotamers would disrupt hydrogen-bonding networks, and
we would advise using the more restrictive task operation
PreventRepackingRLT, which prevents both design and repack-
ing.) The MotifGraft mover (described below) keeps track of which
residues correspond to the target, scaffold, or motif and which
critical side chains are grafted. These are labeled CONTEXT,
SCAFFOLD, MOTIF, and HOTSPOT, respectively. These resi-
due classes are then available for task operations, as used here. The
details for these task operations are given on the wiki website:
 https://www.rosettacommons.org/docs/latest/scripting_docu-
mentation/RosettaScripts/TaskOperations/taskoperations_
pages/OperateOnCertainResiduesOperation .

 Movers dictate how the protein complex is manipulated, such
as sequence design, side chain and backbone minimization, or
rigid- body docking. The protocol begins with the MotifGraft
mover, which searches for alignments between the scaffold and
motif that do not produce steric clashes with the target structure.
The MotifGraft mover has many options. First, the names of the
PDB fi les for the target (context_structure) and motif (motif_
structure) must be specifi ed. The option RMSD_tolerance sets
the maximum RMSD allowed between the motif and scaffold
alignment. For side chain grafting, the motif should closely match
the scaffold segment it is aligned with, so that the backbones are

D. Silva et al.

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/TaskOperations/taskoperations_pages/OperateOnCertainResiduesOperation
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/TaskOperations/taskoperations_pages/OperateOnCertainResiduesOperation
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/TaskOperations/taskoperations_pages/OperateOnCertainResiduesOperation

293

virtually superimposable. In this XML script, the RMSD tolerance
was set to 0.3 Å (maximum recommended is ~0.5 Å). The option
NC_points_RMSD_tolerance sets the maximum RMSD allowed
between the N-/C-termini of the motif and scaffold graft site (rec-
ommended 0.5 Å). Once the scaffold has been aligned, the con-
fi guration of the system must be checked for clashes. After it is
grafted, the motif cannot clash with other parts of the scaffold (this
is not an issue for side chain grafting when the motif closely matches
a native structural region within the scaffold, but is of serious con-
cern when performing backbone grafting).

 In addition, the orientation of the scaffold when aligned with
the motif cannot clash with the target surface. Since residues can
be designed to smaller amino acids in later steps, clashes are
checked after fi rst mutating the motif to small amino acids, such as
alanine or glycine (using option clash_test_residue="GLY" in
this XML script). All the atomic clashes are computed, and if the
score is above the clash_score_cutoff, the graft fails and an alterna-
tive alignment in the scaffold is attempted (it is recommended to
set the clash_score_cutoff at ≤ 5). The options full_motif_bb_
alignment="1" and graft_only_hotspots_by_replace-
ment="1" indicate that side chain grafting is being performed.
Option hotspots="3:7" defi nes which positions in the motif PDB
correspond to the two leucine hot spots of the LXXLL peptide.
Additional hot spots are each separated by colons. Option combi-
natory_fragment_size_delta="2:2" indicates by how many
amino acids the motif may be shortened at each terminus
(N-terminus:C-terminus), i.e., whether the full motif must align
(“0:0”) or only a partial fragment. Here, the algorithm will attempt
to match the full-length motif, as well as each motif fragment
shorter by up to two residues at one or both termini. The fi nal
option, revert_graft_to_native_sequence="1" , means that
after the motif has been placed into the scaffold, all residues except
for the hot spots are reverted back to their native identities.
Therefore, only the two hot spot amino acids are effectively trans-
ferred as changes to the scaffold sequence.

 After side chain grafting, the protocol continues by replacing
scaffold side chains within 8 Å of the target with alanine using the
build_Ala_pose mover. Task operations prevent the hot spots
from changing. Side chains are now repacked with the Prepack
mover. During this step, target protein residues that sterically
clash with the scaffold have the opportunity to fi nd alternative,
non-clashing rotamers . Next, the interface surrounding the
grafted hot spots is designed using the PackRotamersMover. Task
operations ensure that hot spot and target residues can only
change rotamer conformations, whereas scaffold residues within
8 Å of the target surface are available for design. Side chains and
rigid-body orientations of the designed complex are then mini-
mized with MinMover, followed by a second round of design.

Design of Protein-Protein Binding

294

Multiple rounds of minimization and design are recommended as
they may improve results. Further details about movers can be
found at: https://www.rosettacommons.org/docs/latest/
s c r i p t i n g _ d o c u m e n t a t i o n / R o s e t t a S c r i p t s / M o v e r s /
Movers-RosettaScripts .

 Finally, three fi lters are used to assess the designs’ structural
features: binding energy (ΔΔG), interface shape complementarity,
and buried unsatisfi ed hydrogen-bonding atoms at the interface.
In this example XML script, each fi lter is assigned a confi dence of
0, such that all designs will pass. Rather than acting to terminate
design calculations, these fi lters are instead being used to report
interface quality. Based on these reported values, the user can
determine which are the best designs of the pool. A full list of avail-
able fi lters can be found at: https://www.rosettacommons.org/
docs/latest/scripting_documentation/RosettaScripts/Filters/
Filters-RosettaScripts .

 Some examples of the designs generated by the aforemen-
tioned script are shown in Fig. 3 . XML scripting is amenable to
rapid protocol modifi cations, and users are encouraged to attempt
their own variations of the protocols. The RosettaScripts o nline
documentation is an excellent resource to understand the func-
tionality that different options provide.

 Using the same motif and target PDB fi les described above, we
present an example XML script that scans scaffolds for potential
backbone graft sites and subsequent design. The script can be exe-
cuted as follows:
 #> ${Rosetta}/main/source/bin/rosetta_scripts.macosclang-
release -database ${Rosetta}/main/database/ -l scaf-
folds.list -use_input_sc -nstruct 1 -parser:protocol
MotifGraft_bb.xml

 The XML script reads:
 <ROSETTASCRIPTS>
 <TASKOPERATIONS>
 <ProteinInterfaceDesign name=pido_far interface_distance
_cutoff=15.0/>

 <ProteinInterfaceDesign name=pido_med interface_distance_
cutoff=12.0/>

 <ProteinInterfaceDesign name=pido_near interface_distance_
cutoff=8.0/>

 <OperateOnCertainResidues name="hotspot_repack">
 <RestrictToRepackingRLT/>
 <ResiduePDBInfoHasLabel property="HOTSPOT"/>
 </OperateOnCertainResidues>
 <SelectBySASA name=core mode="sc" state="bound" probe_
radius=2.2 core_asa=0 surface_asa=30 core=1 bound-
ary=0 surface=0/>

 <SelectBySASA name=core_and_boundary mode="sc" state=
"bound" probe_radius=2.2 core_asa=0 surface_asa=30
core=1 boundary=1 surface=0/>

 </TASKOPERATIONS>

3.4.2 Backbone Grafting
with RosettaScripts

D. Silva et al.

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/Movers-RosettaScripts
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/Movers-RosettaScripts
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/Movers-RosettaScripts
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Filters/Filters-RosettaScripts
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Filters/Filters-RosettaScripts
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Filters/Filters-RosettaScripts

295

 Fig. 3 Examples of designs generated by side chain grafting. (a) The crystal structure (PDB 1GWQ) of a LXXLL
coactivator motif (orange) bound to ERα (green). Only chains A (ERα; the target) and C (LXXLL motif) are con-
sidered. The structure was energy minimized with ROSETTA and the interface was scored. (b – f) Five different
designs generated by side chain grafting using the XML script described here. The scaffolds (grey ; PDB codes
indicated in the fi gure) are all helical bundle proteins. The grafted leucine hot spot residues (L690 and L694 in
Fig. 2) are colored in orange . (g) The interface of the design in panel (b) is shown in greater detail. Designed
interactions around the hot spots include hydrophobic contacts from L45, aromatic stacking between designed
residue Y42 and target residue H373, and a saltbridge from E15 to K362

 <FILTERS>
 <Ddg name=ddg confi dence=0/>
 <BuriedUnsatHbonds name=unsat confi dence=0/>
 <ShapeComplementarity name=Sc confi dence=0/>
 </FILTERS>
 <MOVERS>
 <MotifGraft name="motif_grafting" context_structure=
"context.pdb" motif_structure="motif.pdb" RMSD_toler-
ance="1.0" NC_points_RMSD_tolerance="1.0" clash_
score_cutoff="5" clash_test_residue="GLY" hotspots=
"3:7"combinatory_fragment_size_delta="2:2" max_frag-
ment_replacement_size_delta="-8:8" full_motif_bb_align-
ment="0" graft_only_hotspots_by_replacement="0"/>

Design of Protein-Protein Binding

296

 <build_Ala_pose name=ala_pose partner1=0 partner2=1
interface_cutoff_distance=8.0 task_operations=hotspot_
repack/>

 <Prepack name=ppk jump_number=0/>
 <PackRotamersMover name=design_core task_operations=
hotspot_repack,pido_far,core/>

 <PackRotamersMover name=design_boundary task_operations=
hotspot_repack,pido_med,core_and_boundary/>

 <PackRotamersMover name=design_interface task_operations=
hotspot_repack,pido_near/>

 <MinMover name=sc_min bb=0 chi=1 jump=0/>
 </MOVERS>
 <PROTOCOLS>
 <Add mover_name=motif_grafting/>
 <Add mover_name=ala_pose/>
 <Add mover_name=ppk/>
 <Add mover_name=design_core/>
 <Add mover_name=design_boundary/>
 <Add mover_name=design_interface/>
 <Add mover_name=sc_min/>
 <Add fi lter_name=unsat/>
 <Add fi lter_name=ddg/>
 <Add fi lter_name=Sc/>
 </PROTOCOLS>
 </ROSETTASCRIPTS>

 The fi rst mover called in the protocols section of the XML
script is MotifGraft. As with side chain grafting, options context_
structure and motif_structure specify the target and motif
PDB fi les, respectively. The RMSD_tolerance and NC_points_
RMSD_tolerance are both set at 1.0 Å (the maximum recom-
mended is 1.5 Å); during backbone grafting, these options set the
maximum allowed RMSD between the motif termini and the back-
bone graft sites in the scaffold. A lower RMSD tolerance will
enforce a better match between the motif termini and scaffold
backbone, giving better results, though at the expense of more
solutions. The options for clash_test_residue , clash_score_
cutoff , hotspots and combinatory_fragment_size_delta are
set the same as for side chain grafting. However, for backbone
grafting options full_motif_bb_alignment and graft_only_
hotspots_by_replacement are both turned off (i.e., set to “0”).
A new option is now used; max_fragment_replacement_size_
delta="-8:8" sets the minimum and maximum sizes of the scaf-
fold segment that can be replaced by the motif (i.e., the resulting
scaffold can vary from eight residues shorter up to eight residues
longer than the original scaffold).

 The protocol continues by calling a mover to mutate scaffold
residues at the interface to alanine. Next, rotamers are minimized
with the Prepack mover, followed by three design steps using
PackRotamersMover. The fi rst design step is restricted to scaffold
residues within the hydrophobic core up to 15 Å away from the

D. Silva et al.

297

interface. Since the grafted motif is potentially very different from
the scaffold segment it replaced, design of the core is necessary to
stabilize the new structure. Two task operations defi ne which resi-
dues can be designed: (1) the ProteinInterfaceDesign task opera-
tion permits design to chain 2 (the scaffold) within a distance
threshold of the interface, and (2) the SelectBySASA task opera-
tion defi nes core, boundary, and surface residues based on solvent-
accessible surface area and turns their design on or off. The second
design step is restricted to 12 Å from the interface but now allows
the design of core and “boundary” (i.e., partially buried) amino
acids. Again, task operations defi ne the residues for design. The
third design step is now focused on optimizing all scaffold residues
8 Å from the target surface. A task operation prevents the grafted
hot spot leucine residues from mutating at any stage. The fi nal
mover is a side chain minimization.

 The protocol fi nishes with three fi lters to report on interface
quality: the calculated binding energy, number of buried unsatis-
fi ed hydrogen-bonding atoms, and shape complementarity. Within
3 h on a laptop computer, over 200 scaffolds in the library were
scanned for potential graft sites, and nearly as many designs were
generated. In many of the designed proteins, helical segments of
the scaffolds were swapped with the helical motif. However, in
other designs, a non-helical scaffold segment was replaced; some
examples are shown in Fig. 4 .

 Fig. 4 Examples of designs generated by backbone grafting. (a – d) In the upper images, the target ERα is
shown in green , the scaffold in grey , and the grafted motif in orange . The scaffold PDB is labeled. In the lower
images, the designed proteins (scaffold and motif regions are in grey and orange , respectively) are superim-
posed with the original scaffold PDBs in magenta . Notice that scaffold loops of very different lengths and
conformations were replaced with the helical motif

Design of Protein-Protein Binding

298

 To date, no computational method has been developed that can
predict with perfect accuracy which designs will be functional when
challenged experimentally [13]. Therefore, it is wise to proceed
with designed sequences that present good metrics by multiple cri-
teria. Designs are initially fi ltered based on calculated metrics for
interface quality, including a favorable binding energy (ΔΔG < 0
ROSETTA energy units, ideally the energy should be lower than
the native interface from which the motif was taken), high shape
complementarity (Sc > 0.65), and a low number of buried unsatis-
fi ed hydrogen- bonding atoms. In the XML scripts above, these
fi lters report to a score fi le and will also be appended at the end of
any ROSETTA output PDBs.

 Once a set of designs have been selected based on the calcu-
lated metrics, it is important to perform human-guided inspection
of the designed structures. There are many qualities of interfaces
that are apparent to structural biologists that are not captured in
standard metrics . Two common defects in ROSETTA-designed
structures that are very important to avoid are buried charged
residues and under-packed interfaces dominated by alanine resi-
dues (Fig. 5).

3.5 Selection
of Designs
and Optimization

 Fig. 5 Common defects in ROSETTA-designed protein binders. (a) After backbone
grafting, the hydrophobic core of scaffold 1A0P (grey) was designed to support
the motif. Polar and charged residues (labeled) were designed within the core;
however, native proteins nearly always have hydrophobic cores. (b) Scaffold
(PDB 2B29) is shown in grey , while the grafted leucines are in orange and the
target ERα is green . The majority of designed scaffold residues at the interface
(grey sticks) are alanines. Interfaces dominated by alanine can achieve low ener-
gies; alanine is a small hydrophobic residue that will not clash with the target
surface and is therefore the “default” residue when specifi c interactions cannot
be designed. These interfaces lack hydrogen-bonding networks and are gener-
ally under-packed

D. Silva et al.

299

 It is also important to consider whether the designed scaffold will
fold to its intended structure; having a spectacular interface on a
computational model is irrelevant if the protein cannot fold in an
experimental setting. This is particularly problematic for designed
interfaces that have a large surface area dominated by hydrophobic
residues. It is generally assumed that the probability of a designed
sequence properly folding is inversely correlated with the number
of mutations imposed on the scaffold during the design process.
Therefore, it is benefi cial to be conservative and make as few muta-
tions as possible by reverting residues back to their native identities
in a post-design stage. The ROSETTA application “revert_design_
to_native” [2] can be used for this task; it goes through each
mutated position in the scaffold, reverts to the native amino acid,
and computes the change in binding energy. If the native residue
scores similarly to the designed residue, then it may be safer to
revert back to the native amino acid. The revert_design_to_native
application requires two input PDBs: the designed PDB (contain-
ing the target (chain A) bound to the designed scaffold (chain B))
and a reference PDB that contains the target together with the
native scaffold. To determine which residues have been mutated,
the application sequentially compares each amino acid between the
design and reference PDBs; this means the application can only be
applied to designs from side chain grafting in which the two PDB
fi les have the same number of residues. The reference PDB is easily
generated by concatenating the target (context.pdb) with the scaf-
fold PDB using the cat command:
 #> cat context.pdb scaffold.pdb >nativecplx.pdb

 Revert_design_to_native is run with the following command:
 #> ${Rosetta}/main/source/bin/revert_design_to_native.
macosclangrelease -revert_app:wt nativecplx.pdb
-revert_app:design design.pdb -ex1 -ex2 -use_input_sc
-database ${Rosetta}/main/database/

 If necessary, the designed structures may be subjected to human-
guided optimization. The user may wish to correct a number of
frequent problematic features in ROSETTA designs, such as
hydrophobic residues at the water-exposed interface edge, revert
designed residues back to their native identities, mutate buried
charged residues to hydrophobics, etc. There are no hard rules for
manually improving designs; it is simply a matter of the designer’s
preference and experience. FoldIt is an excellent computational
tool to perform this human-guided optimization [14]. It combines
a graphic front end with molecular visualization together with
many basic tools such as sequence design, rotamer repacking, and
minimization (though often with creative names like “Shake” and
“Wiggle”). FoldIt was developed as a protein folding and design
game, bringing the advantages of crowdsourcing to solve struc-
tural biology problems [14]. The stand-alone version of FoldIt

3.5.1 Reverting Designed
Mutations Back to Native

3.5.2 Manually Adjusting
Designs
Using FoldIt

Design of Protein-Protein Binding

300

gives immediate visual and ROSETTA energy feedback, helping
the user decide if any further mutations to the designed protein are
warranted. The license for FoldIt Standalone is available from
 http://c4c.uwc4c.com/express_license_technologies/foldit , and
directions will then be provided for downloading the software.

 Designs from backbone grafting require extra attention, as the
 en gineering of a protein core to support the grafted motif can be
challenging. Many designed sequences will not fold correctly when
experimentally tested. We have found structure prediction to be a
powerful fi lter; the designed amino acid sequences when subjected
to structure prediction calculations should yield similar structures
to the designed models [3]. If structure prediction returns an alter-
native conformation, or fails to converge on an energy minimum in
a conformational landscape, then it is unlikely that the designed
sequence will correctly fold. However, structure prediction is com-
putationally expensive and not accessible on a large scale to most
biochemists. Further, this evaluation method is only useful if the
original scaffold sequence correctly returns the native structure;
for many natural proteins, structure prediction methods are not yet
able to accurately predict the known structure. Instead, designs
can be relaxed with ROSETTA to determine if the designed con-
formation is “stable.” If the designed structural model drifts, it is
unlikely to occupy a low-energy conformation at the bottom of an
energy funnel, and the design should either be rejected or improved
using information derived from the relaxed ensemble, from which
one can identify cavities and alternative conformations that should
be eliminated by additional design steps. To apply this fi lter, fi rst
extract chain B (the designed protein) from the PDB fi les of the
designed complexes:
 #> for i in *.pdb; do grep " B " $i >$i.chainB; done
 #> ls -1 *.chainB >monomers.list

 Next, the designed monomers are relaxed and the RMSD to
the starting structure is determined:
 #> ${Rosetta}/main/source/bin/rosetta_scripts.macosclan-
grelease -database ${Rosetta}/main/database/ -l mono-
mers.list -use_input_sc -nstruct 1 -parser:protocol
fastrelax.xml
 <ROSETTASCRIPTS>
 <MOVERS>
 <FastRelax name=fstrlx repeats=4/>
 </MOVERS>
 <FILTERS>
 <Geometry name=omega omega=150 cart_bonded=100
confi dence=0/>

 <CavityVolume name=cav_vol confi dence=0/>
 <Rmsd name=rmsd confi dence=0 superimpose=1/>
 </FILTERS>
 <PROTOCOLS>

3.5.3 Filtering Designs
Based on Folding
Probability

D. Silva et al.

http://c4c.uwc4c.com/express_license_technologies/foldit

301

 <Add fi lter_name=omega/>
 <Add fi lter_name=cav_vol/>
 <Add mover_name=fstrlx/>
 <Add fi lter_name=rmsd/>
 </PROTOCOLS>
 </ROSETTASCRIPTS>

 The RMSD will be low if the designed protein conformation
is stable (typically ≤ 1 Å). This XML script also reports two other
useful metrics prior to relaxation. The Geometry fi lter checks
that backbone omega angles are above a defi ned cutoff (except
for cis - prolines, omega angles should be close to 180°) and that
Cartesian space bond angles and lengths are close to ideal
(decrease the cart_bonded penalty score for a more stringent
fi lter). The geometry at the junction points where the motif is
grafted can be particularly poor, and in such cases the cart_
bonded penalty score will be fl agged as high and the omega
angle as too low in the log report. The CavityVolume fi lter mea-
sures the total cavity volume in Å 3 . This will be higher for bigger
proteins and therefore should not be used as a hard fi lter, but
any outliers with exceptionally high values likely have under-
packed cores.

 Despite notable advances, computational protein desig n has only
modest success rates at the stage of experimental characterization.
Hence, it is essential to have a robust and rapid experimental assay
for evaluating designs. Library display methods are ideally suited to
screening many designs individually or simultaneously within a
mixed pool [3], and as the cost of DNA synthesis has plummeted,
it is possible to screen hundreds to thousands of designs within a
reasonable budget. Often initial computational designs present
low affi nities to the desired targets and must be optimized by tar-
geted mutagenesis or directed evolution [1 – 3 , 12 , 15].
Experimental methods should be carefully considered before
embarking on any protein design project.

 Computational design of protein–protein interactions is poised to
make spectacular advancements. Fast computers, affordable DNA
synthesis, and the development of tools like ROSETTA have
coalesced in the past few years, such that computational design
methodologies are now accessible to a wider community without
requiring supercomputers or advanced programming skills. Here,
we have outlined general methods for seeded interface design and
encouraged readers to create new protocols tailored to their prob-
lems. Proteins made to order, once deemed science fi ction, are
rapidly becoming a reality.

3.6 Experimental
Validation

3.7 Concluding
Remarks

Design of Protein-Protein Binding

302

4 Notes

 1. Formatting PDB fi les . PDB fi les must be correctly formatted
for compatibility with ROSETTA. All heteroatoms, including
water molecules, should be removed. In ROSETTA “TER”
statements designate different proteins in a complex, and
therefore any “TER” statements within a single protein chain
must be removed, such as those that are used to mark regions
of missing density. While these modifi cations can be made in a
text editor, a large number of PDB fi les can easily be prepared
with the following UNIX command:
 #> for i in *.pdb; do grep "ATOM " $i >$i.atoms; done

 This will go through all PDB fi les within the directory,
search for all lines containing the string “ATOM”, and print
these lines to a new fi le with suffi x atoms.

 2. ROSETTA energy minimization of crystallographic structures .
It may be advantageous to perform energy minimization of the
structures within the ROSETTA energy function prior to
matching and design. Structures from experimental data often
have residues with high (i.e., energetically unfavorable) energy
due to minor clashes or “imperfections,” and these may be
inappropriately designed by ROSETTA to alternative amino
acids. This is especially problematic for backbone grafting and
may lead to unnecessary sequence design of residues that
should remain unchanged. Energy minimization of input
PDBs generally resolves this issue. However, it is important
that structures do not drift too far during the minimization
protocol; after all, the original PDB fi les are determined from
real experimental data, whereas a minimized structure will only
be as real as the energy function is accurate. To perform this
step, we suggest two computational protocols. First, structures
can be minimized using the constrained fast relaxation proto-
col. To minimize a single PDB fi le, use option -s fi le.pdb in the
command line. To relax all PDB fi les within a directory, create
a list fi rst:
 #> ls -1 *.pdb >pdb_fi les.list
 #> ${Rosetta}/main/source/bin/relax.macosclangrelease
-database ${Rosetta}/main/database/ -ignore_unrecog-
nized_res -relax:constrain_relax_to_start_coords -ex1
-ex2 -use_input_sc -l pdb_fi les.list

 Alternatively, structures can be minimized using
RosettaScripts. A command line and example XML script are:
 #> ${Rosetta}/main/source/bin/rosetta_scripts.maco-
sclangrelease -database ${Rosetta}/main/database/ -l
pdb_fi les.list -use_input_sc -ex1 -ex2 -parser:protocol
ppk_min.xml

D. Silva et al.

303

 Contents of ppk_min.xml:

 <ROSETTASCRIPTS>
 <FILTERS>
 <Rmsd name=rmsd threshold=1.5 superimpose=1/>
 </FILTERS>
 <MOVERS>
 <Prepack name=ppk jump_number=0/>
 <MinMover name=sc_bb_min bb=1 chi=1/>
 </MOVERS>
 <PROTOCOLS>
 <Add mover_name=ppk/>
 <Add mover_name=sc_bb_min/>
 <Add mover_name=ppk/>
 <Add mover_name=sc_bb_min/>
 <Add fi lter_name=rmsd/>
 </PROTOCOLS>

 In this XML script, there are two rounds of rotamer repacking and
side chain/backbone minimization using the movers Prepack
and MinMover. The “Rmsd” fi lter superimposes the minimized
structure with the input PDB fi le; if the two differ by over 1.5
Å, then the structure is rejected and ROSETTA proceeds to the
next scaffold in the list. The reasons why a structure is “unsta-
ble” during energy minimization and rejected may include
inaccuracies in the ROSETTA energy function or regions of
poor quality in the crystallographic models. For instance, in our
initial scaffold library, we found that from 1519 prot ein struc-
tures, only 1419 fulfi lled the fi ltering criteria and were included
in the library to perform the modeling examples described in
this manuscript.

 References

 1. Procko E, Hedman R, Hamilton K et al (2013)
Computational design of a protein-based
enzyme inhibitor. J Mol Biol 425:3563–3575.
doi: 10.1016/j.jmb.2013.06.035

 2. Fleishman SJ, Whitehead TA, Ekiert DC et al
(2011) Computational design of proteins tar-
geting the conserved stem region of infl uenza
hemagglutinin. Science 332:816–821.
doi: 10.1126/science.1202617

 3. Procko E, Berguig GY, Shen BW et al (2014)
A computationally designed inhibitor of an
Epstein-Barr viral Bcl-2 protein induces apop-
tosis in infected cells. Cell 157:1644–1656.
doi: 10.1016/j.cell.2014.04.034

 4. Leaver-Fay A, Tyka M, Lewis SM et al (2011)
ROSETTA3: an object-oriented software suite
for the simulation and design of macromole-
cules. Methods Enzymol 487:545–574.
 doi: 10.1016/B978-0-12-381270-4.00019-6

 5. Das R, Baker D (2008) Macromolecular mod-
eling with rosetta. Annu Rev Biochem 77:

363–382. doi: 10.1146/annurev.biochem.77.
062906.171838

 6. Fleishman SJ, Leaver-Fay A, Corn JE et al
(2011) RosettaScripts: a scripting language
interface to the Rosetta macromolecular mod-
eling suite. PLoS ONE 6, e20161.
doi: 10.1371/journal.pone.0020161

 7. Wärnmark A, Treuter E, Gustafsson J-A et al
(2002) Interaction of transcriptional interme-
diary factor 2 nuclear receptor box peptides
with the coactivator binding site of estrogen
receptor alpha. J Biol Chem 277:21862–
21868. doi: 10.1074/jbc.M200764200

 8. Savkur RS, Burris TP (2004) The coactivator
LXXLL nuclear receptor recognition motif.
J Pept Res 63:207–212. doi: 10.1111/
j.1399-3011.2004.00126.x

 9. Ofek G, Guenaga FJ, Schief WR et al (2010)
Elicitation of structure-specifi c antibodies by epi-
tope scaffolds. Proc Natl Acad Sci U S A 107:
17880–17887. doi: 10.1073/pnas.1004728107

Design of Protein-Protein Binding

http://dx.doi.org/10.1016/j.jmb.2013.06.035
http://dx.doi.org/10.1126/science.1202617
http://dx.doi.org/10.1016/j.cell.2014.04.034
http://dx.doi.org/10.1016/B978-0-12-381270-4.00019-6
http://dx.doi.org/10.1146/annurev.biochem.77.062906.171838
http://dx.doi.org/10.1146/annurev.biochem.77.062906.171838
http://dx.doi.org/10.1371/journal.pone.0020161
http://dx.doi.org/10.1074/jbc.M200764200
http://dx.doi.org/10.1111/j.1399-3011.2004.00126.x
http://dx.doi.org/10.1111/j.1399-3011.2004.00126.x
http://dx.doi.org/10.1073/pnas.1004728107

304

 10. Correia BE, Ban Y-EA, Holmes MA et al
(2010) Computational design of epitope-scaf-
folds allows induction of antibodies specifi c for
a poorly immunogenic HIV vaccine epitope.
Structure 18:1116–1126. doi: 10.1016/j.
str.2010.06.010

 11. Azoitei ML, Ban Y-EA, Julien J-P et al (2012)
Computational design of high-affi nity epitope
scaffolds by backbone grafting of a linear epit-
ope. J Mol Biol 415:175–192. doi: 10.1016/j.
jmb.2011.10.003

 12. Azoitei ML, Correia BE, Ban Y-EA et al (2011)
Computation-guided backbone grafting of a dis-
continuous motif onto a protein scaffold. Science
334:373–376. doi: 10.1126/science.1209368

 13. Fleishman SJ, Whitehead TA, Strauch E-M
et al (2011) Community-wide assessment of
protein- interface modeling suggests improve-
ments to design methodology. J Mol Biol
414:289–302. doi: 10.1016/j.
jmb.2011.09.031

 14. Cooper S, Khatib F, Treuille A et al (2010)
Predicting protein structures with a multiplayer
online game. Nature 466:756–760.
doi: 10.1038/nature09304

 15. Whitehead TA, Chevalier A, Song Y et al
(2012) Optimization of affi nity, specifi city and
function of designed infl uenza inhibitors using
deep sequencing. Nat Biotechnol 30:543–548.
doi: 10.1038/nbt.2214

D. Silva et al.

http://dx.doi.org/10.1016/j.str.2010.06.010
http://dx.doi.org/10.1016/j.str.2010.06.010
http://dx.doi.org/10.1016/j.jmb.2011.10.003
http://dx.doi.org/10.1016/j.jmb.2011.10.003
http://dx.doi.org/10.1126/science.1209368
http://dx.doi.org/10.1016/j.jmb.2011.09.031
http://dx.doi.org/10.1016/j.jmb.2011.09.031
http://dx.doi.org/10.1038/nature09304
http://dx.doi.org/10.1038/nbt.2214

305

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_18, © Springer Science+Business Media New York 2016

 Chapter 18

 Computational Reprogramming of T Cell Antigen Receptor
Binding Properties

 Timothy P. Riley , Nishant K. Singh , Brian G. Pierce , Brian M. Baker ,
and Zhiping Weng

 Abstract

 T-cell receptor (TCR) binding to peptide/MHC is key to antigen-specifi c cellular immunity, and there has
been considerable interest in modulating TCR affi nity and specifi city for the development of therapeutics
and imaging reagents. While in vitro engineering efforts using molecular evolution have yielded remark-
able improvements in TCR affi nity, such approaches do not offer structural control and can adversely affect
receptor specifi city, particularly if the attraction towards the MHC is enhanced independently of the pep-
tide. Here we describe an approach to computational design that begins with structural information and
offers the potential for more controlled manipulation of binding properties. Our design process models
point mutations in selected regions of the TCR and ranks the resulting change in binding energy.
Consideration is given to designing optimized scoring functions tuned to particular TCR-peptide/MHC
interfaces. Validation of highly ranked predictions can be used to refi ne the modeling methodology and
scoring functions, improving the design process. Our approach results in a strong correlation between
predicted and measured changes in binding energy, as well as good agreement between modeled and
experimental structures.

 Key words T cell receptor , Structure-guided design , Rosetta , Binding

1 Introduction

 The αβ T cell receptor (TCR) is a membrane- bound heterodimer
on the surface of helper or killer T cells that recognizes peptide
antigens bound and displayed by major histocompatibility complex
(MHC) proteins (Fig. 1). TCR recognition of peptide/MHC ini-
tiates T cell signaling and defi nes specifi city in cellular immunity.
 TCR affi nity for a target peptide/MHC generally correlates with
in vivo potency [1 , 2], which has led to the generation of many
 high affi nity TCR variants using molecular evolution techniques
such as yeast or phage display (e.g., refs. 3 – 6). While these meth-
ods can lead to spectacular gains in TCR affi nity, there is potential
to negatively impact specifi city, leading to enhanced

306

cross-reactivity [7]. As potential uses for engineered TCRs include
constructing genetically engineered T cells or soluble reagents to
treat cancer and infectious disease [6 , 8 , 9], enhanced cross-reac-
tivity could lead to dangerous autoimmunity. Further, accumulat-
ing evidence suggests that very large enhancements in affi nity may
lead to diminished T cell potency [2].

 By incorporating structural information into the design pro-
cess, computational design offers the potential to more carefully
control specifi city than molecular evolution. Also, computational
design can permit more controlled enhancements in binding.

 Fig. 1 Structural overview of the complex formed between a TCR (blue / gold) and
peptide/MHC complex (green / purple / orange). The structure of the DMF5 TCR
bound to the human class I MHC HLA-A2 in complex with the MART-1 ELA pep-
tide was used for this fi gure [16]

T.P. Riley et al.

307

Computational design has been used to engineer a small number
of TCRs [10 – 13]. While different approaches have been used, all
benefi t from the ability to rationalize effects on specifi city and
 affi nity through the examination of crystallographic structures and
target specifi c regions of the interface. This latter point is crucial,
as the recognition of a composite surface formed from two distinct
components (the peptide and MHC protein) sets TCR recognition
of pMHC apart from almost all other protein–protein interactions
and requires special consideration when considering the origins of
 binding affi nity and specifi city and how they might be manipulated
in productive ways [14].

 Here we describe an approach to TCR computational design
that recognizes the unique nature of TCR-pMHC binding and
builds off our recent work with TCRs specifi c for viral and tumor
antigens [11 , 13]. Our approach uses the powerful Rosetta suite
[15]. The design process models point mutations in selected
regions of the TCR and ranks the resulting change in binding
energy through the use of scoring functions which describe van der
Waals interactions, solvation energies, hydrogen bonds, etc. As
both structural modeling and energetic scoring involves trade-offs,
assumptions, and known limitations, it is important to validate and
if needed iteratively refi ne the design process with biophysical
binding and structural work. For example, with the DMF5 TCR
binding the MART-1 ELA and AAG peptides presented by the
 class I MHC protein HLA-A2 [16], we observed close agreement
between predicted and measured changes in binding energy, as
well as predicted and crystallographic X-ray structures, but multi-
ple approaches for structural modeling and scoring were consid-
ered [13].

 One important caveat is that in some circumstances, TCR
structural properties have been shown to be surprisingly sensitive
to changes in the TCR–pMHC interface (e.g., refs. 16 – 20). While
our method attempts to accommodate some structural alterations,
large conformational changes or global TCR repositioning are
unlikely to be captured by the approach described here. While
improvements are therefore possible, this approach can nonethe-
less serve as the foundation for efforts in engineering TCRs with
novel binding properties.

2 Materials

 1. A personal computer or high performance computing facility
enabled with the latest Python and PyRosetta installations
(https://www.rosettacommons.org/). The IPython com-
mand shell (http://ipython.org/) is recommended as it sup-
ports tab- completion and is useful in accessing PyRosetta
functions.

Design of T-cell Antigen Binding

https://www.rosettacommons.org/
http://ipython.org/

308

 2. 3 GB of available RAM and one processor core is required for
each PyRosetta job. Multiple cores with accompanying RAM
are required for large modeling projects (see Note 1 for com-
ments on calculation speeds).

 3. Structural coordinates of the target TCR/pMHC complex;
when publicly available downloadable from the Protein Data
Bank (http://www.rcsb.org/pdb/home/home.do).

 4. Applied mathematics software with multiple linear regression
functionality, such as MATLAB (http://www.mathworks.
com/products/matlab).

3 Methods

 The Rosetta package includes tools for computational modeling
and structure analysis and was originally designed for de novo
structure prediction [15]. Rosetta is typically used to investigate
research applications such as protein folding or protein design, and
has been used to predict interaction energies between proteins
(e.g., refs. 11 , 13 , 21). PyRosetta is a Python toolkit which pack-
ages the powerful Rosetta algorithms into the easily learned Python
scripting language [22]. PyRosetta can be used via scripts or inter-
actively by command line. The sections below describe a complete
script which inserts, structurally adjusts, and scores point muta-
tions at TCR–pMHC interfaces (see Note 2 for a list and descrip-
tions of variables used and Note 3 for comments about syntax).

 1. Initiate PyRosetta with the command-line fl ag to include addi-
tional amino acid rotamers in the design process. The addi-
tional rotamers increase sidechain sampling which may allow
for lower observed energy states during design.
 #Initialize Rosetta with additional options
 from rosetta import*
 init(extra_options = ‘-extrachi_cutoff 1 -ex1 -ex2 -ex3’)

 2. Declare the score function to be used in the design process for
scoring interactions. The default Talaris2013 [23] score func-
tion may be suffi cient for initial design work, although other
score functions such as the Rosetta ‘interface’ or ‘ddg’ func-
tions can be examined. As highlighted below, customized score
functions trained to the experimental system can lead to
improved results [13].
 #Initialize the score function
 scorefxn = create_score_function('talaris2013')

 3. Import the TCR/pMHC complex for design and store as a
pose object. The structural coordinates may be stored locally
or downloaded directly from the Protein Data Bank (the

3.1 Structure- Guided
Improvement of T Cell
Receptor Binding

T.P. Riley et al.

http://www.rcsb.org/pdb/home/home.do
http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab

309

example below uses the complex for the DMF5 TCR bound to
the MART-1 ELA peptide presented by HLA-A2, available as
the PDB entry 3QDG [16]).
 #Download the DMF5 TCR/MHC complex from the PDB and
store as ‘pose’
 from toolbox import pose_from_rcsb
 pose = pose_from_rcsb(‘3QDG’)

 4. Score the complex, then isolate and score the TCR and pMHC
separately. To calculate a binding energy, subtract the TCR and
pMHC scores from the complex (e.g.,: Binding
Score WT = Score WTcomplex - Score WT-TCR -Score pMHC ; see ref. 21) (see
 Note 4 for comments on chain IDs and Note 5 for comments
on scoring).
 #score the DMF5 TCR
 scorefxn(pose)
 import rosetta.protocols.grafting
 #delete chains D and E of the complex and store
remaining coordinates as ‘HLA’
 HLA = Pose()
 protocols.grafting.delete_region(HLA.assign(pose),
pose.pdb_info().pdb2pose('D',1), pose.total_residue())
 #delete chains A, B, and C of the complex and store
the remaining coordinates as ‘TCR’
 TCR = Pose()
 protocols.grafting.delete_region(TCR.assign(pose),
pose.pdb_info().pdb2pose('A',1), pose.pdb_info().
pdb2pose('D',1)-1)
 #calculate binding score
 BindingScore = scorefxn(pose) – scorefxn(HLA) –
scorefxn(TCR)

 5. Using protein modeling software such as PyMOL (The
PyMOL Molecular Graphics System, Version 1.7.4
Schrödinger, LLC.) or commands within Rosetta, scan the
complex for TCR residues that are near atoms of the target
peptide presented by the MHC molecule. Choosing residues
close to (or contacting) the peptide is one means to help ensure
peptide specifi city is retained. A less restrictive approach is
likely to favor improved interactions between the TCR and
MHC, which could lead to undesirable enhancements in TCR
cross-reactivity. When incorporated into a script, the com-
mands below iteratively scan a TCR–pMHC interface and
identify TCR residues in proximity to the peptide (see Note 6
for comments on cut-off distances).
 #measure distance between the center of mass of two
residues at positions i of the TCR and j of the
peptide.
 list_of_residue_positions = []
 distance_cutoff = 15

Design of T-cell Antigen Binding

310

 for i in range(pose.pdb_info().pdb2pose('D',1),
pose.total_residue()):
 for j in range (pose.pdb_info().pdb2pose('C', 1),
 pose.pdb_info().pdb2pose('D', 1)):
 distance = pose.residue(j).nbr_atom_xyz().
distance(pose.residue(i).nbr_atom_xyz())
 if distance.norm < distance_cutoff:
 list_of_residue_positions.append(i)

 6. Using the mutate_residue() command, computationally intro-
duce the desired amino acids into each position selected in
 step 5 .
 #mutate residue i of the pose to an alanine and store
as mutant pose
 from toolbox import mutate_residue
 residue_list = [‘A’,‘C’,‘D’,‘E’,‘F’,‘G’,‘H’,‘I’,‘K’,
‘L’,‘M’,‘N’,‘P’,‘Q’,‘R’,‘S’,‘T’,‘V’,‘W’,‘Y’]
 for i in range(1, len(list_of_residue_positions)):
 for j in range(1, len(residue_list)):
 mutant = mutate_residue(pose, i, str(residue_

list[j]))
 #At this point, a design could be considered com-
plete. Either dump the pose to pdb (dump_
pdb(mutant,‘mutation_name.pdb’) or continue
repacking/refi nement in subsequent steps within
this loop.

 7. For a simple design, the protein backbone is kept rigid and
only the mutant amino acid is repacked. The results of 16
DMF5 point mutations modeled using this method are shown
in Fig. 2a . While this approach is computationally inexpensive,
it has potential to result in clashes and unrealistic rotamers. To

 Fig. 2 Correlations between experimental values and Rosetta score of point mutations in the DMF5–ELA/HLA-
A2 interface [13]. (a) Results when modeled with a rigid backbone and the ‘interface’ score function. (b)
Results when modeled with the LoopMover_Refi ne () mover and the score function shown in Table 3

T.P. Riley et al.

311

optimize the local environment around the mutated residue to
minimize clashes and unfavorable interactions, residues near
the mutated residue may also be repacked (see Note 7).
 #repack the sidechain of the mutated residue to min-
imize the score from the defi ned score function
 task = standard_packer_task(mutant)
 task.or_include_current(True)
 task.restrict_to_repacking()
 task.temporarily_fi x_everything()
 task.temporarily_set_pack_residue(list_of_residue_
positions(i),True)
 pack_mover = PackRotamersMover(scorefxn, task)
 pack_mover.apply(mutant)

 8. Designs can be further improved by refi ning the backbone of
the TCR complementarity determining region (CDR) loops
through a combination of cyclic coordinate descent (CCD)
 and Monte Carlo algorithms. Although the IMGT immunoin-
formatics database (www.imgt.org) [24] can be used to defi ne
 TCR CDR loops, loops can also be defi ned by examining the
structure. This may be preferable, as sequence-based defi ni-
tions of loops often exclude amino acids which contact the
peptide/MHC. For example, a CDR loop may be defi ned as
occurring between residues 26 and 31 on chain ‘D’.
 #Defi ne loop positions
 start = mutant.pdb_info().pdb2pose(‘D’,26)
 cutpoint = mutant.pdb_info().pdb2pose(‘D’,28)
 end = mutant.pdb_info().pdb2pose(‘D’,31)

 Table 3

 New score function after stepwise multiple linear regression, removing all terms with p values >0.05

 Term Estimate Standard error t statistic p value

 fa_atr 0.33 0.07 4.52 5.83E−05

 fa_elec 0.45 0.16 2.72 0.01

 fa_rep 0.18 0.06 2.94 0.01

 fa_sol 0.46 0.11 4.13 1.95E−4

 Number of observations 42

 Root mean squared error 0.84

 R-squared 0.43

 Adjusted R-squared 0.38

Design of T-cell Antigen Binding

http://www.imgt.org/

312

 9. A foldtree defi ning the fl exible regions is required when manip-
ulating the backbone. The foldtree should encompass the CDR
loop and two additional residues on either side to act as
“anchors.”
 #Set up a foldtree encompassing CDR1 alpha
 ft = FoldTree()
 ft.add_edge(1, start-2,-1)
 ft.add_edge(start-2,cutpoint,-1)
 ft.add_edge(start-2,end + 2,1)
 ft.add_edge(end + 2,cutpoint + 1,-1)
 ft.add_edge(end + 2,mutant.total_residue(),-1)
 mutant.fold_tree(ft)

 10. The LoopMover protocol in Rosetta uses a random number
seed to iteratively and stochastically perturb the backbone and
repack all affected sidechains. For this reason, designs vary
slightly depending on the seed chosen by the LoopMover. It is
suggested to perform multiple refi nements and average the
resulting scores to account for this variability [25]. Multiple
loops may be refi ned at once as long as the foldtree includes the
additional loops (see Note 8).
 #Defi ne loop and refi ne with cyclic coordinate descent
(CCD)
 CDRloop = loop(start, end, cutpoint)
 loops = Loops()
 loops.add(CDRloop)
 loop_refi ne = LoopMover_Refi ne_CCD(loops, scorefxn)
 loop_refi ne.max_inner_cycles(10)
 loop_refi ne.apply(mutant)

 11. Refi ning the CDR loops multiple times increases the computa-
tional time required. The job distributor is a useful tool that can
take advantage of multiple cores running the same script to
generate designs/decoys in parallel. A more detailed descrip-
tion on the job distributor can be found in Note 9 .
 #create job_distributor; defi ne number of decoys and
score function
 jd = PyJobDistributor('DMF5refi ne' + str(list_of_resi-
due_positions[i])+‘A’, 3, scorefxn)
 while not jd.job_complete:
 jdpose.assign(mutant)
 loop_refi ne.apply(jdpose)
 jd.output(jdpose)

 12. Calculate the Binding Score for the designed complexes as
described in step 4 . Subtraction of the WT score results in a
difference in energy roughly correlating to ∆∆G in kcal/mol.
Negative values suggest favorable designs and possible candi-
dates for follow-up experimental investigation.

T.P. Riley et al.

313

 After many point mutations have been predicted and binding ener-
gies experimentally determined, a tailored score function may be
generated to improve future predictions. An iterative approach
(design, score, measure, repeat…) can optimize the “rules” for
mutations in a specifi c interface to better predict the impacts on
 affi nity and specifi city.

 1. For each mutation to be used in developing a score function,
collect the values for each term available in Rosetta. This can
be observed with the scorefxn.show(pose) command or within
a .fasc fi le. The terms used in the latest release of Rosetta along
with the default weights are shown in Table 1 . Other terms
(e.g., the Atomic Contact Energy term used in ZAFFI [13])
can be added to the score function in an attempt to improve
correlation with experimental binding free energies.

 2. Calculate the unweighted binding energies as described in
Subheading 3.1 for all scoring terms.

 3. Perform a multiple linear regression fi tting all terms simultane-
ously to the experimental ΔΔG values. Some may be insignifi -
cant to the regression and may be removed with minimal effect.
The results may be informative in understanding the biophysics

3.2 Score Function
Refi nement
Following Comparison
With Experimental
Binding Data

 Table 1

 Score function terms and weights of the Talaris2013 score function [23]

 Score function term Talaris2013 weights

 fa_atr 0.8

 fa_rep 0.44

 fa_sol 0.75

 fa_intra_rep 0.004

 fa_elec 0.7

 pro_close 1

 hbond_sr_bb 1.17

 hbond_lr_bb 1.17

 hbond_bb_sc 1.17

 hbond_sc 1.1

 dslf_fa13 1

 rama 0.2

 omega 0.5

 fa_dun 0.56

 p_aa_pp 0.32

 ref 1

Design of T-cell Antigen Binding

314

within a specifi c TCR–pMHC interface. MATLAB’s fi tlm tool
fi ts and reports weights for terms and their signifi cance to the
model (Table 2). The removeTerms tool allows a user to
sequentially remove terms with a high p value and reweight the
remaining terms to fi t the model as shown in Table 3 . It is
important to remove terms with highest p -values fi rst as some
terms may become more signifi cant as other terms are removed
(e.g., fa_rep in Table 3).
 ddg = [Experimental_ddg_values];
 predictors = [array_of_predictor_values];

 Table 2

 Multiple linear regression results on ΔΔG data from 42 point mutations in the A6-Tax/HLA-A2 and
DMF5-AAG/HLA-A2 interface with all Rosetta terms

 Term Estimate Standard error t statistic p value

 dslf_fa 0 0 – –

 fa_atr 0.32 0.15 2.11 0.044

 fa_dun 0.29 0.31 0.92 0.37

 fa_elec 0.22 0.30 0.72 0.48

 fa_intra_rep −2.34 4.01 −0.58 0.56

 fa_rep 0.03 0.13 0.26 0.80

 fa_sol 0.38 0.17 2.26 0.03

 hbond_bb_sc −0.27 0.55 −0.49 0.63

 hbond_lr_bb 1.38 2.06 0.67 0.51

 hbond_sc 0.16 0.33 0.49 0.63

 hbond_sr_bb 0.69 2.10 0.33 0.74

 omega 0 0 – –

 p_aa_pp 0.27 0.61 0.44 0.66

 pro_close 0.09 1.21 0.08 0.94

 rama 0.69 0.89 0.78 0.44

 ref −0.02 0.37 −0.05 0.96

 Number of observations 42

 Root mean squared error 0.91

 R-squared 0.50

 Adjusted R-squared 0.26

 See ref. 23 for a description of terms

T.P. Riley et al.

315

 %Perform a stepwise multiple linear regression where
all terms in the fi nal %output have a p value < 0.05
 mdl = fi tlm(predictors,ddg,‘Intercept’ false);

 4. To evaluate the predictive power of the regression model, con-
sider a cross-validation approach by excluding a portion of the
data (e.g., 5 %) from the training procedure. For the demon-
stration used here, the score function was trained to 42 data
points from the A6 and DMF5 TCRs (Table 3) and 16 DMF5
data points were excluded. Once the regression model has
been trained, use the resulting model to evaluate the remain-
ing data in order to estimate the applicability of the model with
future predictions. An example can be seen in Fig. 2b . The
revised function eliminates a large “outlier” in the DMF5 test
set that is seen with the ‘interface’ function, resulting in an
improved fi t as judged by the correlation and distribution of
points around the fi tted line. Without this outlier, the two
functions behave similarly; however, the revised function high-
lights the importance of critically examining outliers and dem-
onstrates that their exclusion may not always be appropriate.

 Related to this, N -fold (e.g., fi vefold) cross-validation is a
commonly used method to assess predictive performance. To apply
this method, the data are divided into N equally sized subsets, and
for each subset a model is trained (e.g., by multilinear regression)
using the points outside that set. Thus, a correlation can be pro-
duced using all points, without any training set overlapping with a
test set. If the sample size is low (<100 measurements) and as much
data as possible must be used in the regression model, Leave One
Out Cross Validation may be used to gauge overfi tting the data
(see https://en.wikipedia.org/wiki/Cross-validation_(statistics)).

4 Notes

 1. Rosetta performance speeds are dependent on the processing
speed of the CPU core in use. Most jobs where design is lim-
ited to residue repacking can be completed in a few seconds.
The LoopMovers perform complex backbone moves and cal-
culations, and can take minutes for a single trajectory to
complete.

 2. Python variables in order of appearance are as follows:
 scorefxn #holds the score function for design and
scoring
 pose #holds coordinates of the full TCR/pMHC complex
 HLA #holds the coordinates of the pMHC
 TCR #holds the coordinates of the TCR
 bindingScore #holds the binding score of the complex
 list_of_residue_positions #holds a list of TCR posi-
tions as candidates for mutation

Design of T-cell Antigen Binding

https://en.wikipedia.org/wiki/Cross-validation_(statistics)

316

 distance_cutoff #holds the specifi ed cutoff distance
from the peptide
 distance #holds distance between the center of mass
of two residues
 residue_list #holds the single letter code of all 20
amino acids
 mutant #holds a copy of the complex to perform
mutations.
 task #holds the side chain packing settings
 pack_mover #holds the mover to repack sidechains
 start #holds the fi rst position in the loop
 cutpoint #holds the loop cutpoint
 end #holds the end position of the loop
 ft #holds the foldtree
 CDRloop #holds the loop object
 loops #holds all of the defi ned loops
 loop_refi ne #holds the LoopMover_Refi ne_CCD mover
 jd #holds the job distributor
 jdpose #holds the pose for manipulation within the
job distributor

 3. The commands written in Subheading 3.1 are written in
Python and include the necessary variables and syntax to
develop a complete script for modeling point mutations in
TCRs. Commands written in Python/Pyrosetta use the # sym-
bol to denote commented lines. Commands in Subheading 3.2
are example MATLAB commands and use the % symbol to
denote commented lines.

 4. The scripts assume the following chain PDB IDs: MHC heavy
chain as A; β 2 -microglobulin as B; peptide as C; TCR α chain
as D; and TCR β chain as E.

 5. The Rosetta energy unit is an arbitrary unit that loosely corre-
lates with thermodynamic measurements. Because of this,
experimental measurements may correlate best with the sug-
gested method for calculating binding energy. Alternative
approaches include scoring the entire complex.

 6. A judicious cut-off distance between TCR-peptide may be use-
ful here. We most commonly use 15 Å, although structural
details and concerns about specifi city and cross-reactivity may
dictate smaller values.

 7. Similar to the cut-off distance between TCR and peptide, we
commonly repack residues within a sphere of 8 Å around the
mutation. The size of the sphere may be dictated by design
needs and is not necessary when using a LoopMover to refi ne
the backbone.

 8. The syntax for a foldtree encompassing multiple loops is shown
below. The value of −1 indicates edges. Positive integers
describe jumps where backbone regions may be manipulated
without propagating throughout the rest of the structure.

T.P. Riley et al.

317

 ft = FoldTree()
 ft.add_edge(1, 376-2,-1)
 ft.add_edge(376-2,380,-1)
 ft.add_edge(376-2,384 + 2,1)
 ft.add_edge(384 + 2,380 + 1,-1)
 ft.add_edge(384 + 2,408-2,-1)
 ft.add_edge(408-2,411,-1)
 ft.add_edge(408-2,414 + 2,2) #increment the positive
integer by one for each jump
 ft.add_edge(414 + 2,411 + 1,-1)
 ft.add_edge(414 + 2,mutant.total_residue(),-1)

 9. Each core running a job distributor script and calculating a
decoy will output a numeric .in_progress fi le. When the decoy
fi nishes, a numbered .pdb fi le is created and score function
information added to the .fasc fi le. The .in_progress fi le is then
deleted, and the core moves on to the next trajectory that does
not have a .pdb or .in_progress fi le in the directory .

 Acknowledgements

 Computational structural immunology in the authors’ laboratories
is supported by NIH grants R01GM103773 and R01GM067079
and an award from the Carole and Ray Neag Comprehensive
Cancer Center at the University of Connecticut. TPR is supported
by a fellowship from the Indiana CTSI, funded in part by NIH
grant UL1TR001108.

 References

 1. Aleksic M, Dushek O, Zhang H et al (2010)
Dependence of T cell antigen recognition on T
cell receptor-peptide MHC confi nement time.
Immunity 32:163–174

 2. Stone JD, Kranz DM (2013) Role of T cell
receptor affi nity in the effi cacy and specifi city of
adoptive T cell therapies. Front Immunol 4:244

 3. Holler PD, Holman PO, Shusta EV et al
(2000) In vitro evolution of a T cell receptor
with high affi nity for peptide/MHC. Proc Natl
Acad Sci U S A 97:5387–5392

 4. Chlewicki LK, Holler PD, Monti BC et al (2005)
High-affi nity, peptide-specifi c T cell receptors can
be generated by mutations in CDR1, CDR2 or
CDR3. J Mol Biol 346:223–239

 5. Li Y, Moysey R, Molloy PE et al (2005)
Directed evolution of human T-cell receptors
with picomolar affi nities by phage display. Nat
Biotechnol 23:349–354

 6. Varela-Rohena A, Molloy PE, Dunn SM et al
(2008) Control of HIV-1 immune escape by
CD8 T cells expressing enhanced T-cell recep-
tor. Nat Med 14:1390–1395

 7. Zhao Y, Bennett AD, Zheng Z et al (2007)
High- affi nity TCRs generated by phage display
provide CD4+ T cells with the ability to recog-
nize and kill tumor cell lines. J Immunol
179:5845–5854

 8. Morgan RA, Dudley ME, Wunderlich JR et al
(2006) Cancer regression in patients after
transfer of genetically engineered lymphocytes.
Science 314:126–129

 9. Liddy N, Bossi G, Adams KJ et al (2012)
Monoclonal TCR-redirected tumor cell killing.
Nat Med 18:980–987

 10. Michielin O (2007) Application of molecular
modeling to new therapeutic cancer
approaches. Bull Cancer 94:763–768

Design of T-cell Antigen Binding

318

 11. Haidar JN, Pierce B, Yu Y et al (2009)
Structure‐based design of a T‐cell receptor
leads to nearly 100‐fold improvement in bind-
ing affi nity for pepMHC. Proteins
74:948–960

 12. Malecek K, Grigoryan A, Zhong S et al (2014)
Specifi c increase in potency via structure-
based design of a TCR. J Immunol
193:2587–2599

 13. Pierce BG, Hellman LM, Hossain M et al
(2014) Computational design of the affi nity
and specifi city of a therapeutic T cell receptor.
PLoS Comput Biol 10:e1003478

 14. Piepenbrink KH, Blevins SJ, Scott DR et al
(2013) The basis for limited specifi city and
MHC restriction in a T cell receptor interface.
Nat Commun 4:1948

 15. Kaufmann KW, Lemmon GH, Deluca SL et al
(2010) Practically useful: what the Rosetta
protein modeling suite can do for you.
Biochemistry 49:2987–2998

 16. Borbulevych OY, Santhanagopolan SM,
Hossain M et al (2011) TCRs used in cancer
gene therapy cross-react with MART-1/
Melan-A tumor antigens via distinct mecha-
nisms. J Immunol 187:2453–2463

 17. Scott DR, Borbulevych OY, Piepenbrink KH
et al (2011) Disparate degrees of hypervariable
loop fl exibility control T-cell receptor cross-
reactivity, specifi city, and binding mechanism.
J Mol Biol 414:385–400

 18. Adams J, Narayanan S, Liu B et al (2011) T cell
receptor signaling is limited by docking geom-

etry to peptide-major histocompatibility com-
plex. Immunity 35:681–693

 19. Burrows SR, Chen Z, Archbold JK et al (2010)
Hard wiring of T cell receptor specifi city for
the major histocompatibility complex is under-
pinned by TCR adaptability. Proc Natl Acad
Sci 107:10608–10613

 20. Borbulevych OY, Piepenbrink KH, Gloor BE
et al (2009) T cell receptor cross-reactivity
directed by antigen-dependent tuning of pep-
tide-MHC molecular fl exibility. Immunity
31:885–896

 21. Sammond DW, Eletr ZM, Purbeck C et al
(2007) Structure-based protocol for identify-
ing mutations that enhance protein–protein
binding affi nities. J Mol Biol 371:1392–1404

 22. Chaudhury S, Lyskov S, Gray JJ (2010)
PyRosetta: a script-based interface for imple-
menting molecular modeling algorithms using
Rosetta. Bioinformatics 26:689–691

 23. Leaver-Fay A, O’meara MJ, Tyka M et al
(2013) Scientifi c benchmarks for guiding mac-
romolecular energy function improvement.
Methods Enzymol 523:109

 24. Giudicelli V, Duroux P, Ginestoux C et al
(2006) IMGT/LIGM-DB, the IMGT® com-
prehensive database of immunoglobulin and T
cell receptor nucleotide sequences. Nucleic
Acids Res 34:D781–D784

 25. Kellogg EH, Leaver‐Fay A, Baker D (2011)
Role of conformational sampling in computing
mutation‐induced changes in protein structure
and stability. Proteins 79:830–838

T.P. Riley et al.

319

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_19, © Springer Science+Business Media New York 2016

 Chapter 19

 Computational Modeling of T Cell Receptor Complexes

 Timothy P. Riley , Nishant K. Singh , Brian G. Pierce , Zhiping Weng ,
and Brian M. Baker

 Abstract

 T-cell receptor (TCR) binding to peptide/MHC determines specifi city and initiates signaling in antigen-
specifi c cellular immune responses. Structures of TCR–pMHC complexes have provided enormous insight
to cellular immune functions, permitted a rational understanding of processes such as pathogen escape,
and led to the development of novel approaches for the design of vaccines and other therapeutics. As pro-
duction, crystallization, and structure determination of TCR–pMHC complexes can be challenging, there
is considerable interest in modeling new complexes. Here we describe a rapid approach to TCR–pMHC
modeling that takes advantage of structural features conserved in known complexes, such as the restricted
TCR binding site and the generally conserved diagonal docking mode. The approach relies on the power-
ful Rosetta suite and is implemented using the PyRosetta scripting environment. We show how the
approach can recapitulate changes in TCR binding angles and other structural details, and highlight areas
where careful evaluation of parameters is needed and alternative choices might be made. As TCRs are
highly sensitive to subtle structural perturbations, there is room for improvement. Our method nonethe-
less generates high-quality models that can be foundational for structure-based hypotheses regarding TCR
recognition.

 Key words T cell receptor , Peptide/MHC , Structure , Rosetta , Loop modeling , Docking

1 Introduction

 Clonally distributed αβ T cell receptors (TCRs) recognize anti-
genic peptides bound and “presented” by class I or class II major
histocompatibility complex proteins (pMHC; Fig. 1). TCR recog-
nition of a pMHC initiates T cell signaling and is responsible for
the specifi city of T cell mediated immunity. Since initial crystallo-
graphic work in the 1990s [1 , 2], dozens of new and variant TCR–
pMHC structures have been reported. This structural work has
signifi cantly enriched our understanding of the principles of T cell
recognition, lending insight into T cell immunobiology as well as
the biophysics that underlie the remarkable binding properties of
TCRs. Knowledge of TCR–pMHC structures has helped us under-
stand the TCR’s unusual dichotomy of specifi city and

320

cross-reactivity; the structural basis for molecular mimicry and its
potential role in autoimmunity; the principles underlying T cell
recognition of tumor antigens; the basis for immune responses to
pathogens and the function of “escape” mutations; vaccine design;
and the mechanisms of T cell signaling (see, for example, refs.
 3 – 8).

 In addition to fundamental biophysical and immunological
insights, knowledge of TCR–pMHC structures has spurred devel-
opments of novel immunologically based therapeutics. This
includes T cells genetically engineered to express unique TCRs as
well as soluble TCR–CD3 antibody fusions [9 , 10]. These
approaches redirect T cells to targets of specifi c interest, such as

 Fig. 1 Structural overview of the complex formed between a TCR (blue / gold) and
peptide/MHC complex (green / purple / orange). The structure of the DMF5 TCR
bound to the human class I MHC HLA-A2 in complex with the MART-1 ELA pep-
tide was used for this fi gure

T.P. Riley et al.

321

tumor or virally infected cells, and for both there is increasing
interest in engineering TCR variants with enhanced recognition
properties. Structural knowledge can be of obvious benefi t here,
permitting structure-guided computational design or helping to
pinpoint which regions and amino acids should be subject to
molecular evolution.

 While structural information for TCR–pMHC complexes can
therefore be of clear benefi t for basic and applied immunology,
recombinant TCRs are diffi cult to generate and can be challenging
to crystallize (although helpful descriptions of successful, system-
atic approaches are available [11 , 12]). While these challenges can
often be surmounted, many TCR–pMHC complexes form with
very weak affi nities in solution [13 , 14], which can further hinder
crystallization. For this reason, there has been growing interest in
developing procedures for modeling TCR–pMHC complexes. We
recently described TCRFlexDock, a template-independent proce-
dure which led to near- native predictions for multiple TCR–pMHC
complexes, in addition to TCR recognition of CD1–lipid and
MR1–metabolite complexes [15 , 16]. In addition to these studies,
TCR–pMHC structural models have been generated by other
groups to investigate specifi c hypotheses or facilitate structural sur-
veys (e.g., refs. 17 – 21). Klausen and colleagues recently described
a publicly available web server that models TCRs [22], yet this
does not build a TCR–pMHC complex.

 Here we outline a strategy for modeling TCR–pMHC com-
plexes which builds on previous efforts. The procedure is designed
for rapid and easy implementation and is readily extensible. Unlike
TCRFlexDock, which uses unbound TCR and pMHC structures
set to an average docking orientation for docking input [15 , 16],
this method uses a known TCR–pMHC complex as a template,
utilizing the restricted pMHC binding site and the generally con-
served diagonal TCR docking mode to help make predictions. As
with all docking and modeling procedures, there are known cave-
ats and areas of needed improvement, particularly given the high
sensitivity of TCRs for subtle structural perturbations [23].
Nonetheless, this method is rapid and can be considered a “launch-
ing point” for generating high- quality models that permit the
development of testable, structure- based hypotheses for exploring
TCR–pMHC complexes.

2 Materials

 1. Access to a high performance computing facility enabled with
the latest Python (https://www.python.org/) and PyRosetta
installations (https://www.rosettacommons.org/).

 2. Access to the NCBI BLAST tool (http://blast.ncbi.nlm.nih.
gov/Blast.cgi).

Design of T-cell Receptor Complexes

https://www.python.org/
https://www.rosettacommons.org/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi

322

 3. 3 GB of available RAM and one processor core is required for
each PyRosetta job. Multiple cores with accompanying RAM
are required for large modeling projects. A minimum of 20
cores is recommended for projects requiring thousands of
decoys.

 4. Sequence information of the target TCR–pMHC complex to
be modeled.

 5. Structural coordinates of one or more template TCR–pMHC
complexes, when publicly available downloadable from the
Protein Data Bank (http://www.rcsb.org/pdb/home/home.
do).

3 Methods

 TCR–pMHC complexes share a high level of structural homology
which can be taken advantage of when modeling complexes for
which there is no structural information. The procedure below
assumes a “new” TCR recognizing a “new” peptide presented by
the same class I MHC protein (see Note 1 for comments on mod-
eling new peptides). For demonstration, we describe modeling the
complex between the antiviral TCR A6 and the Tax peptide pre-
sented by HLA-A2, using the structure of the complex between
the DMF5 TCR and the melanoma-associated MART-1 AAG pep-
tide presented by HLA-A2 [24]. Although considerable structural
information is available for the A6–Tax/HLA-A2 complex, includ-
ing structures for the free TCR and free pMHC [1 , 3 , 23 , 25 – 29],
this structural information is not utilized in the modeling proce-
dure. Modeling the A6–Tax/HLA-A2 complex using the DMF5–
AAG/HLA-A2 complex as a template is a reasonably challenging
modeling task, as the two TCRs bind pMHC with different inci-
dent angles (Fig. 2). Results are also shown for modeling the
DMF5–ELA/HLA-A2 and DMF5–AAG/HLA- A2 complexes
using the complexes with the unrelated DMF4 TCR as templates.
The latter two are also challenging modeling tasks, as the DMF4
TCR binds AAG/HLA-A2 and ELA/HLA-A2 with different
docking angles [24].

 To begin, we fi rst describe mapping the sequence of a target TCR
onto the coordinates of the TCR in a TCR–pMHC template struc-
ture through the use of Basic Local Alignment Search Technique
(BLAST). Special consideration should be given to sequence simi-
larity and loop length when selecting the template. The most pre-
ferred template shares at least one TCR chain with the target.
However, if loop sizes vary considerably (>4 residues) between tar-
get and template TCR, an alternative template might be consid-
ered. Templates with properties such as unusual docking or

3.1 Selection
of Template and TCR
Sequence Alignment

T.P. Riley et al.

http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do

 Fig. 2 TCR–pMHC complexes modeled and comparison with known X-ray structures. (a) Modeling of the A6–
Tax/HLA-A2 complex using the DMF5–ELA/HLA-A2 complex as a template. Using the known X-ray structures,
the left panel shows the position of the template DMF5 TCR (green) relative to the target A6 TCR (blue) when
bound to pMHC, generated by superimposing the HLA-A2 heavy chain. Only the TCR variable domains and the
peptide binding domain are shown. Horizontal dashed lines represent the TCR docking angle relative to pMHC
and vertical dashed lines the incident angle. The middle panel compares the fi nal model of the A6 complex
(yellow) to the known structure of the target complex. The right panel compares the peptides from the modeled
and known complexes, as well as the centers of mass of the TCRs over the MHC. (b) Modeling of the DMF5–
AAG/HLA-A2 complex using the DMF4–AAG/HLA-A2 complex as a template. Panels and colors are the same
as in (a). (c) Modeling of the DMF5–ELA/HLA-A2 complex using the DMF4-ELA/HLA-A2 complex as a template.
Panels and colors are the same as in (a)

324

incident angles might also be avoided. Depending on circum-
stances, multiple templates might be used and the results examined
for convergence on similar structural properties.

 1. Align the protein sequences of the target and template TCR
chains with the protein BLAST tool from NCBI, using default
options. The example alignment in Fig. 3a is between the tar-
get TCR A6 α chain (Query) and template DMF5 α chain
(Sbjct) sequences [30 , 31].

 2. The alignments in Fig. 3b demonstrates for the α chain that
most of the sequence variability is at the hypervariable CDR3α
loop, which is one residue longer in the A6 structure. The β
chain sequences are more different, but the alignment is able
to determine where the insertions should be made.

 The Rosetta package includes tools for computational modeling
and structural analysis and was originally designed for de novo
structure prediction [32]. Rosetta is typically used in applications
such as protein folding or protein design, and is an ideal tool here.
PyRosetta is a Python toolkit which packages the powerful Rosetta
algorithms into the easily learned Python scripting language [33].
PyRosetta can be used via scripts or interactively by command line.
The commands used below demonstrate how PyRosetta can be
used to generate an initial model of the new TCR–pMHC com-
plex, whereby the target, “new” TCR is mapped onto the template
and the peptide is altered (see Note 2 for initiating Rosetta and
 Note 3 for a list of variables used in the code below).

 1. Load the template PDB structure (3QDJ) into PyRosetta and
adjust the loops according to alignment in the previous steps.
Adjusting the loop sizes can be performed manually in the pdb
or using the grafting tool within Rosetta as shown below (see
 Note 4 for comments on insertions). For amino acid inser-
tions, glycines are used initially and backbone coordinates cop-
ied from the preceding amino acid. Insertions that are not
glycine will be mutated to the appropriate amino acid in the
next step. After the loops have been adjusted, backbone breaks
need to be closed. This can be accomplished with the
CcdLoopClosureMover, which solves the chain break through
cyclic coordinate descent (see Note 5 for loop defi nitions for
closing breaks).
 #Download the template from the PDB database and
defi ne the last insertion site.
 template_pose = pose_from_rcsb(‘3QDJ’)
 b e t a _ i n s e r t i o n _ s i t e = p o s e . p d b _ i n f o () .
pdb2pose('E',101))
 #create a Glycine to insert into loop with backbone
coordinates
 identical to residue 101 of chain ‘E’. Insert the
Glycine(s) and close the resulting chain breaks.

3.2 Using Rosetta
to Map the Target TCR
Sequence
onto the Structural
Template and Modify
the Peptide

T.P. Riley et al.

325

 Fig. 3 BLAST alignment of TCR α and β chains. (a) BLAST web interface for performing a protein–protein
alignment, with sequences for the A6 and DMF5 α chains entered. (b) BLAST alignments for the A6 and DMF5
α and β chains. Residues in bold indicate locations requiring insertions or deletions

Design of T-cell Receptor Complexes

326

 Gly = pose_from_sequence(‘G’)
 Gly.residue(1).set_xyz(‘N’, template_pose.residue
(beta_insertion_site).xyz(‘N’))
 Gly.residue(1).set_xyz(‘C’, template_pose.residue(beta_
insertion_site).xyz(‘C’))
 Gly.residue(1).set_xyz(‘CA’, template_pose.residue
(beta_insertion_site).xyz(‘CA’))
 Gly.residue(1).set_xyz(‘O’, template_pose.residue(beta_
insertion_site).xyz(‘O’))
 template_pose = protocols.grafting.insert_pose_into_
pose(template_pose, Gly, beta_insertion_site)
 #close the resulting chain breaks on either end of
the insertion
 loopclose = Loop(beta_insertion_site-2,beta_inser-
tion_site + 2, beta_insertion_site)
 movemap = MoveMap()
 movemap.set_bb_true_range(beta_insertion_site-2,
beta_insertion_site + 2)
 set_single_loop_fold_tree(template_pose,loopclose)
 add_single_cutpoint_variant(template_pose,
loopclose)
 ccd = CcdLoopClosureMover(loopclose, movemap)
 ccd.apply(complex)
 loopclose = Loop(beta_insertion_site-2,beta_inser-
tion_site + 2, beta_insertion_site + 1)
 set_single_loop_fold_tree(template_pose,loopclose)
 add_single_cutpoint_variant(template_pose,
loopclose)
 ccd = CcdLoopClosureMover(loopclose, movemap)
 ccd.apply(template_pose)

 2. Working backwards (see Note 4), complete the necessary loop
adjustments for each backbone manipulation of the template
TCR. For mapping A6 onto DMF5, these adjustments occur
at residue 96 of chain ‘E’ and 92 of chain ‘D.’

 3. Once the template has been aligned and resized to match the
target sequence, ‘for’ loops for the peptide, α chain, and β
chains can be set up to mutate all template residues to the tar-
get sequence. For example, a ‘for’ loop demonstrating the
conversion of the DMF5 α chain sequence to A6 α chain is
shown below.
 matched_sequence = Pose()
 matched_sequence.assign(template_pose)
 a l p h a = (' K E V E Q N S G P L S V P E G A I A S L N C T Y S D R G
S Q S F F W Y R Q Y S G K S P E L I M S I Y S N G D K E D G R F T A
Q L N K A S Q Y V S L L I R D S Q P S D S A T Y L C A V T T D S W G K L Q
FGAGTQVVVTPDIQNP')
 # mutate the alpha chain
 for i in range(0,len(alpha)):
 matched_sequence = mutate_residue(template_pose,
alpha_start_site + i, alpha[i])

T.P. Riley et al.

327

 4. Repeat step 3 to map the β chain and peptide sequences onto
the matched_sequence pose.

 5. Build a packer task and pack_mover to repack all residues in
the target structure.
 scorefxn_high = get_fa_scorefxn()
 t a s k = T a s k F a c t o r y . c r e a t e _ p a c k e r _ t a s k
(matched_sequence)
 task.or_include_current(True)
 task.restrict_to_repacking()
 pack_mover = PackRotamersMover(scorefxn_high, task)
 pack_mover.apply(matched_sequence)

 6. The job distributor is a useful tool that can take advantage of
multiple cores running the same script to generate designs/
decoys in parallel. Before further docking or loop modeling,
set up a job distributor to repack all residues in the target
structure and minimize the loop backbones (see Note 6 for
comments on the job distributor; Note 7 for recommended
trials; and Note 8 for loop defi nitions and a full FoldTree).
 #add all CDR loops + peptide to be refi ned simultane-
ously. Create a FoldTree to include all loops.
 peploop = Loop(376,384,380)
 acdr1 = Loop(408,414,411)
 acdr2 = Loop(433,439,435)
 acdr3 = Loop(475,482,479)
 bcdr1 = Loop(607,612,610)
 bcdr2 = Loop(631, 637,635)
 bcdr3 = Loop(675,687,680)
 ft = FoldTree()
 #build a complete FoldTree here.
 loops = Loops()
 loops.add_loop(peploop)
 loops.add_loop(acdr1)
 loops.add_loop(acdr2)
 loops.add_loop(acdr3)
 loops.add_loop(bcdr1)
 loops.add_loop(bcdr2)
 loops.add_loop(bcdr3)
 loop_refine = LoopMover_Refine_CCD(loops,
scorefxn_high)
 jd = PyJobDistributor('ready_for_docking',100,
scorefxn_high)
 while not jd.job_complete:
 p = Pose()
 p.assign(matched_sequence)
 p.fold_tree(ft)
 pack_mover.apply(p)
 loop_refi ne.apply(p)
 jd.output_decoy(p)

 7. Save the lowest scoring .pdb fi le from the job distributor for
the subsequent steps.

Design of T-cell Receptor Complexes

328

 Fig. 4 Rosetta scores of the fi rst 1000 low resolution docking decoys plotted vs.
RMSD of the backbone of the decay to the template. The decoy with the lowest
RMSD is selected for continued refi nement, and is usually included among the
lowest 20 scoring structures

 The sections above result in an initial model of the new TCR
bound to the new pMHC complex, in this case the A6 TCR bound
to Tax/HLA-A2. However, although TCRs generally bind with a
diagonal docking angle, there is variation in this angle, as well as
the incident angle with which the TCR engages [34 , 35]. Such
variation is exemplifi ed by the A6–Tax/HLA-A2 and DMF5–
AAG/HLA-A2 complexes, as shown in Fig. 2 .

 To adjust the docking angle of the template TCR over the
pMHC, the Rosetta Docking protocols are utilized [36]. The
Docking movers perform rigid body translations to bring two mol-
ecules into contact and minimize scores. We use a low resolution
centroid model to perform a global docking maneuver where the
TCR may bind the pMHC in any orientation. Restrictions may be
set in place to limit the randomization of the docking partners, but
a full randomization helps remove bias and is not computationally
prohibitive when low resolution centroid models are used.

 The Docking protocol requires many different decoys to be
generated, and many incorrect decoys may have scores similar to
the true solution. To account for this, we take advantage of the
diagonal docking angle found across TCR–pMHC complexes. As
shown in Fig. 4 , the decoy with the lowest RMSD to the template
is selected for future refi nement. This ensures selection of a model
which retains a TCR-like binding mode, as Rosetta score alone

3.3 Low Resolution
Docking

T.P. Riley et al.

329

cannot be used. Although selecting a model with the lowest RMSD
to the template could potentially introduce some bias, in our expe-
rience low resolution docking is suffi ciently imprecise and the vari-
ation in TCR–pMHC docking modes suffi ciently small to reduce
these concerns (note also that further manipulation of the docking
mode is performed later by a high resolution docking maneuver).
If there is still concern about template bias at this step, another
TCR–pMHC complex can be used to determine RMSD values and
select a model to move forward with, or multiple models gener-
ated with different templates.

 1. The centroid mode within Rosetta converts amino acid side-
chains into low resolution centroids. This mode is useful for
sampling conformations quickly. Because the centroid is not
representative of a full atom structure, there is a difference
between centroid and full atom score functions, which infl u-
ences how residues are repacked and manipulated. Before con-
version to a centroid model, save the sidechains of the existing
template to assist in repacking in subsequent steps.
 scorefxn_low = create_score_function('interchain_cen')
 recover_sidechains = protocols.simple_moves.
ReturnSidechainMover(ready_for_docking)
 censwitch = SwitchResidueTypeSetMover('centroid')
 centroid_complex = Pose()
 centroid_complex.assign(ready_for_docking)
 censwitch.apply(centroid_complex)

 2. The docking mover requires a FoldTree that defi nes the TCR
and pMHC as separate chains to translate independently.
 #The jump defi nes where the movers are allowed to
separate the pose. “ABC_DE” is synonymous to the
complex chains (see Note 9 for information on chain
identifi ers).
 jump = Vector([1])
 setup_foldtree(centroid_complex, "ABC_DE",jump)

 3. The following steps involve randomizing the orientation of the
TCR relative to the pMHC to escape local score minima. This
is followed by sliding the two proteins into contact and a rigid
body score minimization. Because of the randomization, we
suggest performing the following steps within the job distribu-
tor for at least 10,000 trials.
 jd = PyJobDistributor('docking_lowres',10000,
scorefxn_high)
 jd.native_pose = full_atom_pose
 while not jd.job_complete:
 p = Pose()
 p.assign(centroid_complex)
 #randomize the two partners before docking

Design of T-cell Receptor Complexes

330

 randomize1 = rigid_moves.RigidBodyRandomizeMover
(p, 1, rigid_moves.partner_upstream)

 randomize2 = rigid_moves.RigidBodyRandomizeMover(p,
1, rigid_moves.partner_downstream)

 randomize1.apply(p)
 randomize2.apply(p)
 #translate the two molecules towards each other
until they come into contact

 slide = DockingSlideIntoContact(jump)
 slide.apply(p)
 #perform rigid body score minimization
 dock_lowres = DockingLowRes(scorefxn_low, 1)
 dock_lowres.apply(p)
 #return to full atom mode
 fa_switch.apply(p)
 recover_sidechains.apply(p)
 pack_mover.apply(p)
 jd.output_decoy(p)

 4. As mentioned earlier, the decoy with the lowest backbone
RMSD to the original template is chosen for further
refi nement.

 We have modifi ed the general docking protocol described by Gray
et al. to include a loop modeling stage between the low and high
resolution docking stages [37]. Modeling the TCR loops may be
accomplished through Kinematic Loop Closure (KIC) or Cyclic
Coordinate Descent (CCD) methodologies. CCD solves a chain
break by fi nding the shortest solution to bring two termini
together while KIC uses an analytical calculation to minimize the
score between three pivot residues. While it is possible to model
all loops simultaneously, the large number of possible loop con-
formations may result in discarding favorable loop conformations
paired with unfavorable overall models. We prefer to model each
loop consecutively to avoid this situation (see Note 10 for com-
ments on de novo loop modeling). Loops are modeled in low
resolution through a Monte Carlo algorithm with the Metropolis
criterion [38], and decoys are chosen based off of a steepest
descent design.

 1. The method outlined in Mandell et al. [38] is a well-character-
ized method for building loops de novo with KIC and is con-
veniently implemented into Rosetta as two movers for the low
and high resolution stages.
 #use the low resolution mover for one loop, and the
high resolution refi nement protocol on all loops.
 model_loop = Loops()
 model_loop.add(aCDR1)
 kic_perturb = rosetta.protocols.loops.loop_mover.
LoopMover_Perturb_KIC(model_loop)

3.4 Loop Modeling

T.P. Riley et al.

331

 kic_refine = rosetta.protocols.loops.loop_mover.
refi ne.LoopMover_Refi ne_KIC(loops)

 2. Set up a job distributor to model at least 1000 decoys for the
current loop.
 j d = P y J o b D i s t r i b u t o r (' l o o p m o d e l ' , 1 0 0 0 ,
scorefxn_high)
 while not jd.job_complete:
 p = Pose()
 p.assign(current_model)
 p.fold_tree(ft)
 censwitch.apply(p)
 perturb_KIC(p)
 faswitch.apply(p)
 recover_sidechains.apply(p)
 #since backbone moved, repack sidechains
 pack.apply(p)
 kic_refi ne.apply(p)
 jd.output_decoy(p)

 3. After the all of the decoys have completed, choose the lowest
scoring structure and repeat the loop modeling procedure for
the peptide (if modeled) and each CDR loop. Since loop con-
formations may be dependent on each other, continue model-
ing each loop until lower scores are no longer achieved (see
 Note 10).

 The high resolution docking procedure is similar to the low resolu-
tion procedure, but adds in full atom side chain repacking in addi-
tion to the rigid body minimization performed in Subheading 3.3 .
Sidechain packing allows for higher resolution discrimination of
repulsive forces and charged interactions. In addition, a small per-
turbation is utilized to further refi ne the docking mode [37]. With
TCRFlexDock, we used a 3 Å, 8° perturbation [16]. Since the
method here incorporates a full randomization of the docking
partners in low resolution docking (Subheading 3.3), a smaller
perturbation could be used in the high resolution phase, although
alternate values can be used to explore convergence.

 1. Set up the job distributor similar to Subheading 3.2 , but use
the full atom movers.
 jd = PyJobDistributor('highresdock',10000,
scorefxn_high)
 jd.native_pose = loopmodel
 while not jd.job_complete:
 p = Pose()
 p.assign(loopmodel)
 setup_foldtree(p, "ABC_DE",jump)
 #defi ne the degree of perturbation between the TCR
and pMHC (8 degree, 3 Angstrom).

 pert_mover = rigid_moves.RigidBodyPerturbMover(1,
8, 3)

3.5 High Resolution
Docking

Design of T-cell Receptor Complexes

332

 pert_mover.apply(p)
 pert_mover.apply(p)
 fa_slide = FaDockingSlideIntoContact(1)
 fa_slide.apply(p)
 dock_highres = DockMCMProtocol()
 dock_highres.set_partners("ABC_DE")
 dock_highres.set_scorefxn(scorefxn_high)
 dock_highres.apply(p)
 jd.output_decoy(p)

 2. Similar to the low resolution docking stage, the structure with
the lowest RMSD to the structure used in the docking proto-
col (Subheading 3.4 , step 4) is our criteria for selection. We
have found the default scores do not correlate with accurate
docking (Fig. 4). Therefore, we use the template as a guide (as
all TCRs bind with similar orientations) and depend on the
Rosetta docking movers to modify the angle to resolve clashes.

 3. If the docking angle or score changed signifi cantly (RMS > 0.2
or abs(score) >10), additional rounds of loop modeling and
docking as described in Subheadings 3.3 and 3.4 may be nec-
essary to further refi ne the structure.

 The example above shows the modeling of the A6–Tax/HLA-A2
complex using the DMF5–AAG/HLA-A2 complex as a template.
As noted earlier, this modeling task was chosen as A6 and DMF5
bind pMHC with different incident angles (Fig. 2a). We also used
the above procedure to model the DMF5–ELA/HLA-A2 and
DMF5–AAG/HLA-A2 complexes using the unrelated DMF4–
ELA/HLA-A2 and DMF4–AAG/HLA-A2 complexes as tem-
plates. These latter two are also challenging tasks as the DMF4
TCR binds AAG/HLA-A2 and ELA/HLA-A2 with different
docking angles (Fig. 2b, c) [24]. The scores and RMSDs to the
target complex for each example through the course of the model-
ing procedure are shown in Fig. 5 . This analysis demonstrates the
overall level of performance (note that the RMSD to target infor-
mation was not used during any stages in the modeling proce-
dures). It also highlights a complexity observed with the
DMF5–ELA/HLA- A2 complex: unlike the other complexes, the
Rosetta score increased after high resolution docking, prompting
additional rounds of loop refi nement. Comparison with the RMSD
data showed only small downward movement throughout the pro-
cess, suggesting that this model may have become locked into a
local energy well early in the process, possibly in the loop modeling
stage. Nonetheless, the fi nal full atom RMSD to the target com-
plex was close at 2.4 Å (1.6 Å for only the α carbons of the TCR).

 The performance for all three modeling examples are shown
visually in Fig. 2 . In each case, the docking/incident angles are
shifted towards the correct model, yielding a good alignment as

3.6 Analysis
of Example Projects

T.P. Riley et al.

333

discernible from the ribbon diagrams. The shift in docking modes
is also apparent by examining the centers of mass of the template/
model/known TCRs over the pMHC. In the case of the A6–Tax/
HLA-A2 complex, which also involved modeling the Tax peptide
from the MART-1 AAG peptide (sequences LLFGYPVYV and
AAGIILTV), the peptide backbone is captured, as are the positions
of key peptide side chains.

 Modeling performance is quantifi ed in Table 1 . In each case,
the RMSD for the backbone of the modeled TCR relative to that
of the known structure is less than 2 Å, and reduced from that
obtained by comparing the template to the target structures. The
quality of the modeled DMF5–AAG/HLA-A2 structure seems
particularly good, given that the starting model differed from the
known structure by a TCR Cα RMSD of >3 Å. Details within the
three TCR–pMHC interfaces are shown in Fig. 6 , comparing the

 Fig. 5 Rosetta Score and all atom RMSD values of the model to the known X-ray structures as modeling pro-
gresses for (a) the A6–Tax/HLA-A2 complex, (b) the DMF5–AAG/HLA-A2 complex, and (c) the DMF5–ELA/
HLA-A2 complex. For the DMF5–ELA/HLA-A2 complex, a second high resolution docking stage followed by
further loop modeling was performed when the fi rst stage of loop modeling failed to reduce the Rosetta score

Design of T-cell Receptor Complexes

334

 Table 1

 Quantitative comparison of template, X-ray structure, and modeled complexes

 Template

 Target
(modeled
complex)

 Starting
model to
structure
Cα RMSD
(full
complex)
[Å]

 Final model to
structure Cα
RMSD (full
complex) [Å]

 Final model
to structure
all atom
RMSD (full
complex) [Å]

 Starting
model to
structure
Cα RMSD
(TCR only)
[Å]

 Final model
to structure
Cα RMSD
(TCR only)
[Å]

 Final
model to
structure
all atom
RMSD
(peptide
only) [Å]

 DMF5–
AAG/
HLA-A2
(3QDJ)

 A6–Tax/
HLA-A2
(1QRN)

 2.85 1.42 1.89 1.73 1.64 1.67

 DMF4–
ELA/
HLA-A2
(3QDM)

 DMF5–
ELA/
HLA-A2
(3QDG)

 3.16 1.96 2.37 2.02 1.64 N/A

 DMF4–
AAG/
HLA-A2
(3QEQ)

 DMF5–
AAG/
HLA-A2
(3QDJ)

 3.38 1.76 2.23 3.09 1.49 N/A

 Fig. 6 Comparison of the positioning of select side chains in the known (blue) and modeled (yellow) TCR–
pMHC interfaces

positions of key side chains in the models and X-ray structures.
Although there is clear room for improvement in the positioning
of some of the side chains, the three models demonstrate the capac-
ity to capture interfacial features as well as general docking modes.

T.P. Riley et al.

335

4 Notes

 1. Modeling projects which also involve a new peptide necessitate
modeling the peptide in the MHC protein, a challenging
problem in itself which continues to receive considerable atten-
tion (e.g., refs. 39 – 42). These or other approaches could be
used alongside, or integrated into, the procedures described
here.

 2. This project was developed with the use of multiple scripts,
each with a new instance of PyRosetta and new variable decla-
rations which may not be constant depending on the actions
taken to manipulate the template (e.g., insertions change the
template pdb numbering and require all new variables to be
named). The following should be the header of each PyRosetta
script to import all tools used in this chapter:
 from rosetta import*
 init(extra_options = "-extrachi_cutoff 12 -ex1 -ex2 -ex3")
 from toolbox import mutate_residue
 import rosetta.protocols.grafting
 from rosetta.core.pack.dunbrack import*
 from toolbox import pose_from_rcsb
 import rosetta.protocols.rigid as rigid_moves
 from rosetta.protocols.loops.loop_mover.refi ne import *
 from rosetta.protocols.loops.loop_closure.ccd import *

 3. Variables used in order of appearance:
 template_pose #holds the template pose for loop
manipulation
 beta_insertion_site #holds the location to perform
an insertion
 Gly #holds the pose for a single glycine for
insertion
 loopclose #holds the loop for closing chain breaks
 movemap #defi nes the fl exible backbone regions of the
pose
 ccd #holds the CCD mover for closing chain breaks
 matched_sequence #holds the pose for mapping the
target sequence onto template
 alpha #holds a string of the alpha sequence
 alpha_start_site #holds the pose numbering of the
1 st residue of the alpha chain
 scorefxn_high #holds the high resolution score
function
 task #holds the sidechain packing settings
 pack_mover #holds the mover to repack the sidechains
 peploop #holds the loop object containing the peptide
 acdr1 #holds the loop object containing the αCDR1
 acdr2 #holds the loop object containing the αCDR2
 acdr3 #holds the loop object containing the αCDR3

Design of T-cell Receptor Complexes

336

 bcdr1 #holds the loop object containing the βCDR1
 bcdr2 #holds the loop object containing the βCDR2
 bcdr3 #holds the loop object containing the βCDR3
 ft #holds the foldtree of the pose
 loops #holds all of the defi ned loops
 loop_refi ne #holds the CCD loop refi ne mover
 jd #holds the job distributor
 p #holds the pose used for TCR modeling within the
job distributor
 scorefxn_low #holds the low resolution score function
 ready_for_docking #holds the pose with adjusted
loops and matched sequence
 recover_sidechains #holds the mover to restore the
amino acid sidechains of the pose before conversion
to low resolution
 censwitch #holds the mover for switching poses to
centroid mode
 centroid_complex #holds the low resolution pose
 jump #holds the jump number to identify where to per-
form the docking maneuvers
 docking_lowres #holds the low resolution docked
structure
 randomize1 #holds the mover to randomize the TCR
docking coordinates
 randomize2 #holds the mover randomize the pMHC dock-
ing coordinates
 pert_mover #holds the mover performing slight
perturbations
 slide #holds the mover to bring two objects into
contact
 dock_lowres #holds the mover to perform low resolu-
tion docking
 fa_switch #holds the mover to convert a low resolu-
tion pose to high resolution
 model_loop #holds the loop for investigating loop
conformations
 kic_perturb #holds the mover to perturb a low reso-
lution loop using KIC
 kic_refi ne #holds the mover to refi ne a high resolu-
tion loop using KIC
 loopmodel #holds the pose used for loop modeling
 fa_slide #holds the mover to slide two full atom
objects into contact
 dock_highres #holds the mover to perform high reso-
lution docking
 highresdock #holds the high resolution docked complex

 4. protocols.grafting.insert_pose_into_pose inserts a pose imme-
diately after the named residue of the template. After an inser-
tion, residue numbering in the pdb reverts to the sequential
pose numbering (e.g., residue 92 of chain D becomes residue
477). Because of this, make insertions and deletions starting

T.P. Riley et al.

337

from the C termini of the beta chain and work backwards.
Also, if the peptides are of different sizes, perform the same
procedure on the peptide chain. However, as peptides of dif-
ferent lengths can take signifi cantly different paths in the MHC
binding groove [43] and peptide modeling remains challeng-
ing as noted above, consider using a template with a matched
peptide length.

 5. To limit the backbone perturbation of the insertion, set up the
CcdLoopMover loops to include the insertion site −2 residues
and the length of the insertion +1 residue.

 6. Each core running a job distributor script and calculating a
decoy will output a numeric .in_progress fi le. When the decoy
fi nishes, a numbered .pdb fi le is created and score function
information added to the .fasc/.sc fi le. The .in_progress fi le is
then deleted, and the core moves on to the next trajectory that
does not have a .pdb or .in_progress fi le in the directory.

 7. The number of trials needed for each job distributor depends
on the moves applied and the variability introduced to the
template structure. For example, a full atom backbone refi ne-
ment may sample all local conformations in 100 trials, a loop
modeling protocol with backbone randomization may need
1000 trials, and full docking protocols will need to generate
upwards of 10,000 decoys.

 8. Loops may be defi ned using the IMGT database (http://
www.imgt.org) [44] or preferably by visually inspecting the
CDR loops in the template and comparing with the sequenc-
ing alignment. A loop in Rosetta is defi ned by two residues on
either end and a ‘cutpoint’ to allow fl exible motion without
propagating through the rest of the structure. FoldTrees defi ne
independent regions of a pose and are set up to include each
loop and two residues on either side to act as anchors. The
syntax for a FoldTree encompassing multiple loops is shown
below. The value of −1 indicates edges. Positive integers
describe jumps where backbone regions may be manipulated
without propagating throughout the rest of the structure.
 ft.add_edge(1, 376-2,-1)
 ft.add_edge(376-2,380,-1)
 ft.add_edge(376-2,384 + 2,1)
 ft.add_edge(384 + 2,380 + 1,-1)
 ft.add_edge(384 + 2,408-2,-1)
 ft.add_edge(408-2,411,-1)
 ft.add_edge(408-2,414 + 2,2) #jumps increment by +1
 ft.add_edge(414 + 2,411 + 1,-1)
 ft.add_edge(414 + 2,433-2,-1)
 ft.add_edge(433-2,435,-1)
 ft.add_edge(433-2,439 + 2,3)

Design of T-cell Receptor Complexes

http://www.imgt.org/
http://www.imgt.org/

338

 ft.add_edge(439 + 2,435 + 1,-1)
 ft.add_edge(439 + 2,475-2,-1)
 ft.add_edge(475-2,479,-1)
 ft.add_edge(475-2,482 + 2,4)
 ft.add_edge(482 + 2,479 + 1,-1)
 ft.add_edge(482 + 2,607-2,-1)
 ft.add_edge(607-2,610,-1)
 ft.add_edge(607-2,612 + 2,5)
 ft.add_edge(612 + 2,610 + 1,-1)
 ft.add_edge(612 + 2,631-2,-1)
 ft.add_edge(631-2,635,-1)
 ft.add_edge(631-2,637 + 2,6)
 ft.add_edge(637 + 2,635 + 1,-1)
 ft.add_edge(637 + 2,675-2,-1)
 ft.add_edge(675-2,680,-1)
 ft.add_edge(675-2,685 + 2,7)
 ft.add_edge(687 + 2,680 + 1,-1)
 f t . a d d _ e d g e (6 8 7 + 2 , m a t c h e d _ s e q u e n c e .
total_residue(),-1)

 9. The scripts assume the following chain PDB IDs: For a class I
 MHC protein, heavy chain as A; β 2 -microglobulin as B; pep-
tide as C (for a class II MHC protein, the α chain would be A
and the β chain would be B); TCR α chain as D; and TCR β
chain as E.

 10. For example, 1000 decoys of the αCDR1 loop may be remod-
eled. The lowest scoring decoy will be used to model 1000
decoys of αCDR2, etc. After all loops have been remodeled, it
may be necessary to repeat the cycle to account for loop depen-
dent effects. Generally, we have found three cycles (18 loop
remodels) to be suffi cient. We have found the peptide is often
within 2 Å of the template peptide (all atom RMSD after
superimposing target and template peptides) after refi nement,
and in our experience may not need to be randomized to iden-
tify a close-to-native conformation .

 Acknowledgements

 Computational structural immunology in the authors’ laboratories
is supported by NIH grants R01GM103773 and R01GM067079
and an award from the Carole and Ray Neag Comprehensive
Cancer Center at the University of Connecticut. TPR is supported
by a fellowship from the Indiana CTSI, funded in part by NIH
grant UL1TR001108.

T.P. Riley et al.

339

 References

 1. Garboczi DN, Ghosh P, Utz U et al (1996)
Structure of the complex between human
T-cell receptor, viral peptide and HLA-A2.
Nature 384:134–141

 2. Garcia KC, Degano M, Stanfi eld RL et al
(1996) An alphabeta T cell receptor structure
at 2.5 A and its orientation in the TCR-MHC
complex [see comments]. Science
274:209–219

 3. Borbulevych OY, Piepenbrink KH, Baker BM
(2011) Conformational melding permits a
conserved binding geometry in TCR recogni-
tion of foreign and self molecular mimics.
J Immunol 186:2950–2958

 4. Cole DK, Yuan F, Rizkallah PJ et al (2009)
Germline-governed recognition of a cancer
epitope by an immunodominant human T-cell
receptor. J Biol Chem 284:27281–27289

 5. Macdonald WA, Chen Z, Gras S et al (2009) T
cell allorecognition via molecular mimicry.
Immunity 31:897–908

 6. Adams JJ, Narayanan S, Liu B et al (2011) T
cell receptor signaling is limited by docking
geometry to peptide-major histocompatibility
complex. Immunity 35:681–693

 7. Bulek AM, Cole DK, Skowera A et al (2012)
Structural basis for the killing of human beta
cells by CD8+ T cells in type 1 diabetes. Nat
Immunol 13:283–289

 8. Chen J-L, Stewart-Jones G, Bossi G et al
(2005) Structural and kinetic basis for height-
ened immunogenicity of T cell vaccines. J Exp
Med 201:1243–1255

 9. Restifo NP, Dudley ME, Rosenberg SA (2012)
Adoptive immunotherapy for cancer: harness-
ing the T cell response. Nat Rev Immunol
12:269–281

 10. Oates J, Jakobsen BK (2013) ImmTACs: novel
bi- specifi c agents for targeted cancer therapy.
Oncoimmunology 2:e22891

 11. Van Boxel GI, Stewart-Jones G, Holmes S et al
(2009) Some lessons from the systematic pro-
duction and structural analysis of soluble αβ
T-cell receptors. J Immunol Methods
350:14–21

 12. Bulek AM, Madura F, Fuller A et al (2012)
TCR/pMHC optimized protein crystallization
screen. J Immunol Methods 382:203–210

 13. Cole DK, Pumphrey NJ, Boulter JM et al
(2007) Human TCR-binding affi nity is gov-
erned by MHC class restriction. J Immunol
178:5727–5734

 14. Davis MM, Boniface JJ, Reich Z et al (1998)
Ligand recognition by alpha beta T cell recep-
tors. Annu Rev Immunol 16:523–544

 15. Pierce BG, Weng Z (2013) A fl exible docking
approach for prediction of T cell receptor–pep-
tide–MHC complexes. Protein Sci 22:35–46

 16. Pierce BG, Vreven T, Weng Z (2014) Modeling
T cell receptor recognition of CD1-lipid and
MR1- metabolite complexes. BMC
Bioinformatics 15:319

 17. Xia Z, Chen H, Kang S-G et al (2014) The
complex and specifi c pMHC interactions with
diverse HIV-1 TCR clonotypes reveal a struc-
tural basis for alterations in CTL function. Sci
Rep 4:4087

 18. Michielin O, Luescher I, Karplus M (2000)
Modeling of the TCR-MHC-peptide com-
plex1. J Mol Biol 300:1205–1235

 19. De Rosa MC, Giardina B, Bianchi C et al
(2010) Modeling the ternary complex
TCR-Vβ/collagenII(261–273)/HLA-DR4
associated with rheumatoid arthritis. PLoS
One 5:e11550

 20. Liu IH, Lo YS, Yang JM (2013) Genome-wide
structural modelling of TCR-pMHC interac-
tions. BMC Genomics 14(Suppl 5):S5

 21. Leimgruber A, Ferber M, Irving M et al (2011)
TCRep 3D: an automated in silico approach to
study the structural properties of TCR reper-
toires. PLoS One 6:e26301

 22. Klausen MS, Anderson MV, Jespersen MC et al
(2015) LYRA, a webserver for lymphocyte
receptor structural modeling. Nucleic Acids
Res 43:W349

 23. Ding YH, Baker BM, Garboczi DN et al
(1999) Four A6-TCR/peptide/HLA-A2
structures that generate very different T cell
signals are nearly identical. Immunity
11:45–56

 24. Borbulevych OY, Santhanagopolan SM,
Hossain M et al (2011) TCRs used in cancer
gene therapy cross-react with MART-1/melan-
a tumor antigens via distinct mechanisms.
J Immunol 187:2453–2463

 25. Gagnon SJ, Borbulevych OY, Davis-Harrison
RL et al (2006) T cell receptor recognition via
cooperative conformational plasticity. J Mol
Biol 363:228–243

 26. Borbulevych OY, Piepenbrink KH, Gloor BE
et al (2009) T cell receptor cross-reactivity
directed by antigen-dependent tuning of pep-
tide-MHC molecular fl exibility. Immunity
31:885–896

 27. Piepenbrink KH, Borbulevych OY, Sommese
RF et al (2009) Fluorine substitutions in an
antigenic peptide selectively modulate T-cell
receptor binding in a minimally perturbing
manner. Biochem J 423:353–361

Design of T-cell Receptor Complexes

340

 28. Scott DR, Borbulevych OY, Piepenbrink KH
et al (2011) Disparate degrees of hypervariable
loop fl exibility control T-cell receptor cross-
reactivity, specifi city, and binding mechanism.
J Mol Biol 414:385–400

 29. Khan AR, Baker BM, Ghosh P et al (2000)
The structure and stability of an HLA-
A*0201/octameric tax peptide complex with
an empty conserved peptide-N-terminal bind-
ing site. J Immunol 164:6398–6405

 30. Utz U, Banks D, Jacobson S et al (1996)
Analysis of the T-cell receptor repertoire of
human T-cell leukemia virus type 1 (HTLV-1)
Tax-specifi c CD8+ cytotoxic T lymphocytes
from patients with HTLV-1-associated disease:
evidence for oligoclonal expansion. J Virol
70:843–851

 31. Johnson LA, Heemskerk B, Powell DJ Jr et al
(2006) Gene transfer of tumor-reactive TCR
confers both high avidity and tumor reactivity
to nonreactive peripheral blood mononuclear
cells and tumor-infi ltrating lymphocytes.
J Immunol 177:6548–6559

 32. Kaufmann KW, Lemmon GH, Deluca SL et al
(2010) Practically useful: what the Rosetta
protein modeling suite can do for you.
Biochemistry 49:2987–2998

 33. Chaudhury S, Lyskov S, Gray JJ (2010)
PyRosetta: a script-based interface for imple-
menting molecular modeling algorithms using
Rosetta. Bioinformatics 26:689–691

 34. Rudolph MG, Stanfi eld RL, Wilson IA (2006)
How TCRs bind MHCs, peptides, and core-
ceptors. Annu Rev Immunol 24:419–466

 35. Miles JJ, Mccluskey J, Rossjohn J et al (2015)
Understanding the complexity and malleability
of T-cell recognition. Immunol Cell Biol
93:433–441

 36. Chaudhury S, Gray JJ (2008) Conformer
selection and induced fi t in fl exible backbone
protein–protein docking using computational
and NMR ensembles. J Mol Biol
381:1068–1087

 37. Gray JJ, Moughon S, Wang C et al (2003)
Protein–protein docking with simultaneous
optimization of rigid-body displacement and
side-chain conformations. J Mol Biol
331:281–299

 38. Mandell DJ, Coutsias EA, Kortemme T (2009)
Sub-angstrom accuracy in protein loop recon-
struction by robotics-inspired conformational
sampling. Nat Methods 6:551–552

 39. Park M-S, Park SY, Miller KR et al (2013)
Accurate structure prediction of peptide–MHC
complexes for identifying highly immunogenic
antigens. Mol Immunol 56:81–90

 40. Schueler-Furman O, Elber R, Margalit H
(1998) Knowledge-based structure prediction
of MHC class I bound peptides: a study of 23
complexes. Fold Des 3:549–564

 41. Fagerberg T, Cerottini J-C, Michielin O
(2006) Structural prediction of peptides bound
to MHC class I. J Mol Biol 356:521–546

 42. Yanover C, Bradley P (2011) Large-scale char-
acterization of peptide-MHC binding land-
scapes with structural simulations. Proc Natl
Acad Sci 108:6981–6986

 43. Borbulevych OY, Insaidoo FK, Baxter TK et al
(2007) Structures of MART-1(26/27-35)
peptide/HLA-A2 complexes reveal a remark-
able disconnect between antigen structural
homology and T cell recognition. J Mol Biol
372:1123–1136

 44. Robinson J, Mistry K, Mcwilliam H et al
(2011) The IMGT/HLA database. Nucleic
Acids Res 39:D1171–D1176

T.P. Riley et al.

341

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_20, © Springer Science+Business Media New York 2016

 Chapter 20

 Computational Design of Protein Linkers

 Brian Kuhlman , Tim Jacobs , and Tom Linskey

 Abstract

 Naturally occurring proteins often consist of multiple distinct domains joined by linker regions. Similarly,
the ability to combine globular protein domains through engineered linkers would allow the creation of a
wide variety of complex and useful multifunctional proteins. Recent advances in computational design of
protein structures have enabled highly accurate design of novel protein structures. In this chapter we out-
line a computational protocol for the de novo design of protein linkers, and apply this protocol to the
design of a helical linker between two rigid protein domains.

 Key words Protein linkers , RosettaDesign , Molecular docking

1 Introduction

 Naturally occurring proteins often consist of multiple distinct
 domains joined by linker regions, which can be structured or
unstructured. The modularity of multi-domain proteins allows
nature to create novel functions by mixing and matching func-
tional components (domains) through evolutionary mechanisms
such as gene duplication and homologous/nonhomologous end
joining. Similarly, the design of linkers between existing functional
domains allows the creation of novel, multifunctional proteins use-
ful for numerous purposes. Therapeutic single-chain antibody
fragments, which are used extensively as therapeutics, result from
designing fl exible linkers between protein domains [1]. Additionally,
full-length proteins joined by fl exible linkers, such as DNA binding
domains fused to transcriptional activators, are ubiquitous in
molecular research.

 Structured linkers offer even greater functional versatility than
unstructured linkers by controlling the specifi c spatial orientation
between two protein domains. For instance, a photoactivatable
protein domain was covalently joined to a GTPase implicated in
cell motility using a designed structured linker. This rigid linker
allows the photoactivatable domain to occlude GTPase activity in

342

the absence of a light stimulus, creating a powerful optogenetic
tool for the study of cell motility [2]. Structured linkers also enable
the design of novel biomolecular structures. For example, naturally
occurring homo-oligomeric proteins have been joined using a heli-
cal structured linker to form a protein nanocage [3].

 Design of structured linkers between protein domains requires
consideration of both the length of the linker and its amino acid
sequence. Experimentally, exhaustive iteration of these metrics
quickly becomes intractable, even for short linkers. However,
recent advances in computational score functions and sampling
methods allows for highly accurate design of specifi c protein struc-
tures, allowing researchers to design a set of feasible linkers in
silico. Therefore, computational protein design can overcome the
experimental limitations mentioned above by rapidly generating a
small set of feasible candidate linkers. These candidates can then be
evaluated experimentally to determine the optimal linker for the
intended function.

 In this chapter, we describe a method for designing a helical
linker between two rigid protein domains. It is important to note
that there are many methods for computational protein design,
each with its own advantages and disadvantages, and that the below
protocol represents only one such method. Specifi cally, this proto-
col uses the RosettaScripts framework included with the Rosetta
 molecular modeling suite [4]. RosettaScripts was chosen for its
user- facing simplicity and its ability to adapt the same design pro-
tocol to a wide variety of linker design problems. Regardless of the
linker design method you ultimately choose, the general steps and
principles outlined here should be applicable.

 A functional demo containing the full set of inputs and com-
mands used is accessible as a Rosetta demo. A full list of Rosetta
demos, along with instructions, is available at https://www.roset-
tacommons.org/demos/latest/

2 Materials

 There are two inputs to RosettaScripts: the input starting
structure(s) in Protein Data Bank (PDB) format, and a protocol
fi le in XML format which specifi es the design protocol. There are
two outputs to RosettaScripts: a model of the designed protein and
a fi le containing computational scores. The process for obtaining a
starting structure is described in Subheading 2.1 , and the process
for writing the protocol fi le is described in Subheading 2.3 .

 Design of a structural linker begins with a structure of the two
domains in the desired relative orientation. A high-resolution X-ray
crystal structure of a protein dimer that you would like to cova-
lently connect with a linker is the best starting point. However, in

2.1 Starting
Structures

B. Kuhlman et al.

https://www.rosettacommons.org/demos/latest/
https://www.rosettacommons.org/demos/latest/

343

 many protein design cases, this is not available. If monomeric
structures of the two domains are available, one can generate a
dimeric structure using macromolecular docking software, the
usage of which is outside the scope of this protocol (see Note 1). If
structures of one or both monomers are not available, homology
models can be generated. However, homology modeling is not
perfect (it is akin to an educated guess), and incorrect models may
have signifi cant impact on the design of a rigid linker. Therefore,
homology models should be treated with caution, and used only if
a high-quality structural template can be identifi ed. If your fi nal
protein dimer structure is not available in PDB format, it should be
converted to this format for future steps (see Note 2).

 Rosetta is a full-featured macromolecular modeling suite that can
be used for a wide variety of protein design and structural predic-
tion purposes. Rosetta is free for academic use, and licenses are
available to purchase for commercial purposes. To obtain a license,
visit https://www.rosettacommons.org/software/license-and-
download . Once a license is obtained, download and compile the
latest version available. Rosetta uses a continual-release model and
new versions are available weekly. Detailed instructions for compi-
lation can be found at https://www.rosettacommons.org/docs/
latest/ . Rosetta is a command-line utility, and thus, at minimum, a
cursory familiarity of the command-line environment is recom-
mended. An online tutorial with suffi cient information can be
found at http://cli.learncodethehardway.org/book/ . Upon suc-
cessful compilation of Rosetta, an executable fi le named starting
with the word “rosetta_scripts” should exist in the Rosetta/main/
source/bin directory. This executable is required for Subheading 3 .

 In addition to your starting PDB, an XML script describing the
design protocol is necessary to run RosettaScripts. Although exam-
ple scripts are contained here, it is recommended you read the
documentation for the RosettaScripts syntax, which can be found
at https://www.rosettacommons.org/docs/latest/scripting_doc-
umentation/RosettaScripts/RosettaScripts .

 The script fi le is responsible for dictating the details of the
linker design protocol, including the desired linker length and
structure, as well as the optimization methods and allowed degrees
of freedom. Typical linker design protocols, including the example
below, split the task of linker design into two separate stages: a
backbone construction stage, and a sidechain optimization stage
(Fig. 1). This “divide-and-conquer” approach allows the complex
task of linker design to be addressed as two simpler subtasks. The
backbone creation stage optimizes only backbone phi/psi angles,
and the sequence design stage optimizes linker amino acid sequence
as well as placement of the linker side chains. In both stages, bond
angles and lengths are fi xed at their ideal geometric values, and

2.2 Obtaining
and Compiling
the Rosetta Molecular
Modeling Suite

2.3 Creating Your
 RosettaScripts
Protocol Input File

Design of Protein Linkers

https://www.rosettacommons.org/software/license-and-download
https://www.rosettacommons.org/software/license-and-download
https://www.rosettacommons.org/docs/latest/
https://www.rosettacommons.org/docs/latest/
http://cli.learncodethehardway.org/book/
https://www.rosettacommons.org/docs/latest/RosettaScripts.html
https://www.rosettacommons.org/docs/latest/RosettaScripts.html

344

sidechain identities and conformation of the two domains remain
constant.

 RosettaScripts parses the input XML fi le and executes modeling
operations, called “Movers”, in an iterative fashion. For a complete
list of available Movers, and their options, see the documentation at
 https://www.rosettacommons.org/docs/latest/scripting_docu-
mentation/RosettaScripts/Movers/Movers-RosettaScripts

 The fi rst stage of the linker design protocol is the construction of a
polypeptide backbone that connects the two domains of your
dimeric protein structure. In our example, we accomplish this task
using the BridgeChains Mover. The BridgeChains mover constructs
a polypeptide chain of the desired length and secondary structure
using fragments extracted from natural protein structures [5].

 In order to sample the phi/psi angles in a physically meaningful
way, a placeholder “centroid” sidechain is used at every position.
The placeholder in this example is a “centroid” representation of
the amino acid valine. The scoring function used in this stage takes
into account van der Waals attraction/repulsion (score term: vdw),
the radius of gyration (score term: rg) to encourage compact struc-
tures and the favorability of the phi/psi angles (score term: rama).
It does not include any terms that depend on side-chain atoms.

 In addition to fragment-based backbone sampling, the
BridgeChains mover is responsible for creating a closed peptide
chain. The chain closure in the BridgeChains mover is accomplished

2.3.1 Backbone
Construction

 Fig. 1 Overview of the linker design protocol. In the example, a helical linker is
designed between two chains of a homodimer

B. Kuhlman et al.

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/Movers-RosettaScripts
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/Movers-RosettaScripts

345

using a cyclic coordinate descent algorithm [5]. The BridgeChains
mover can be confi gured using several options, which are outlined
below. Please reference the BridgeChains section of the RosettaScripts
documentation for the most up-to-date list of options.

 If you are building a structured linker, predominantly helical
secondary structure is recommended due to stable local hydrogen
bonding and reduced entropy versus loops. At the end of this
stage, a newly designed linker will covalently connect your dimeric
input structure if BridgeChains was successful. This linker will be
composed of the specifi ed number of residues with the input struc-
tural constraints, and will have backbone phi/psi angles based on
fragments of natural proteins. However, until this point only the
protein backbone has been optimized, and thus each amino acid in
the linker will be the placeholder amino acid valine.

 BridgeChains Options

 1. ‘chain1’—The chain that will be at the N-terminus in the com-
pletely linked structure. The C-terminal residue of this chain
will be the beginning of your designed linker

 2. ‘chain2’—The chain that will be at the C-terminus in the com-
pletely linked structure. The N-terminus residue of this chain
will be the end of your designed linker

 3. ‘motif’—The desired length and secondary structure of your
completed linker. This option is specifi ed with a string with the
following format:
 <Length><SS><ABEGO>-<Length><SS><ABEGO>-…-
<Length><SS><ABEGO>
 Where length is the specifi ed number of residues; SS, or sec-
ondary structure, is specifi ed with ‘H’, for helix, ‘E’ for strand,
and ‘L’ for loop; and ABEGO is any of the valid ABEGO
codes, which indicate allowed phi/psi angles for the residues
in Ramachandran space. For more information about ABEGO
codes, see Table 1 .

 Table 1
 Backbone phi and psi torsion bins for ABEGO codes

 Code Min. Phi Max. Phi Min. Psi Max Psi

 A −180.0 0.0 −75.0 50.0

 B −180.0 0.0 50.0 285.5

 E 0.0 180.5 100.0 260.5

 G 0.0 180.5 −100.0 100.0

 X −180.0 180.0 −180.0 180.0

Design of Protein Linkers

346

 4. ‘overlap’—The number of residues to be rebuilt on each side
of the new linker. Rebuilding the fl anking residues of the linker
will allow more fl exibility in the linker positioning and will
result in the creation of more linker models that are able to
connect the two chains.

 5. ‘scorefxn’—The Rosetta score function that should be used
during sampling of backbone conformations with polypeptide
fragments.

 The second stage of the linker design protocol is the optimization of
the amino acid identities and conformations on the newly designed
backbone. There are many methods for sidechain optimization avail-
able in Rosetta. Some of these protocols leave the protein backbone
completely fi xed and optimize only the sidechain positions, others
incorporate varying amounts of backbone fl exibility that allow the
backbone to adjust in order to accommodate the modifi cations
being made to the sidechain conformations. In our example, we use
the PackRotamersMover, which operates on a completely fi xed
backbone, followed by MinMover, which performs refi nement of
side chain positions and backbone torsion angles.

 The PackRotamersMover optimizes sidechain conformations,
 called rotamers, using a Monte Carlo simulated annealing algo-
rithm [6]. The example below allows any of the 20 standard amino
acids to be designed at all positions in the new linker. However, if
specifi c amino acid identities are desired, this can be confi gured
using a Rosetta resfi le or a Rosetta Task Operation, the documen-
tation of which can be found at https://www.rosettacommons.
org/docs/latest/rosetta_basics/fi le_types/resfi les , and https://
www.rosettacommons.org/docs/latest/scripting_documenta-
t ion/RosettaScripts/TaskOperations/TaskOperations-
RosettaScripts , respectively.

 MinMover optimizes backbone phi/psi angles and sidechain
conformations of both domains and the linker using the full
Rosetta all-atom scoring function. This step results in subtle move-
ments required to reach an energetic minimum.

 Multiple cycles of design followed by minimization will typi-
cally lead to better scoring models than a single cycle alone. The
ParsedProtocol and GenericMonteCarlo Movers are used to
 control this iteration; the full details of these Movers are available
through the RosettaScripts Mover documentation.

 The below script will construct a linker between chain 1 and chain
2 in the input PDB. In this example, each chain is 100 amino acids.
The linker will consist of 16 residues; the fi rst three residues will be
modeled with a loop secondary structure, followed by ten residues
with a helical secondary structure, and then three more residues of
loop. The torsion angles of the loop residues will be unrestricted,
and the helix residues will be restricted to the ‘A’ region of

2.3.2 Sidechain
Optimization

2.3.3 Example Script

B. Kuhlman et al.

https://www.rosettacommons.org/docs/latest/rosetta_basics/file_types/resfiles
https://www.rosettacommons.org/docs/latest/rosetta_basics/file_types/resfiles
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/TaskOperations/TaskOperations-RosettaScripts
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/TaskOperations/TaskOperations-RosettaScripts
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/TaskOperations/TaskOperations-RosettaScripts
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/TaskOperations/TaskOperations-RosettaScripts

347

Ramachandran space (180 ≤ phi ≥ 0; −75 ≤ psi ≥ 50). Additionally,
phi/psi angles of the three residues fl anking the new linker will be
sampled in order to allow more effi cient closure of the linker (see
 Note 3). If a successful linker backbone is created, then the amino
acid sidechains for the linker will be optimized with 20 iterations of
fi xed backbone design and gradient-based energy minimization.

 <ROSETTASCRIPTS>
 <TASKOPERATIONS>

 ###

 # The OperateOnResidueSubset operation, in
conjunction
 # with the PreventRepacking ResidueLevelTaskOperation
(RLT)
 # prevents design at positions outside the new loop
 ###

 <OperateOnResidueSubset name=“looponly” >

 <And>
 <Index resnums=“1-100” />
 <Index resnums=“117-216” />

 </And>
 <PreventRepackingRLT/>

 </OperateOnResidueSubset>
 </TASKOPERATIONS>

 ##
 # The “fl dsgn_cen” scorefunction is the recommended
 # ScoreFunction for backbone design in which a placeholder
 # amino-acid is used (in the case of this demo, that amino acid
 # is valine)
 ##
 <SCOREFXNS>

 <centroid_scorefunction weights = "fl dsgn_
cen" />

 </SCOREFXNS>
 <FILTERS>
 </FILTERS>
 <MOVERS>

 <BridgeChains name = "connect" chain1=“1”
chain2=“2” motif = "3LX-10HA-3LX" over-
lap=“3” scorefxn=“centroid_scorefunction” />

 <PackRotamersMover name=“pack” task_operations=
“looponly” />

 <MinMover name=“minimize” bb=“true” chi=“true” />
 <ParsedProtocol name = "design_and_minimize" >

Design of Protein Linkers

348

 <Add mover = "pack" />
 <Add mover = "minimize" />

 </ParsedProtocol>
 ##
 # Note that Talaris 2013 is the default full-atom score function in
 # Rosetta, and therefore does not need to be defi ned in the
 # SCOREFXNS section above
 ##
 <GenericMonteCarlo name = "design_mc" trials = "20" mover_
name = "design_and_minimize" scorefxn_name=“talaris2013” />

 </MOVERS>
 <PROTOCOLS>

 <Add mover_name = "connect"/>
 <Add mover_name = "design_mc"/>

 </PROTOCOLS>
 </ROSETTASCRIPTS>

3 Methods

 To run a RosettaScript protocol, navigate to the directory contain-
ing your input PDB fi le and XML script in a terminal. Rosetta
executables, such as RosettaScripts, can be modulated through the
use of command-line fl ags. At a minimum, the ‘-s’ fl ag is needed to
specify the input PDB, and the ‘-parser:protocol’ fl ag is needed to
specify the XML script. Additionally, the ‘nstruct’ fl ag is used to
control the number of times your complete protocol should be
run. Rosetta uses random numbers during the design process, so
each execution may result in a different output. Typically, it is
advisable to design many candidate structures and select only the
best for in vitro characterization. An example of a complete com-
mand that will run your linker design protocol 5 times is below:

 / p a t h / t o / R o s e t t a / m a i n / s o u r c e / b i n / r o s e t t a _
scripts.#distribution# \
 -s #input_PDB# \
 -parser:protocol #script.xml# \
 -nstruct 5

 For a more exhaustive set of command-line fl ags used by
Rosetta, visit the documentation at:

 https://www.rosettacommons.org/docs/wiki/rosetta_
basics/options/options-overview

 Before running the entire linker design protocol, it is useful to run
a small number of trajectories aimed at identifying an appropriate
number of residues necessary to connect the two domains of your

3.1 Running
RosettaScripts

3.2 Determining
Appropriate Linker
Length and Structure

B. Kuhlman et al.

https://www.rosettacommons.org/docs/wiki/rosetta_basics/options/options-overview
https://www.rosettacommons.org/docs/wiki/rosetta_basics/options/options-overview

349

input with the desired structure. For computational effi ciency,
there is no need to optimize the sidechains during this step. In
order to make this change, remove the “design” mover from the
<PROTOCOLS> block of the example XML script from
Subheading 2.3.3 . Create a copy of this script for each of the linker
variants you would like the test (see Note 4). For each linker vari-
ant, modify the ‘motif’ option for the BridgeChains Mover to rep-
resent the desired linker length and structure to be tested. Use the
command from Subheading 3.1 to run each of the XML scripts. It
is recommended to run at least ten trajectories (an ‘nstruct’ value
of 10) for each linker variant.

 Each trajectory can result in one of three different outcomes,
each of which gives important information about the chosen linker
variant. The fi rst outcome is an error stating that the loop closure
algorithm failed to close the linker. In this case, it is likely that the
chosen linker is too short to bridge the gap between the two chains.
In this case, additional residues may be needed. The second possi-
ble outcome is an error stating that the secondary structure and
torsion angles don’t match the desired specifi ed secondary struc-
ture/ABEGO. In this case, additional residues and/or less strin-
gent structural requirements may help. The fi nal outcome is a
successful run that produces an output PDB, which by default will
be named the same as the input PDB with an additional number at
the end. For example, an input PDB with the name “my_input.
pdb”, would result in an output named “my_input_0001.pdb” (see
 Note 5). A successful output indicates that a linker backbone with
the specifi ed input was created; however, it is useful to examine the
output to ensure the designed linker is not unnecessarily long for
the given gap.

 Once a set of viable linker lengths and structures is determined, the
full design protocol, which optimizes both the linker backbone
and sidechains should be run. To generate this protocol, modify
the example script from Subheading 2.3.3 to contain the desired
motif you generated in Subheading 3.1 . Additionally, modify the
OperateOnResidueSubset TaskOperation to include only the
 residues outside your linker. For example, if your goal is to connect
two 100-residue domains with a 10-residue linker, then your
ResidueIndex selectors should include residues 1–100 and 111–
210. Run the protocol using the command in Subheading 3.1 . For
production runs, it is recommended that at least 1000 trajectories
be run for each linker variant.

 The Rosetta full-atom score will be used to rank all linkers designed
in Subheading 3.2 . These scores are available in the Rosetta output
fi le name ‘score.sc’. This column based score fi le contains values
for each of the score terms used by the Rosetta full-atom score
function. For our purposes, only the ‘total_score’ and ‘description’
columns will be used. Sort the rows of score fi le by the total_score

3.3 Generation
of Complete Linker
Designs

3.4 Analyzing Linker
Designs

Design of Protein Linkers

350

column (see Note 6). The rows with the most negative score cor-
respond to the best output and should be selected for experimental
characterization (see Note 7).

4 Notes

 1. Rosetta has a built-in molecular docking protocol. For com-
plete documentation see https://www.rosettacommons.org/
docs/wik i/app l i ca t ion_documenta t ion/dock ing/
docking-protocol

 2. It is often useful to “clean” PDBs before using them as Rosetta
input. This typically involves removal of water and other
ligands that Rosetta doesn’t understand by default. A python
script to do this automatically can be found in Rosetta/tools/
protein_tools/scripts/clean_pdb.py

 3. Additional sampling restraints for the residues fl anking the
linker can be added using Rosetta’s constraint system. For doc-
umentation see https://www.rosettacommons.org/docs/lat-
est/rosetta_basics/fi le_types/constraint-fi le

 4. As a general rule of thumb, each residue in a linker can span
approximately 2 Å. So, for a 10 Å distance between the two
chains you are trying to connect, a 5-residue linker is a good
starting point. Helical linkers may require slightly more resi-
dues, while loop linkers may require fewer.

 5. The prefi x used for PDB output can be modifi ed using the
command-line fl ag ‘-out:prefi x #desired_prefi x#’

 6. Rosetta score fi les can be pasted into Microsoft Excel for sim-
plifi ed easy sorting. Use the “text to columns” option with a
space delimiter to ensure proper formatting.

 7. Typical scores for well-designed linkers should typically aver-
age to less than −2.0 Rosetta Energy Units per linker residue.
 However, the total_score reported in the score.sc fi le will
include the score of residues outside the linker region. The
Rosetta score for each individual residue is appended to the
end of each output PDB and can be used to calculate the score
for only the linker residues .

 References

 1. Bird RE, Hardman KD, Jacobson JW, Johnson
S, Kaufman BM, Lee SM, Whitlow M (1988)
Single-chain antigen-binding proteins. Science
242(4877):423–426

 2. Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting
I, Kuhlman B, Hahn KM (2009) A genetically

encoded photoactivatable Rac controls the motil-
ity of living cells. Nature 461(7260):104–108

 3. Padilla JE, Colovos C, Yeates TO (2001)
Nanohedra: using symmetry to design self assem-
bling protein cages, layers, crystals, and fi laments.
Proc Natl Acad Sci U S A 98(5):2217–2221

B. Kuhlman et al.

https://www.rosettacommons.org/docs/wiki/application_documentation/docking/docking-protocol
https://www.rosettacommons.org/docs/wiki/application_documentation/docking/docking-protocol
https://www.rosettacommons.org/docs/wiki/application_documentation/docking/docking-protocol
https://www.rosettacommons.org/docs/latest/rosetta_basics/file_types/constraint-file
https://www.rosettacommons.org/docs/latest/rosetta_basics/file_types/constraint-file

351

 4. Rohl C, Strauss C, Misura K, Baker D (2004)
Protein structure prediction using Rosetta.
Methods Enzymol 383(2003):66–93

 5. Canutescu AA, Dunbrack R (2003) Cyclic
coordinate descent: a robotics algorithm for

protein loop closure. Protein Sci 12(5):
963–972

 6. Kuhlman B, Baker D (2000) Native protein
sequences are close to optimal for their structures.
Proc Natl Acad Sci U S A 97(19):10383–10388

Design of Protein Linkers

353

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_21, © Springer Science+Business Media New York 2016

 Chapter 21

 Modeling of Protein–RNA Complex Structures Using
Computational Docking Methods

 Bharat Madan , Joanna M. Kasprzak , Irina Tuszynska , Marcin Magnus ,
 Krzysztof Szczepaniak , Wayne K. Dawson , and Janusz M. Bujnicki

 Abstract

 A signifi cant part of biology involves the formation of RNA–protein complexes. X-ray crystallography has
added a few solved RNA–protein complexes to the repertoire; however, it remains challenging to capture
these complexes and often only the unbound structures are available. This has inspired a growing interest
in fi nding ways to predict these RNA–protein complexes. In this study, we show ways to approach this
problem by computational docking methods, either with a fully automated NPDock server or with a work-
fl ow of methods for generation of many alternative structures followed by selection of the most likely
solution. We show that by introducing experimental information, the structure of the bound complex is
rendered far more likely to be within reach. This study is meant to help the user of docking software under-
stand how to grapple with a typical realistic problem in RNA–protein docking, understand what to expect
in the way of diffi culties, and recognize the current limitations.

 Key words Protein–RNA docking , NPDock , Molecular modeling , Macromolecular complexes ,
 Structural bioinformatics , Statistical potential

1 Introduction

 In almost every biological system involving protein and RNA mol-
ecules, somewhere in the process, some form of protein–RNA
complex formation almost inevitably occurs. A deep grasp of the
binding mechanisms that depend on both the 3D structure and
interaction energies of such complexes is therefore essential to
understanding the biological systems that employ them. Protein–
RNA interactions have been long known to be critical in the for-
mation of the ribosome as well as the process of protein synthesis
[1 , 2]. The production of small RNAs as well as the regulation of
gene expression by these molecules both in prokaryotes and in
eukaryotes requires numerous steps where proteins are involved
[3 , 4]. RNA splicing in eukaryotes is dependent on the formation

354

of protein–RNA complexes in the context of the spliceosome, a
large, dynamic ribonucleoprotein machine [5].

 Recently, there has been a notable growth in the number of
experimentally determined structures of RNAs and protein–RNA
complexes that have been solved using X-ray crystallography; how-
ever, crystallization of these macromolecules remains quite ardu-
ous and capricious [6 , 7]. Hence, compared to what we would like
to know, only a handful of such structures have been solved. Since
it is often the case that we can only obtain the individual parts of
protein–RNA complexes, where the structures of individual mole-
cules are like the pieces of a puzzle, it is of considerable interest to
develop computational tools that can predict their interactions,
and assemble the puzzle [8]. Published predictions of protein–
RNA complexes with the use of computational methods include
examples such as ribosomes at various functional stages [9],
miRNA–target–Argonaute complexes [10], and the catalytic core
of the spliceosome [11].

 Presently, the state of the art in our ability to model protein–
RNA interactions is however very limited. The binding often
involves small differences in the free energy between the complex
and the separated molecules when enveloped in the surrounding
solvent environment. For example, at 27 °C, a binding affi nity of
 k D = 10 −9 (quite strong) yields roughly −12 kcal/mol. Since the
number of contacts at the RNA–protein interface may only involve
a dozen residue pairs, on average, each contact may contributes less
than 1 kcal/mol to the binding free energy, which is comparable to
thermal energies (about 0.6 kcal/mol at 27 °C). The binding ener-
gies involve the receptor–ligand interactions themselves, the entro-
pic effects of conformational change (particularly fl exing of the
RNA), entropic effects due to the formation of the complex itself,
and effects related to solvent interactions [12]. In the midst of these
complexities, docking programs must fi nd some way through these
uncertainties to model RNA–protein docking successfully.

 In this tutorial, we perform two types of docking: bound and
unbound. Bound docking involves disassembling a solved complex
and attempting to put the pieces back together. Unbound docking
involves starting with the independent crystallographic structures
of the isolated molecules and attempting to assemble them. Clearly,
the latter problem is more diffi cult because molecules are often
somewhat plastic and tend to change shape to some extent upon
binding.

 For bound docking, we selected E. coli pseudouridine synthe-
tase TruB bound to the T stem-loop of the RNA [13] as the target
complex. For unbound docking, we attempted a rather diffi cult
problem of identifying the binding site of yeast aspartyl tRNA-
synthetase (aaRS) with aspartyl-tRNA [14]. We show how starting
with a limited amount of experimental information and the individ-
ual structures, one can fi lter decoys (mixtures of incorrect structural

Bharat Madan et al.

355

poses amongst some correct poses) to obtain the approximate
desired docking structure. Hence, the presentation should provide
some rough idea of what one can expect of current docking meth-
ods, what sorts of strategies are required to get close (even remotely
close), roughly what sorts of problems are likely to be encountered
along the way and fi nally what directions the roads are likely to lead
toward in the future.

2 Nomenclature, Materials and Software

 Here we introduce some docking terminology that will be used in
the rest of this chapter.

 ● Receptor–ligand: the larger structure is typically called the
 receptor and the smaller one the ligand. In many cases, since
RNA is quite large when compared to many proteins, the RNA
is considered the receptor. Nevertheless, this is not always the
case as we shall also see.

 ● Decoy: docking programs can generate a large number of
structures, many of which are typically far from the true struc-
ture. Such structures are often called “decoys”.

 ● Pose: a particular structural arrangement of the ligand with
respect to the receptor.

 The crystal structures for these complexes were downloaded from
 the Protein Data Bank (PDB) at http://www.rcsb.org/ [15]. For
the bound docking complex, E. coli pseudouridine synthetase TruB
bound to the T stem-loop of RNA, we used PDB id 1K8W. For
the unbound docking, the individual component of yeast aspartyl
tRNA- synthetase (aaRS) and aspartyl-tRNA were used: PDB ids
1EOV [16] and 3TRA [17], respectively. In this case, the solved
crystal structure of the complex is available (PDB id 1ASY) and is
used as the reference to validate the docking results. Because 1ASY
is a dimer complex, the selected protein and RNA chains are A and
R, respectively.

 ModeRNA [18] is an open-source software package used for com-
parative modeling of RNA structures. The standalone version of
ModeRNA (version 1.7.1) can be downloaded from http://www.
genesilico.pl/moderna/download/ and runs on Windows (binary
version) and Linux (source code). ModeRNA requires Python2.6
or higher and BioPython libraries [19]. Alternatively, the
ModeRNA web server [20] can be accessed from http://iimcb.
genesilico.pl/modernaserver/ . Usage of the standalone version of
ModeRNA is recommended for advanced users as it provides addi-
tional functionalities not available on the web server, such as multi-
template modeling and removing modifi ed nucleotides.

2.1 Nomenclature

2.2 RNA–Protein
Structures Used
in This Study

2.3 ModeRNA

Protein-RNA Docking

http://www.rcsb.org/
http://www.genesilico.pl/moderna/download/
http://www.genesilico.pl/moderna/download/
http://iimcb.genesilico.pl/modernaserver/
http://iimcb.genesilico.pl/modernaserver/

356

 GRAMM [21] is a docking software package mainly developed for
protein–protein docking, but also can be used to carry out pro-
tein–RNA docking. GRAMM is written in Fortran and can be
installed on a variety of operating system platforms. The software
comes with an executable fi le gramm . The user must set the path
for the environment variable GRAMMDAT to the directory con-
taining the data fi les used by GRAMM for docking. The stand-
alone version is available for download after fi lling out a short
registration form at http://vakser.compbio.ku.edu/main/
resources_gramm1.03.download.php . GRAMM can also be
accessed via a web server at http://vakser.compbio.ku.edu/
resources/gramm/grammx/ ; however, the server currently is only
set up to handle protein–protein docking.

 Filtrest3D [22] is a freely available tool written in Python that
helps score and/or rank 3D structures generated from a variety of
other computational methods based on user-defi ned restraints
obtained either from experimental data or computational predic-
tions. By employing additional experimental information to help
fi lter out some of the decoys (false positives), Filtrest3D can aid in
tertiary structure prediction, macromolecular docking, etc. The
fi lters can be weighted according to user’s needs, where the default
weight for any type of fi lter is 1.0. The user is advised to refer the
online manual (http://fi ltrest3d.genesilico.pl/readme.html) for
details. A web server version of Filterest3D can also be accessed at
 http://fi ltrest3d.genesilico.pl/fi ltrest3d/index.html ; however, it
is not able to handle a large number of structures (maximum fi le
size < 100 Mb, roughly 1000 fi les). When fi ltering a realistic set of
decoys, the standalone version of Filtrest3D is recommended,
which can be downloaded at http://genesilico.pl/software/
stand-alone/fi ltrest3d/ . It requires Python 2.3 or higher and
BioPython libraries ≥ 1.41. The usage of fi ltering restraints such as
secondary structure and solvent accessibility requires the installa-
tion of external third-party software such as STRIDE [23].

 DARS-RNP [24] is a coarse-grained knowledge-based potential for
scoring of protein–RNA complexes. The potential can be obtained from
 http://genesilico.pl/software/stand-alone/statistical- potentials/ .
It is a standalone program that requires Python 2.6 or higher, the
BioPython library version ≥ 1.45 and Numpy.

 NPDock [25] is a web server for predicting complexes of protein–
nucleic acid structures. It implements a computational workfl ow
that includes rigid body docking (with GRAMM), scoring of poses
(with DARS-RNP), clustering of the best-scored models, and
refi nement of the most promising solutions. NPDock is available
at http://genesilico.pl/NPDock/ and provides a user-friendly

2.4 GRAMM

2.5 Filtrest3D

2.6 DARS-RNP

2.7 NPDock
Web Server

Bharat Madan et al.

http://vakser.compbio.ku.edu/main/resources_gramm1.03.download.php
http://vakser.compbio.ku.edu/main/resources_gramm1.03.download.php
http://vakser.compbio.ku.edu/resources/gramm/grammx/
http://vakser.compbio.ku.edu/resources/gramm/grammx/
http://filtrest3d.genesilico.pl/readme.html
http://filtrest3d.genesilico.pl/filtrest3d/index.html
http://genesilico.pl/software/stand-alone/filtrest3d
http://genesilico.pl/software/stand-alone/filtrest3d
http://genesilico.pl/software/stand-alone/statistical-potentials
http://genesilico.pl/NPDock

357

interface and 3D visualization of the results, without the diffi culties
of extensive manual processing of the results. The smallest set of
input data consists of a protein structure and an RNA structure in
PDB format. Advanced options are available to control specifi c
details of the docking process and obtain intermediate results. The
user only needs to prepare the protein and RNA structure of inter-
est, submit it to the server, and, if desired, adjust some input
parameters such as the number of decoys to generate.

 All fi les used in the tutorial can be downloaded from ftp://gene-
silico.pl/iamb/tutorial/ (fi le Protein-RNA docking tutorial.zip).
 See Note 1 for the versions of software used in this study.

3 Methods

 In this tutorial, we fi rst describe a bound docking approach using
the NPDock web server (which is a relatively user friendly inter-
face) and second an unbound docking approach using manual
methods (which grants the user more control over the parameters).
The manual procedures are far more intricate and elaborate.

 The downloaded PDB fi le often contains a variety of additional
items in the crystal structure: for example, small molecules like
water, sulfates, and nitrates that are used in the crystallization pro-
cess or precipitate with the molecule, ions like Na + , K + , or Cl − that
bind to the molecule in the crystal structure, and additional het-
eroatoms which are often unique to the particular process of crys-
tallization and are not typically required for docking. For
protein–RNA docking, we are currently largely forced to focus
on standard residues for the protein and RNA components, because
there are few standardized conventions for naming the heteroat-
oms and there are a plethora of them, for which we have only a
limited ability to model a few of them. Moreover, molecules like
water (particularly in the unbound structures) can interfere with
the docking process. Hence, all these additional items should be
removed from the PDB fi les before using them for docking.

 NPDock and GRAMM have been programmed to recognize
only the PDB entries starting with the keyword “ATOM”; there-
fore, the user can submit the downloaded PDB structure as such.
However, it is generally a good practice to prepare the separate
protein and RNA fi les manually to be certain of what structure is
being used. Therefore, we describe how to do this.

 To prepare the protein structure fi le, this can be done using a
structure visualization tool like PyMoL [26] or Chimera [27]. For
this case study, open the protein fi le (1K8W.pdb) using PyMoL.

2.8 Files

3.1 Preparation
of Molecules
to Be Docked

Protein-RNA Docking

ftp://genesilico.pl/iamb/tutorial/
ftp://genesilico.pl/iamb/tutorial/

358

The fi le contains both water and sulfate molecules that can be
removed by executing the following command in the PyMoL com-
mand line:
 PyMOL > remove resn SO4 + HOH
 Remove: eliminated 309 atoms in model "1k8w".
 PyMOL > save 1K8W.pdb
 Save: wrote "1K8W.pdb".

 As in the case of proteins, PDB fi les of RNA also contain many
water molecules, ions, small molecules and modifi ed nucleotides.
Although NPDock and GRAMM have some ability to recognize
modifi ed bases, there are some docking programs that do not. It is
very important to verify whether a modifi ed base plays a critical
role in docking. In this case, fortunately, the matter turns out to be
not so serious. Therefore, for the purpose of this illustration, we
assume that these modifi ed nucleotides can be converted to their
standard bases, without loss of information. Our lab has developed
a tool called ModeRNA for comparative modeling of RNA struc-
tures, which also has a function for removing modifi cations from
RNA structures. Using Python, execute the following commands
to remove all heteroatoms and modifi cations from the RNA
structure:
 $python
 >>>from moderna import * # requires moderna in the
PYTHONPATH
 >>>m = load_model('1K8W.pdb','B') # load chain B of 1K8W
 >>>clean_structure(m) # remove all heteroatoms
 Chain OK
 >>>remove_all_modifi cations(m) # reformat to standard bases
 >>>write_model(m,'na.pdb') # save the fi le

 The execution of these commands results in a PDB fi le na.pdb
containing the structural coordinates of RNA with the modifi ed
nucleotides reverted back to standard bases.

 In the case of automated docking using the NPDock web
 server, the modifi ed bases can be included for the docking calcula-
tion by renaming the HETATM columns in PDB fi le pertaining to
the modifi ed residues to ATOM.

 The bound docking is performed to reconstruct the geometry of a
given protein–nucleic acid complex structure, where the starting
point is the structure from a co-crystal; here a crystallographic
structure containing both the RNA and the protein together.
Bound docking is often performed to validate the accuracy of
docking potentials in identifying native-like conformations, with-
out taking into consideration any conformational changes that
occur in the two macromolecules in the unbound state. In this case
study, we perform bound docking on E. coli pseudouridine synthase

3.2 Bound Docking

Bharat Madan et al.

359

TruB bound to the T stem-loop of the RNA (PDB id 1K8W) using
the NPDock web server. The steps involved in docking and identi-
fying native-like conformations are described below.

 After executing the procedures outlined in Subheading 3.1 , navi-
gate to the server website http://genesilico.pl/NPDock/ and
click the Submit your job button and follow the steps described
below for performing protein–RNA docking.

 1. Near the top left-hand corner of the web page, enter the
required job title (e.g., a name like ‘1K8W_test’) and option-
ally an e-mail address for receiving a link to access the results
when the job is fi nished. Select the RNA - protein option under
the docking tab to specify protein–RNA docking.

 2. Using the Select fi le button, upload the formatted PDB fi le
1K8W.pdb for the protein and enter the chain ID as ‘A’ under
the Select Chains option.

 3. Repeat step 2 for the RNA and upload the formatted na.pdb
fi le (see Subheading 3.1) and enter the chain ID as ‘B’ for the
RNA chain under the Select Chains option.

 4. To sample 50,000 conformations, change the default value
from 20,000 to 50,000.

 5. Leave the clustering and refi nement parameters for this case of
docking as default values and click the Submit button to start
the job.

 The amount of time taken to fi nish a particular job depends on
the size of the macromolecules, the number of decoys to be sam-
pled and other settings such as fi ltering criteria, clustering and
refi nement parameters. Once the job is completed, a web page is
displayed with the IDs of the top three refi ned models in PDB
format, which are downloadable. The web page also provides a
JSmol 3D visualization tool showing the best model and a steps-
vs-energy graph showing the Monte Carlo refi nement of the best
model. Links to the downloadable structures considered in the
clustering, the results of the clustering and the raw output fi les
from the NPDock docking pipeline are also provided for the user
to perform a more rigorous analysis, if desired.

 To identify native-like structures from the sampled conforma-
tions, NPDock implements a clustering algorithm proposed by
Baker and coworkers [28], used successfully in protein structure
prediction. The decoys are clustered based on geometrical similar-
ity. For a given set of docking decoys, the fi rst step is to create an
all-against- all root-mean-square deviation (RMSD) matrix by cal-
culating the RMSD for all pairs of structures. Then, the row which
has the highest number of RMSD values below a given threshold

3.2.1 Automated
Protein–RNA Docking
Using NPDock Web Server

Protein-RNA Docking

http://genesilico.pl/NPDock

360

(default, 5 Å cutoff) is considered to be the fi rst cluster and
removed from the matrix. The process is repeated until the num-
ber of decoys in one cluster is less than fi ve. The three largest clus-
ters are then considered to be the candidates that contain native-like
structures and often the lowest scoring decoys from the represen-
tative clusters are identifi ed as native-like. NPDock selects the low-
est scoring models from the three largest clusters as the best
models.

 Structural superposition is one of the most commonly used meth-
ods for assessing the quality of the docked models. If the structure
of the native complex is available, then the docked model can be
superimposed on the native complex. To evaluate the global simi-
larity, the RMSD provides a criterion for judging the accuracy of
the fi t between the native and docked complex. One method of
calculating the RMSD between the docked model and the experi-
mentally measured structure is to perform an optimal superposi-
tion of the receptors of the two structures using a macromolecular
viewer such as PyMoL. Then one calculates the RMSD of selected
atoms types in the ligand; often the heavy atoms (because the
ligand is the RNA molecule, this would be the phosphorus atoms,
for example).

 To calculate the RMSD between the best model and the refer-
ence complex, download the fi rst model by clicking on its ID and
superimpose it on the reference complex (1K8W), Fig. 1 . Now,
calculate the RMSD of superposition for the ligand (or RNA in
this case) using the method described previously. A sample script
(run_pymol.py) for calculating RMSD is provided with this tuto-
rial. The value of superposition is found to be around 1.6 Å, imply-
ing that predicted conformation is very similar to the experimentally
observed structure (the reference complex).

 To identify the position of the fi rst three clusters among the
sampled conformations (as shown in Fig. 2), one must calculate
the RMSD for all the decoys and plot it against the DARS scores
in dars_out.txt fi le provided by the server in the list of raw output
fi les.

 The unbound docking involves docking of independently solved
structures of a protein and RNA to identify their correct mode(s)
of binding in a given protein–RNA complex. The unbound dock-
ing is signifi cantly more diffi cult, because the starting point is
structures in their unbound conformations and there are no reli-
able methods to predict conformational changes that happen dur-
ing the complex formation. For this case study of unbound
docking, we perform docking on yeast aspartyl tRNA-synthetase
(aaRS) with aspartyl- tRNA as the target. The independently solved
crystal structures of both the protein and RNA can be downloaded
from PDB with ids 1EOV and 3TRA, respectively. To validate the

3.2.2 Comparison
of the Docked Model
to the Experimentally
Observed Complex

3.3 Unbound
Docking

Bharat Madan et al.

361

docking results, we use the solved structure for this complex (PDB
id 1ASY; chains A and R for the protein and RNA, respectively),
Fig. 3 . The steps involved in performing unbound docking and
identifi cation of the native-like conformations are described in the
following subsections.

 Fig. 1 Structural superposition of the best docking decoy on the reference com-
plex (PDB id 1K8W). The RNA of the reference complex and the best decoy is
shown in cyan and magenta , respectively

 Fig. 2 Plot of the score vs RMSD for the bound docking decoys. The three largest
clusters are shown in three different colors and symbols, with the fi rst, second,
and third clusters in red circles , green diamonds , and blue squares , respectively

Protein-RNA Docking

362

 The protein structure fi le (1EOV.pdb) should be prepared in the
same way as discussed in Subheading 3.1 . However, for the RNA
structure fi le (3TRA.pdb), the reader should consider that the
structure in 3TRA.pdb lacks the CCA tail at the 3′ end of the
tRNA sequence. This is a biologically relevant part of tRNA and,
as it turns out, this tail is also present in the reference structure
(PDB id 1ASY). Since the protein–RNA interaction depends on
this tail, it should be present and one should surmise that the addi-
tion of the CCA tail is necessary to correctly guide the docking of
the RNA into the CCA binding domain of the protein. Hence,
further processing of the RNA structure is required.

 Appending the CCA tail can be done using the ModeRNA
program. To add a short tail to the PDB structure, ModeRNA
requires the 3D structure coordinates (from 3TRA.pdb) as a tem-
plate, and a user- defi ned sequence alignment between the target
and the template. The alignment is constructed using a FASTA
formatted fi le. For the fi rst sequence in the fi le, add the sequence
“CCA” at the end of the original RNA sequence and label it as
“Target”. Then, for the second sequence, align this new RNA
sequence to the original sequence as shown below and save the
alignment fi le in FASTA format as ‘alignment.fasta’:
 >Target
 UCCGUGAUAGUUUAAUGGUCAGAAUGGGCGCUUGUCGCGUGCCAGAUCG
GGGUUCAAUUCCCCGUCGCGGAGCCA
 >3TRA template
 UCCGUGAUAGUUUAAUGGUCAGAAUGGGCGCUUGUCGCGUGCCAGAUCGGGG
UUCAAUUCCCCGUCGCGGAG---

3.3.1 Preparation
of Molecules to Be Docked

 Fig. 3 Schematic representation in ribbon form for the crystal structures of the reference complex used in
unbound docking and its unbound protein and RNA components. (a) Reference complex (pdb id 1ASY; chains
A and R for protein and RNA, respectively); (b) unbound protein (pdb id 1EOV); (c) unbound RNA (pdb id 3TRA)

Bharat Madan et al.

363

 Since the target and the template contain exactly the same
sequence (up to the CCA tail), ModeRNA copies all the atoms
from the template to the target model and appends the short ter-
minal fragment to the RNA chain. ModeRNA is also able to per-
form more complex modeling such as modeling of insertions and
deletions for which the user is advised to refer the manual.

 To clean up the RNA fi le 3TRA and append the CCA tail,
execute the following series of commands using Python:
 $python
 >>>from moderna import *
 >>>t = load_template ('3TRA.pdb','A')
 >>>clean_structure(t)# resets bases, removes HOH and Mg
 Chain OK
 >>>a = load_alignment('alignment.fasta')
 >>>m = create_model(t,a) # add the CCA tail
 >>>write_model(m,"complete_RNA.pdb")

 This generates a PDB fi le complete_RNA.pdb containing the
modeled structure of RNA with the CCA tail included (Fig. 4).

 Alternatively, one can carry out all the steps as in Subheading 3.1
(for the RNA fi le) by replacing 1K8W.pdb with 3TRA.pdb and
na.pdb with 3TRA_clean.pdb. Then, to append the CCA tail, the
following command line statement can be used:
 $python moderna.py -t 3TRA_clean.pdb -c A -a alignment.
fasta -o complete_RNA.pdb

 where, “-t” specifi es the template structure, “-c” indicates the
chain to be considered for modeling, “-a” identifi es the alignment
fi le, and “-o” assigns the name of the output fi le. Finally, there is yet
another alternative: using the ModeRNA server, submit (separately)

 Fig. 4 Schematic representation of the modeled RNA with a CCA tail. The mod-
eled CCA tail is highlighted in blue

Protein-RNA Docking

364

the template and alignment fi les in the online submission form
(http://iimcb.genesilico.pl/modernaserver/submit/model/),
and click the “Build Model” option to start processing the job and
wait till the results are obtained.

 For manual protein–RNA docking, we selected the GRAMM pro-
gram to generate decoy conformations. GRAMM treats the recep-
tor and ligand (here a protein and a RNA molecule, respectively)
as rigid bodies and fi nds a geometric match between the two mol-
ecules by projecting the atoms on a 3D grid. The algorithm allows
for softening the van der Waals interactions and permitting some
degree of steric clashes that are expected to be alleviated by local
conformational changes.

 In the description of docking components, typically the larger mol-
ecule is called the “receptor” and the small one the “ligand.” In
this example, the size of the RNA molecule is smaller compared to
the protein; therefore, the RNA will be called the ligand and the
protein the receptor. GRAMM requires the following fi les to per-
form docking:

 ● rpar.gr—describes the docking parameters
 ● rmol.gr—provides the description of molecules to be docked
 ● wlist.gr—defi nes the IDs of the decoys to be extracted in PDB

format.

 For this case study, we perform docking in low resolution
mode, as high resolution docking results in a large number of steric
clashes between the protein and RNA. For this reason, select the
potential range type as “grid_step” to implement low resolution
docking and set the grid step radius to 3.1 Å, which is the lowest
value allowed by the program for “low resolution”. The repulsion
parameter is set to 10 Å and the attraction double range is set to 0.
The ligand is allowed to rotate at an angle of 10° and a total of
10,000 conformations are sampled. The following settings should
be entered into the docking parameter fi le (rpar.gr):

 Matching mode (generic/helix) mmode = generic
 Grid step ... eta = 3.1
 Repulsion (attraction is always -1) ro = 10 .
 Attraction double range (fraction of single range) fr = 0.
 Potential range type (atom_radius, grid_step) crang = grid_step
 Projection (blackwhite, gray) ccti = gray
 Representation (all, hydrophobic) crep = all
 Number of matches to output maxm = 10000
 Angle for rotations, deg (10,12,15,18,20,30, 0-no rot.) ai = 10

3.3.2 Manual Protein–
RNA Docking

 Protein–RNA Decoy
Generation Using GRAMM

Bharat Madan et al.

http://iimcb.genesilico.pl/modernaserver/submit/model/

365

 The boldface indicates the most important parameters to
adjust for particular problems. The confi guration list is defi ned as
follows:

 ● mmode—defi nes the docking mode (generic or helix). The
generic mode involves sampling for all the ligand’s positions
and orientations. In the helix mode, GRAMM automatically
discards poses with large displacements along the helix axes
and angles larger than indicated in the rmol.gr fi le.

 ● eta—step of the grid
 ● ro—repulsion parameter
 ● fr—attraction double range, used in high resolution docking.
 ● crang—“atom_radius” implies high resolution docking (pro-

jection of a sphere with van der Waal radius) and “grid_step”
implies docking under lower resolution

 ● ccti—cumulative projection (“gray”) is generally used in low
resoluation docking, yes-no (“blackwhite”) is often used in
high resolution docking

 ● crep—switch to hydrophobic docking: in this case, it should
always be “all”

 ● maxm—number of output structures
 ● ai—angle of rotation for search through rotational

coordinates

 These settings may vary for docking of different protein–RNA
complexes. Therefore, it is advised to experiment with different
combinations of parameters to obtain the best settings for docking
of different complex structures.

 The parameters of the rmol.gr fi le, which provides the infor-
mation of molecules to be docked, are shown below.
 # Filename Fragment ID Filename Fragment ID (paral/anti max.ang)
 #---
 1EOV.pdb * prot complete_RNA.pdb * na

 Here, the usage of the asterisk (*) under the Fragment head-
ing indicates that the entire molecule is used for docking. The user
should remember that only lines with the fi rst word “ATOM” are
taken into consideration by GRAMM. GRAMM also accepts a
specifi ed fragment or region of a molecule for docking. Additionally,
the chain ID (in capitals) can also be specifi ed if docking has to be
performed for a particular chain. GRAMM considers the fi rst mol-
ecule as the receptor and the second molecule as the ligand. The
ID of each fragment is used by GRAMM to name the output
fi le (with extension *.res). For example, in this case the name of
output fi le generated by the docking simulation will be prot-na.res.

Protein-RNA Docking

366

 In order to start the conformational search with GRAMM, use
the command:
 > gramm scan

 This may take quite some time depending on the computa-
tional power of the system used for docking. It took 36 min on a
machine with 24 processors (clock speed 2.8 GHz) and 24 GB
RAM and running Ubuntu 14.04.1. The completion of the con-
formational search generates the prot-na.res fi le, which contains
information about the 10,000 sampled conformations.

 To extract the coordinates of each decoy in PDB format,
GRAMM requires the wlist.gr fi le, which provides information
about the poses to be extracted from the output fi le. The parame-
ters of the wlist.gr fi le are shown below:
 #File_of_predictions First_match Last_match separate/

joint + init_lig
 #--
 prot-na.res 1 1000 separ no

 where prot-na.res is the output fi le containing the information
about the docked complexes. The headings “First_match” and
“Last_match” denote the id of the decoys to be generated and
“separate/joint” indicates whether the fi les should be extracted
separately for each decoy or combined in a single fi le. The last col-
umn heading “+init_lig” specifi es whether the initial conformation
of the ligand should also be extracted together with each of the
sampled conformations or not.

 To extract the coordinates, execute the following command:

 >gramm coord

 See Note 2 regarding extracting structures using this command.

 In a docking simulation, it is very important to obtain a representa-
tive distribution of the actual conformations, particularly those
that lie in the region of the docking site. This will allow the cluster-
ing procedure to select the confi guration that is also representative
of the distribution that is actually found. However, it is often the
case that the target interface is not easily recognized and the results
of the docking simulation needs some further processing or help.

 GRAMM generates a large number of conformations of the
protein and RNA components where some of the poses of the
RNA–protein complex may involve binding interactions that are
very far away from the correct docking site. In order to obtain
decoys with a reasonable native-complex-like geometry, it is advised
to remove the obviously nonnative or unreasonable structures
using some fi ltering criteria. The fi ltering criteria can be any infor-
mation which can be obtained either from experimental data or
from computational predictions. For instance, in this example, we
know the CCA binding region and anticodon binding residues from

 Decoy Filtering According
to Restraints

Bharat Madan et al.

367

the solved crystal structure of the complex. We use these restraints
to fi lter native-like decoys from all docked conformations.

 For fi ltering, we use Filtrest3D. The general syntax for defi n-
ing any type of restraint is:
 Restraint_type_name (
 Restraint_declaration

)

 For the case of protein–RNA docking presented herein, we
select the distance restraints for ranking of the decoys. We retain
decoys in which the aaRS binds the anticodon loop with the anti-
codon binding domain, and the CCA tail with the catalytic domain,
defi ned by two protein–RNA distance restraints: Gln138-U35 and
Glu478-A75, respectively. For both these pairs we defi ne the
required distance as less than or equal to 16 Å. The decoys for
which the sum of squares of deviations from a 16 Å cutoff is less
than 80 are retained for further analysis. The parameters used in
the restraint fi le (fi lter.fi ltrest) for fi ltering are as follows:
 dist (
 E478_near_A75: (E478) "A"-(A75) "B" (<=16)
 Q138_near_U35: (Q138) "A"-(U35) "B" (<=16)
)

 where,

 ● dist indicates a distance based type of restraint
 ● E478_near_A75 is the name of the restraint for the amino

acid- nucleic acid pair E478-A75 in chains A and B,
respectively.

 ● (<=16) specifi es that the distance between any of the closest
atoms between residues E784 and A75 should be less than or
equal to 16 Å.

 To fi lter the decoys using the above defi ned restraints, execute
the following command.
 $python fi ltrest3d.py --restraints fi lter.fi ltrest \
 --dirfi le ./structures/str_list.txt > fi ltrest_result.out

 where “--restraints” specifi es the restraint fi le, “--dirfi le” indi-
cates the path to fi le with list of structures to be fi ltered. The output
is written to a fi le “fi ltrest_result.out”. See Note 3 for Filterest3D,
if any errors are encountered.

 Out of 10,000 decoys, 19 decoys are found to fulfi ll the fi lter-
ing restraints.

 The next step of the docking procedure after sampling the confor-
mations is to discriminate near-native structures. An ideal docking
method should combine both sampling and scoring of decoys to
identity near-native structures of protein–RNA complexes.

 Scoring of Decoys
Using the DARS-RNP
Potential

Protein-RNA Docking

368

Unfortunately, GRAMM does not have a scoring function for
protein–RNA complexes; therefore, we must use an external scor-
ing function to identify near-native structures from the decoys
generated using GRAMM.

 Our team has developed a scoring potential for protein–RNA
complexes called DARS-RNP [24] that has performed well in
identifying near native decoys compared to the other potentials
available for scoring protein–RNA decoys. To score the fi ltered
decoys using the DARS-RNP potentials refer to the next Section.

 If the number of “promising” structures (such as those selected by
fi ltering) is large, say more than 50, it is generally advised to per-
form clustering to identify the largest set of similar conformations
that approximate the most likely solution of the docking problem.
For clustering, we use a 10 Å RMSD cutoff, as outlined at the end
of Subheading 3.2.1 , and we use the DARS_potential_v3.py
script for scoring the decoys, which also clusters the best scored
decoys (that in this case are the fi ltered structures). To perform
scoring and clustering using the DARS_potential_v3.py script,
execute the following command.
 $python DARS_potential_v3.py -f list.txt -m 19 -c
10 > DARS.out

 where, “-f” specifi es the fi le containing the list of structures to
be scored, “-m” denotes the number of structures considered for
clustering and “-c” indicates the RMSD cutoff for clustering (10
Å). The output is written to the fi le “DARS.out”. See Note 4 for
the correct way of running DARS_potential_v3.py script, if errors
are encountered.

 This results in two clusters with the fi rst (largest) cluster con-
taining eight structures and the second with fi ve structures. Open
all 13 complexes in PyMoL to visualize the conformations of RNA
of the two clusters (Fig. 5). Choose the fi rst cluster to identify the
near native-like docked conformation and select the lowest scoring
decoy from this cluster as the fi nal docked model.

 To assess the accuracy of the docked complex, superimpose the
best docked model on the reference complex (Fig. 6). It can be
clearly seen that the selected RNA pose, as well as all eight struc-
tures from the fi rst cluster bind in a similar way to the RNA in the
reference structure. However the CCA tail still does not manage to
get close enough to dock into CCA binding domain of the protein.
Now examine the position of the RNA in the structures present in
the second cluster (Figs. 5 and 6). It is clearly visible that in addi-
tion to the CCA tail, which does not dock correctly in the CCA
domain of protein, the anticodon binding loops of RNA in all fi ve
structures of the second cluster are positioned away from the bind-
ing site.

 Selection of the Most
Promising Complex Model

 Comparison of the Docked
Model to the Experimentally
Solved Structure

Bharat Madan et al.

 Fig. 5 Schematic representation of the conformations of RNA from the two largest clusters. The tRNAs from the
fi rst and second largest clusters are shown in magenta and red colors, respectively

 Fig. 6 Superimposed structures of the lowest scoring decoy on the reference
complex. The protein and RNA of the reference complex is shown in gray and
 cyan , respectively. The protein and RNA of the lowest scoring decoy is shown in
 blue and magenta , respectively

370

 The RMSD of the structural superposition, calculated using
the method described in Subheading 3.2.2 , was found to be 9.8 Å
for this complex. This value indicates a much larger deviation from
the reference complex than in the case of the bound docking
example described earlier. One of the ways to further improve the
quality of the docked model is to perform fl exible optimization, for
instance using Molecular Dynamics with a physics-based force fi eld
[29 , 30], which may improve the quality of the model. However,
such optimization is not trivial and requires extensive preparation
of the system to be analyzed as well as complicated analysis of the
results, which is out of the scope of this chapter.

 The methods used in this study exhibit the use of computational
methods to predict how protein and RNA molecules with known
structures form protein–RNA complexes. We demonstrated the use
of a web server NPDock for a fully automated protein–RNA com-
plex structure modeling and the use of a workfl ow of various tools
for a more elaborate docking, analyzing the docking results and
obtaining the most promising model. Both bound and unbound
docking exercises are presented for the user to understand the steps
involved in performing docking for a given pair of protein and RNA
components. This tutorial also explains various problems which can
be encountered during the docking procedure and suggests the
implementation of certain methods to overcome such problems.
The analysis of the docked models in unbound docking highlights
the inadequacy of the docking algorithms in sampling native-like
conformations and calls for the development of better tools and
algorithms for fl exible macromolecular docking.

4 Notes

 1. The exercises described in this tutorial were performed on a
computer running Ubuntu 14.04.1 with installed Python and
Biopython version 2.7.6 and 1.63, respectively. This tutorial
uses the latest version of the all software mentioned in
Subheading 2 , available during the preparation of this
manuscript.

 2. The “gramm scan” command can extract only 1000 structures
at a time, which means the user has to repeatedly edit the wlist.
gr fi le to extract all 10,000 structures. To automate this pro-
cess, we have provided a sample Perl script (extract_GRAMM.
pl) which can be modifi ed accordingly.

 3. The user may encounter some problems while using Filtrest3D,
as the program was written using old Biopython libraries. For
this, we have provided the fi les which should be replaced, if
errors are encountered.

3.4 Summary

Bharat Madan et al.

371

 4. The “-v” switch can be used to specify the version of Biopython
used while using DARS_potential_v3.py script for scoring
and clustering. This will save the user from running into errors,
particularly in cases where this tutorial is run on a machine
with installed Biopython version ≥ 1.45.

 Acknowledgments

 This work was supported by the European Commission
(E.C. REGPOT grant FishMed, contract number 316125, to Jacek
Kuźnicki in IIMCB) and by the European Research Council (ERC,
StG grant RNA + P = 123D grant to J.M.B). J.M.B was also sup-
ported by the “Ideas for Poland” fellowship from the Foundation
for Polish Science. J.M.K., I.T., and M.M. were additionally sup-
ported by the Polish National Science Center (NCN, grants
 2012/05/N/NZ2/01652 to J.M.K., 2011/03/N/NZ2/03241
to I.T., and 2014/12/T/NZ2/00501 to M.M.). The development
and maintenance of computational servers was funded by the E.C.
structural funds (grant POIG.02.03.00–00–003/09 to J.M.B.).
Calculations were performed on a high-performance computing
cluster at IIMCB, Warsaw (supported by IIMCB statutory funds).
The authors are grateful to Stanisław Dunin-Horkawicz and Michał
Boniecki for useful discussions and comments on the manuscript.

 References

 1. Moller W, Amons R, Groene JC, Garrett RA,
Terhorst CP (1969) Protein-ribonucleic acid
interactions in ribosomes. Biochim Biophys
Acta 190(2):381–390

 2. Demeshkina N, Jenner L, Yusupova G,
Yusupov M (2010) Interactions of the ribo-
some with mRNA and tRNA. Curr Opin
Struct Biol 20(3):325–332. doi: 10.1016/j.
sbi.2010.03.002

 3. Ghildiyal M, Zamore PD (2009) Small silenc-
ing RNAs: an expanding universe. Nat Rev
Genet 10(2):94–108, nrg2504 (pii)

 4. Pichon C, Felden B (2007) Proteins that
interact with bacterial small RNA regulators.
FEMS Microbiol Rev 31(5):614–625,
FMR079 (pii)

 5. Hoskins AA, Moore MJ (2012) The spliceo-
some: a fl exible, reversible macromolecular
machine. Trends Biochem Sci 37(5):179–188.
doi: 10.1016/j.tibs.2012.02.009

 6. Doudna JA (2000) Structural genomics of
RNA. Nat Struct Biol 7(Suppl):954–956

 7. Ke A, Doudna JA (2004) Crystallization of
RNA and RNA-protein complexes. Methods
34(3):408–414

 8. Tuszynska I, Matelska D, Magnus M,
Chojnowski G, Kasprzak JM, Kozlowski LP,
Dunin-Horkawicz S, Bujnicki JM (2014)
Computational modeling of protein-RNA
complex structures. Methods 65(3):310–319.
doi: 10.1016/j.ymeth.2013.09.014

 9. Whitford PC, Ahmed A, Yu Y, Hennelly SP,
Tama F, Spahn CM, Onuchic JN, Sanbonmatsu
KY (2011) Excited states of ribosome translo-
cation revealed through integrative molecular
modeling. Proc Natl Acad Sci U S A
108(47):18943–18948. doi: 10.1073/pnas.
1108363108

 10. Gan HH, Gunsalus KC (2013) Tertiary
structure- based analysis of microRNA-target
interactions. RNA 19:539. doi: 10.1261/
rna.035691.112

 11. Anokhina M, Bessonov S, Miao Z, Westhof E,
Hartmuth K, Luhrmann R (2013) RNA struc-
ture analysis of human spliceosomes reveals a
compact 3D arrangement of snRNAs at the
catalytic core. EMBO J 32(21):2804–2818.
doi: 10.1038/emboj.2013.198

 12. Cheng LT, Wang Z, Setny P, Dzubiella J, Li
B, McCammon JA (2009) Interfaces and

Protein-RNA Docking

http://dx.doi.org/10.1016/j.sbi.2010.03.002
http://dx.doi.org/10.1016/j.sbi.2010.03.002
http://dx.doi.org/10.1016/j.tibs.2012.02.009
http://dx.doi.org/10.1016/j.ymeth.2013.09.014
http://dx.doi.org/10.1073/pnas.1108363108
http://dx.doi.org/10.1073/pnas.1108363108
http://dx.doi.org/10.1261/rna.035691.112
http://dx.doi.org/10.1261/rna.035691.112
http://dx.doi.org/10.1038/emboj.2013.198

372

hydrophobic interactions in receptor-ligand
systems: a level-set variational implicit solvent
approach. J Chem Phys 131(14):144102.
doi: 10.1063/1.3242274

 13. Hoang C, Ferre-D’Amare AR (2001) Cocrystal
structure of a tRNA Psi55 pseudouridine syn-
thase: nucleotide fl ipping by an RNA-
modifying enzyme. Cell 107(7):929–939

 14. Ruff M, Krishnaswamy S, Boeglin M,
Poterszman A, Mitschler A, Podjarny A, Rees
B, Thierry JC, Moras D (1991) Class II ami-
noacyl transfer RNA synthetases: crystal struc-
ture of yeast aspartyl- tRNA synthetase
complexed with tRNA(Asp). Science
252(5013):1682–1689

 15. Rose PW, Prlic A, Bi C, Bluhm WF, Christie
CH, Dutta S, Green RK, Goodsell DS,
Westbrook JD, Woo J, Young J, Zardecki C,
Berman HM, Bourne PE, Burley SK (2015)
The RCSB protein data bank: views of struc-
tural biology for basic and applied research and
education. Nucleic Acids Res 43(Database
issue):D345–D356. doi: 10.1093/nar/gku1214

 16. Sauter C, Lorber B, Cavarelli J, Moras D, Giege
R (2000) The free yeast aspartyl-tRNA synthe-
tase differs from the tRNA(Asp)-complexed
enzyme by structural changes in the catalytic
site, hinge region, and anticodon-binding
domain. J Mol Biol 299(5):1313–1324

 17. Westhof E, Dumas P, Moras D (1988)
Restrained refi nement of two crystalline forms
of yeast aspartic acid and phenylalanine trans-
fer RNA crystals. Acta Crystallogr A 44(Pt
2):112–123

 18. Rother M, Rother K, Puton T, Bujnicki JM
(2011) ModeRNA: a tool for comparative
modeling of RNA 3D structure. Nucleic Acids
Res 39(10):4007–4022. doi: 10.1093/nar/
gkq1320

 19. Cock PJ, Antao T, Chang JT, Chapman BA,
Cox CJ, Dalke A, Friedberg I, Hamelryck T,
Kauff F, Wilczynski B, de Hoon MJ (2009)
Biopython: freely available Python tools for
computational molecular biology and bioin-
formatics. Bioinformatics 25(11):1422–1423

 20. Rother M, Milanowska K, Puton T, Jeleniewicz
J, Rother K, Bujnicki JM (2011) ModeRNA

server: an online tool for modeling RNA 3D
structures. Bioinformatics 27(17):2441–2442

 21. Katchalski-Katzir E, Shariv I, Eisenstein M,
Friesem AA, Afl alo C, Vakser IA (1992)
Molecular surface recognition: determination
of geometric fi t between proteins and their
ligands by correlation techniques. Proc Natl
Acad Sci U S A 89(6):2195–2199

 22. Gajda MJ, Tuszynska I, Kaczor M, Bakulina
AY, Bujnicki JM (2010) FILTREST3D: dis-
crimination of structural models using restraints
from experimental data. Bioinformatics
26(23):2986–2987, btq582 (pii)

 23. Frishman D, Argos P (1995) Knowledge-
based protein secondary structure assignment.
Proteins 23(4):566–579

 24. Tuszynska I, Bujnicki JM (2011) DARS-RNP
and QUASI-RNP: new statistical potentials for
protein- RNA docking. BMC Bioinform
12(1):348, 1471-2105-12-348 (pii)

 25. Tuszynska I, Magnus M, Jonak K, Dawson W,
Bujnicki JM (2015) NPDock: a web server for
protein- nucleic acid docking. Nucleic Acids
Res 43:W425. doi: 10.1093/nar/gkv493

 26. The PyMOL Molecular Graphics System. The
PyMOL Molecular Graphics System, vol
Version 1.5.0.4. Schrödinger, LLC.

 27. Pettersen EF, Goddard TD, Huang CC,
Couch GS, Greenblatt DM, Meng EC, Ferrin
TE (2004) UCSF Chimera--a visualization
system for exploratory research and analysis.
J Comput Chem 25(13):1605–1612

 28. Shortle D, Simons KT, Baker D (1998)
Clustering of low-energy conformations near
the native structures of small proteins. Proc
Natl Acad Sci U S A 95(19):11158–11162

 29. Ditzler MA, Otyepka M, Sponer J, Walter NG
(2010) Molecular dynamics and quantum
mechanics of RNA: conformational and chem-
ical change we can believe in. Acc Chem Res
43(1):40–47. doi: 10.1021/ar900093g

 30. Estarellas C, Otyepka M, Koča J, Banáš P,
Krepl M, Šponer J (2015) Molecular dynamic
simulations of protein/RNA complexes:
CRISPR/Csy4 endoribonuclease. Biochim
Biophys Acta 1850:1072–1090. doi: 10.1016/
j.bbagen.2014.10.021

Bharat Madan et al.

http://dx.doi.org/10.1063/1.3242274
http://dx.doi.org/10.1093/nar/gku1214
http://dx.doi.org/10.1093/nar/gkq1320
http://dx.doi.org/10.1093/nar/gkq1320
http://dx.doi.org/10.1093/nar/gkv493
http://dx.doi.org/10.1021/ar900093g
http://dx.doi.org/10.1016/j.bbagen.2014.10.021
http://dx.doi.org/10.1016/j.bbagen.2014.10.021

373

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7, © Springer Science+Business Media New York 2016

 A

 Affinity 47 , 48 , 63 , 77 , 80 , 93 , 140 , 155–170 , 234 ,
235 , 241 , 242 , 246 , 250 , 251 , 259 , 262 , 265 , 287 ,
 288 , 305–307 , 313 , 354

 maturation .. 1 56 , 159–161
 Autodock .. 64 , 70 , 71

 B

 Bcl-2 proteins ... 234 , 238
 Binding

 affinity 77 , 80 , 140 , 155–170 , 234 , 307 , 354
 design ...1 39 , 152
 selectivity ..1 56
 site prediction 2 , 10 , 13 , 33–44 , 267

 Biochemical functional elucidation 6 , 14 , 15
 2,2'-Bispyridine .. 177 , 183

 C

 Catalysis ... 1 , 47 , 139 , 213
 Chiron .. 24–27 , 29
 Chromophore ... 199–210
 Cluster analysis ... 29–31
 Cluster expansion 100 , 104 , 106 , 136 , 250 , 255
 Cobalt-oxygen cube-like cofactor

(CoCubane) .. 174 , 178
 Combinatorial active-site saturation test (CAST) 140
 Combinatorial libraries ... 101
 Community structure-activity resource (CSAR) 59
 Computer

 aided design .. 174 , 356
 algorithm ..1 74
 program ..7 0 , 140
 server .. 6 , 13 , 267

 Conformation ... 24 , 29 , 30 , 48 , 51 ,
 56 , 79 , 81–84 , 87–90 , 92 , 94 , 99 , 100 , 108 , 145 ,
 182–183 , 197–210 , 214 , 217 , 220 , 221 , 228 , 229 ,
 252 , 253 , 261 , 266 , 276 , 286 , 288 , 289 , 297 , 300 ,
 301 , 329–331 , 336–338 , 344 , 346 , 358–360 , 364 ,
 366–370

 Continuous Automated EvaluatiOn
(CAMEO) 2 , 3 , 5 , 6 , 11 , 13 , 18

 Critical assessment of prediction of interactions
(CAPRI) ... 34

 Critical Assessment of Techniques for Protein Structure
Prediction (CASP) 2 , 3 , 6 , 9 , 11 , 13 ,
15 , 16 , 18 , 34

 Cross-linking .. 199–206 , 209

 D

 Deep sequencing 163 , 164 , 166 , 233–236 ,
 238–243 , 245

 Degenerate codon optimization 124
 Degenerate sequences ... 146 , 161
 De novo protein design .. 187 , 188
 Digoxigenin (DIG) 140 , 156–160 , 166–169
 4,4‘-Dihydroxybenzil (DHB) 140 , 141 , 143 ,

145 , 146 , 149
 Directed evolution 139–152 , 156 , 162 ,

266 , 267 , 273 , 301
 Direct readout ... 266
 Docking 24 , 25 , 27–31 , 34 , 48 , 51 , 55 , 58 ,

63 , 69 , 145 , 221 , 292 , 321–323 , 327–334 , 336 , 337 ,
 343 , 350 , 353–371

 Downloadable programs 7 , 8 , 17 , 19

 E

 Energy functions
 Amber ... 67 , 70
 Autock-Vina ...6 3
 CADD Suite .. 6 3 , 64 , 74
 Charmm ...8 3
 physical energy functions ..7 8

 Enzymes
 active sites ... 215
 design 4 8 , 174 , 178 , 213 , 214 , 217 ,

219 , 220 , 224–229
 engineering ...3 00

 F

 Flexibility 23 , 24 , 27 , 58 , 63 , 67 , 87 , 106 , 127 , 209 ,
229 , 250 , 252 , 267 , 275 , 276 , 279 , 280 , 290 , 346

 docking ... 4 8 , 51 , 55
 Fluorescence activated cell sorting (FACS) 160 , 165 ,

 233–237 , 242–244
 Fluorescence anisotropy .. 168
 Fluorescence polarization ... 166–169
 FunFOLD ... 2 , 3 , 5 , 6 , 11 , 13–19

 INDEX

374

COMPUTATIONAL DESIGN OF LIGAND BINDING PROTEINS

 Index

 G

 Gaia .. 24–26 , 29
 Galaxy

 GalaxySite .. 2 , 34–40 , 43 , 44
 GalaxyWEB ... 3 4 , 35 , 44
 PepDock ... 3 4 , 36 , 40–43

 Generalized Born model .. 79

 H

 High-throughput assay ... 122 , 233
 HLA ... 309
 Homology modeling

 MODELLER .. 251
 SWISS-MODEL server ..2 51

 I

 Implicit solvent ... 83 , 94 , 266
 Induced fit .. 24
 In silico prediction .. 6 , 343
 Interaction specificity 249 , 250 , 255 , 256 , 261
 Interface 3 , 25 , 49 , 51 , 53–55 , 57 , 58 , 60 ,

101 , 110 , 177 , 184 , 200 , 214 , 225 , 226 , 256 , 265 ,
 266 , 268–269 , 277–279 , 285–303 , 307 , 308 , 310 ,
 313–315 , 325 , 333–334 , 354 , 357 , 366

 design 2 66 , 268–269 , 285–290 , 301

 L

 Ligand binding prediction methods
 homology modeling based

 COACH ... 2
 COFACTOR ...2
 FunFOLD ..2
 GalaxySite ...2
 GASS ...2

 sequence based
 ConFunc ...2
 ConSurf ..2
 DISCERN ...2
 Firestar ..2
 INTREPID ..2
 LigandRFs ..2
 Multi-RELIEF ...2
 TargetS ...2
 WSsas ...2

 structure based
 CYscore ..2
 EvolutionaryTrace ..2
 FINDSITE ..2
 LigDig ..2
 LISE ...2
 Patch-Surfer ...2
 SITEHOUND ...2
 Surflex-PSIM ...2

 Ligands
 binding design .. 34 , 63 , 77
 docking ...4 8

 Light-modulatable proteins .. 197
 Loop modeling 327 , 330–332 , 336 , 337

 M

 Major histocompatibility complex (MHC) 82 , 89 ,
305 , 307 , 335 , 337 , 338

 Matthews Correlation Coefficient (MCC) 3 , 5 , 10 ,
 11 , 15 , 16

 MedusaDock .. 24 , 25 , 27–31
 MedusaScore .. 24 , 27 , 30
 Metals

 binding sites .. 174
 metalloenzymes ..1 87
 metalloproteins ...1 73
 metalloregulatory protein 1 87–189

 Metrics 3 , 5 , 48 , 53 , 54 , 59 , 122 , 298 , 301 , 342
 Module 6 , 64 , 67 , 68 , 71 , 74 , 107 , 135 , 249
 Molecular dynamics simulations 99 , 104
 Molecular interactions .. 33 , 214
 Monte Carlo 31 , 68 , 81 , 82 , 87 , 95 , 99 , 108 ,

112 , 121 , 225 , 241 , 252 , 311 , 330 , 346 , 359
 Motif grafting ... 286 , 287
 Multinuclear metal site ... 174
 Mutagenesis 44 , 69 , 101–103 , 116 , 118 ,

122–124 , 139–142 , 146–148 , 152 , 156 , 157 , 160 ,
 161 , 192 , 203 , 301

 N

 Nuclear Magnetic Resonance (NMR) spectroscopy 24

 P

 Pareto analysis 115 , 122–124 , 127 , 128 , 130
 PDZ domain .. 252 , 260 , 261
 Peptides .. 251

 binding ... 2 41 , 251 , 252
 docking ... 4 1 , 44 , 252
 recognition domain (PRD) ... 249

 Photoswitches ... 198–200
 Pocketoptimizer .. 63 , 74
 Protein

 backbone ... 100
 database (PDB) 13 , 14 , 57 , 60 , 177 ,

 190 , 192 , 202 , 214 , 217 , 221–223 , 251 , 355
 design 6 3 , 82 , 86 , 99 , 100 , 104 , 107 ,

301 , 308 , 324 , 342 , 343
 engineering ... 2 03–204 , 266
 expression ...1 58 , 165
 function prediction ...1 8
 library design ..1 00
 linkers ...3 41–350
 residues ... 8 0 , 213 , 227 , 293

COMPUTATIONAL DESIGN OF LIGAND BINDING PROTEINS

375

 Index

 sequences 3 3 , 100 , 102 , 109 , 113 , 324
 side chains ..2 4 , 87
 structure 2 5 , 29 , 34 , 37 , 42 , 43 , 50 ,

 57 , 83 , 99 , 100 , 199 , 201 , 203 , 206 , 229 , 275 , 286 ,
 303 , 342 , 344 , 357 , 359 , 362

 prediction .. 3 7 , 43 , 359
 refinement ...2 6 , 356

 Protein–DNA interactions 265 , 266 , 268 , 278
 Protein–ligand interactions 2 , 3 , 5 , 6 , 14–16 ,

18 , 19 , 139 , 140
 Protein/peptide interactions ... 48
 Protein–protein interactions 285 , 301 , 307
 Protein–RNA interactions .. 353 , 354
 Protein-small molecule interaction 48
 Proteus .. 77–95
 Protocol 99–136 , 184 , 198 , 202–203 , 205 , 214
 PyMOL 7 , 9 , 12 , 14 , 17 , 190 , 192 , 200 , 202 , 203 ,

 216 , 221–223 , 226 , 228 , 276 , 309 , 357 , 360 , 368

 R

 Rational mutagenesis .. 128 , 307
 Receptor 24 , 27 , 36 , 47 , 66 , 140 , 145 , 168 ,

 198 , 287 , 305–317 , 319–338 , 355 , 364 , 365
 Regression analysis ... 308
 Rosetta

 FlexPepDock .. 252 , 260
 interface Analyzer ...5 4
 molecular Modeling Suite 2 13 , 220 , 342 , 343
 RosettaCommons ...4 8
 RosettaDesign ..1 56
 RosettaLigand ..4 8 , 51
 RosettaMatch 1 74 , 214 , 219 , 220 , 228
 RosettaScripts 4 8 , 51 , 184 , 200 , 229 ,

268 , 275 , 278 , 286 , 290 , 294 , 342–348
 Rotamer 56 , 68–73 , 81–87 , 90 , 92 , 94 , 95 ,

 100 , 102 , 103 , 107–109 , 112 , 117 , 121 , 126 , 128 ,
 131 , 132 , 180 , 192 , 223 , 224 , 267 , 272–274 , 279 ,
 286 , 291–293 , 296 , 299 , 303 , 308 , 346

 library ..2 4 , 68 , 69 , 81 , 83

 S

 Saturation mutagenesis 101–103 , 116 ,
122–124 , 131 , 140–142 , 148

 Scaffold 47 , 48 , 57 , 65 , 68–70 , 74 , 141 , 156 ,
160 , 174–184 , 187 , 188 , 190 , 213–215 , 221–224 ,
 226 , 229 , 286 , 291–294 , 296–299 , 303

 Sequence optimization ... 81 , 82 , 86
 Sequencing 6 , 151 , 157 , 166 , 233 , 337
 Server .. 3–6 , 8 , 10 , 11 , 14 ,

17–19 , 26 , 29 , 30 , 34 , 35 , 37 , 40 , 102 , 321 , 355–360 ,
 363 , 370

 SORTCERY .. 233–246
 Steroid binding ... 159
 Symmetric Protein Recursive Ion-cofactor Sampler

(SyPRIS) 174 , 175 , 178 , 180 , 181

 T

 T cell receptor (TCR) 305–307 , 309 , 311 ,
321 , 322 , 324–328 , 333 , 338

 Theozyme .. 174 , 213–217 ,
222–224

 Thermodynamic cycle .. 78 , 80
 Three-helix bundle ... 187–195

 U

 Unnatural amino acid (UAA) 174 , 178 ,
 180 , 182

 V

 Vinculin .. 82 , 89 , 90

 X

 XPLOR .. 77 , 81 , 83 , 84
 X-ray crystallography .. 89 , 176

 Y

 Yeast surface display 156 , 157 , 160–162 , 233

	Preface
	Introduction: Design and Creation of Ligand-Binding Proteins
	References

	Contents
	Contributors
	Chapter 1: In silico Identification and Characterization of Protein-Ligand Binding Sites
	1 Introduction
	1.1 Predicting Protein–Ligand Interactions
	1.2 The Role of CASP and CAMEO on the Development of Protein–Ligand Interaction Methods
	1.3 Metrics to Assess Protein–Ligand Interactions
	1.4 The FunFOLD2 Server for the Prediction of Protein–Ligand Interactions
	1.5 The FunFOLD3 Algorithm for the Prediction of Protein–Ligand Interactions

	2 Materials and Systems Requirements
	2.1 Web Server Requirements
	2.2 Requirements for the FunFOLD3 Downloadable Executable

	3 Methods
	3.1 The FunFOLD2 Server
	3.2 The FunFOLD3 Executable
	3.3 Server Fair Usage Policy
	3.4 Case Studies
	3.5 Analysis of the Barley Powdery Mildew Proteome
	3.6 CASP11 Functional Prediction

	4 Notes
	References

	Chapter 2: Computational Modeling of Small Molecule Ligand Binding Interactions and Affinities
	1 Introduction
	2 Materials
	3 Methods
	3.1 Protein Preparation
	3.2 Ligand Preparation
	3.3 Docking Calibration
	3.4 Docking Calculations for Propanolol Enantiomers

	4 Notes
	References

	Chapter 3: Binding Site Prediction of Proteins with Organic Compounds or Peptides Using GALAXY Web Servers
	1 Introduction
	2 Materials
	3 Methods
	3.1 Ligand Binding Site Prediction Using GalaxySite
	3.2 Peptide Binding Site Prediction Using GalaxyPepDock

	4 Notes
	References

	Chapter 4: Rosetta and the Design of Ligand Binding Sites
	1 Introduction
	2 Materials
	3 Methods
	3.1 Pre-relax the Protein Structure into the Rosetta Scoring Function [32]
	3.2 Prepare the Ligand
	3.3 Place the Ligand into the Protein (See Notes 12 and 13)
	3.4 Run Rosetta Design
	3.5 Filter Designs
	3.6 Manually Inspect Selected Sequences
	3.7 Reapply the Design Protocol, Starting at Step 3.4
	3.8 Extract Protein Sequences from the Final Selected Designs into FASTA Format
	3.9 Iteration of Design

	4 Notes
	References

	Chapter 5: PocketOptimizer and the Design of Ligand Binding Sites
	1 Introduction
	2 Methods
	2.1 PocketOptimizer General Strategies and Considerations
	2.2 Module Description

	3 Notes
	References

	Chapter 6: Proteus and the Design of Ligand Binding Sites
	1 Introduction
	1.1 Thermodynamic Cycles
	1.2 Energy Model
	1.3 Unfolded State
	1.4 Ligand Titration
	1.5 Proton Binding
	1.6 Multi-Objective Optimization
	1.7 Energy Matrix
	1.8 Sequence/Structure Exploration
	1.9 Flowcharts

	2 Materials: Software and Data Files
	3 Methods
	3.1 Structure Preparation
	3.2 System Setup
	3.3 Interaction Energy Matrix
	3.4 Protein Design
	3.4.1 Sequence Optimization
	3.4.2 Structure Optimization

	3.5 pKα Calculations
	3.6 Specificity Calculations by Ligand Titration

	4 Notes
	References

	Chapter 7: A Structure-Based Design Protocol for Optimizing Combinatorial Protein Libraries
	1 Introduction
	1.1 Expanding Computational Protein Design Horizons Using Regression
	1.2 Protein Library Design
	1.3 Degenerate Codon Libraries
	1.4 Regression and Energy Functions
	1.5 Cluster Expansion

	2 Methods
	2.1 Overview
	2.2 Instantiation: Combinatorial Optimization of Sidechain Positions
	2.3 Term Selection
	2.4 Solving Large Regularized Regression Problems
	2.5 Weighted Regression
	2.6 Quantifying Regression Model Performance
	2.7 Using the Approximation to Select Targets
	2.8 Calculating the Properties of Degenerate Codon Libraries
	2.9 Combinatorial Design in Degenerate Codon Library Space
	2.10 Sampling Diverse Libraries via Combinatorial Optimization
	2.11 Selecting Advantageous Degenerate Codon Libraries via Pareto Analysis

	3 Example Tests and Results
	3.1 Model Design Problems
	3.2 Case A: High Accuracy Approximation of a 3-Site Library
	3.3 Predicting <E> for Case A Libraries
	3.4 Sampling Case A Libraries
	3.5 Selection of Case A Libraries via Pareto Analysis
	3.6 Case B: The 5-site Core Redesign Library
	3.7 Case C.1: A 16-Site Surface Library
	3.8 Case C.2: With Additional Rotamers
	3.9 Overfitting Trends
	3.10 Recap the Pertinent Observations
	3.11 Computational Time

	4 Notes
	References

	Chapter 8: Combined and Iterative Use of Computational Design and Directed Evolution for Protein–Ligand Binding Design
	1 Introduction
	2 Materials
	2.1 Molecular Modeling
	2.2 Library Creation by Single-Site Saturation Mutagenesis
	2.3 Library Creation by Random Mutagenesis
	2.4 Yeast Transformation
	2.5 Library Cloning and Transformation
	2.6 Y2H System-�Based Screening
	2.7 Ligand Dose-�Response Assay (Yeast Transactivation Profiles)
	2.8 Subcloning of Evolved hERα LBDs
	2.9 Mammalian Transfection and Luciferase Assays (Mammalian Cell Transactivation Profiles)

	3 Methods
	3.1 Molecular Modeling
	3.2 Library Creation by Single-Site Saturation Mutagenesis
	3.3 Library Creation by Random Mutagenesis
	3.4 Yeast Transformation
	3.5 Library Cloning and Transformation
	3.6 Y2H System-�Based Screening
	3.7 Ligand Dose-�Response Assay (Yeast Transactivation Profiles)
	3.8 Subcloning of Evolved hERα LBDs
	3.9 Mammalian Transfection and Luciferase Assays (Mammalian Cell Transactivation Profiles)

	4 Notes
	References

	Chapter 9: Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments
	1 Introduction
	2 Materials
	3 Methods
	3.1 Overview of Approach
	3.2 Initial Screen of Computationally Designed Proteins
	3.3 Affinity Improvement Using Yeast Surface Display Selections and Fluorescence-Activated Cell Sorting of Mutagenic Libraries
	3.4 Combinatorial Mutagenesis Using Identified Beneficial Single-Point Mutations
	3.5 Mutagenic Libraries and Deep Sequencing
	3.6 Next-�Generation Library Sequencing
	3.7 Selectivity Assays by Equilibrium Fluorescence Polarization Competition Assays
	3.8 Fluorescence Polarization Equilibrium Competition Binding Assays

	4 Notes
	References

	Chapter 10: Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids
	1 Introduction
	2 Methods
	2.1 The General Pipeline for the Method (Fig. 3a) Includes the Following Steps (Also See Note 1)
	2.2 Generate and Standardize Symmetric Scaffold Library
	2.3 Target Cofactor
	2.4 Symmetric Protein Recursive Ion Sampler (SyPRIS)
	2.4.1 Align Scaffold and Cofactor Axes of Symmetry
	2.4.2 Sample Inverse Rotamers

	2.5 Kinematic Loop Closure (KIC)
	2.6 Rosetta Design

	3 Notes
	References

	Chapter 11: De Novo Design of Metalloproteins and Metalloenzymes in a Three-Helix Bundle
	1 Introduction
	2 Materials
	2.1 Modeling Using PyMOL
	2.2 Transformation Components
	2.3 Protein Expression Components
	2.4 Protein Purification Components

	3 Methods
	3.1 Design of α3D Derivatives Using PyMOL
	3.2 Transformation
	3.3 Protein Expression Using Autoinduction Media
	3.4 Protein Purification

	4 Notes
	References

	Chapter 12: Design of Light-Controlled Protein Conformations and Functions
	1 Introduction
	2 Materials
	3 Methods
	3.1 Computational Design of Protein Photoswitches
	3.1.1 Mutational Robustness
	3.1.2 Distance Matching
	3.1.3 Solvent Accessibility
	3.1.4 Steric Clashes (Visual Inspection)
	3.1.5 Protocol for the Structure-Based Design of a Photoswitchable Mm-cpn
	3.1.6 Protocol for the Structure-Based Design of Photoswitchable Cadherin

	3.2 Protein Engineering
	3.2.1 Elimination of Native Cysteines
	3.2.2 Addition of Cross-Linking Cysteines

	3.3 Conjugating Protein with Small Molecule
	3.3.1 Choice of Chromophore and Reactive Group (ABDM vs. BSBCA)
	3.3.2 Reaction Conditions
	3.3.3 Protocol for Conjugating Mm-cpn with ABDM
	3.3.4 Protocol for Conjugating Cadherin with BSBCA

	3.4 Measuring Protein Conjugatability
	3.4.1 Measuring Cross-Linking Ratio for ABDM-Mm-cpn with an SDS-PAGE Gel
	3.4.2 Estimating Conjugatability for Cadherin Using Mass Spectrometry

	3.5 Measuring Chromophore Switchability/Rate of Thermal Cis–Trans Back Reaction
	3.5.1 Illumination Techniques
	3.5.2 UV–Vis Spectroscopy
	3.5.3 Measuring Bistability/Relaxation Rate

	3.6 Structural/Functional Assay
	3.6.1 Native Gel Assay to Probe the Light-Induced Conformational Switching of ABDM-Mm- cpn

	4 Notes
	References

	Chapter 13: Computational Introduction of Catalytic Activity into Proteins
	1 Introduction
	2 Materials
	3 Methods
	3.1 Theozyme Generation
	3.2 Scaffold Selection
	3.2.1 Download the Crystal Structures to Use as Scaffolds

	3.3 Match
	3.4 Enzyme Design
	3.5 Foldit
	3.6 Examples

	4 Notes
	References

	Chapter 14: Generating High-Accuracy Peptide-Binding Data in High Throughput with Yeast Surface Display and SORTCERY
	1 Introduction
	2 Materials
	2.1 Cell Culture Media
	2.2 Fluorescence-�Activated Cell Sorting
	2.3 Deep Sequencing Sample Preparation (See Note 1)

	3 Methods
	3.1 Cell Growth and Induction of Yeast Surface Display Library (See Note 2)
	3.2 Gate Setting
	3.3 Cell Sorting
	3.4 Deep Sequencing Sample Preparation
	3.4.1 DNA Extraction
	3.4.2 DNA Amplification and Adapter Attachment

	3.5 Computational Analysis

	4 Notes
	References

	Chapter 15: Design of Specific Peptide–Protein Recognition
	1 Introduction
	2 Materials
	3 Methods
	4 Notes
	References

	Chapter 16: Computational Design of DNA-Binding Proteins
	1 Introduction
	2 Materials
	3 Methods
	3.1 Standard Protein–DNA Interface Design
	3.2 Assessment of Designs Using Specificity and Binding Energy Calculations
	3.2.1 Automatic Specificity and Binding Energy Prediction Following Fixed-Backbone Design
	3.2.2 Protocol for Specificity Calculation that Is Suitable Following Any Design Procedure

	3.3 Rosetta Modes for Increasing Diversity of Designed Sequences
	3.3.1 Motifs
	3.3.2 Multistate Design
	3.3.3 Protein Flexibility
	3.3.4 High-Temp Packer

	3.4 Design Starting from Homology Models of Protein–DNA Complexes

	4 Notes
	References

	Chapter 17: Motif-Driven Design of Protein–Protein Interfaces
	1 Introduction
	2 Materials (Required Software)
	3 Methods
	3.1 Definition of the Binding Motif for Seeded Interface Design
	3.2 Preparing a Scaffold Database
	3.3 Matching for Putative Scaffolds
	3.4 Sequence Design
	3.4.1 Side Chain Grafting with RosettaScripts
	3.4.2 Backbone Grafting with RosettaScripts

	3.5 Selection of Designs and Optimization
	3.5.1 Reverting Designed Mutations Back to Native
	3.5.2 Manually Adjusting Designs Using FoldIt
	3.5.3 Filtering Designs Based on Folding Probability

	3.6 Experimental Validation
	3.7 Concluding Remarks

	4 Notes
	References

	Chapter 18: Computational Reprogramming of T Cell Antigen Receptor Binding Properties
	1 Introduction
	2 Materials
	3 Methods
	3.1 Structure-Guided Improvement of T Cell Receptor Binding
	3.2 Score Function Refinement Following Comparison With Experimental Binding Data

	4 Notes
	References

	Chapter 19: Computational Modeling of T Cell Receptor Complexes
	1 Introduction
	2 Materials
	3 Methods
	3.1 Selection of Template and TCR Sequence Alignment
	3.2 Using Rosetta to Map the Target TCR Sequence onto the Structural Template and Modify the Peptide
	3.3 Low Resolution Docking
	3.4 Loop Modeling
	3.5 High Resolution Docking
	3.6 Analysis of Example Projects

	4 Notes
	References

	Chapter 20: Computational Design of Protein Linkers
	1 Introduction
	2 Materials
	2.1 Starting Structures
	2.2 Obtaining and Compiling the Rosetta Molecular Modeling Suite
	2.3 Creating Your RosettaScripts Protocol Input File
	2.3.1 Backbone Construction
	2.3.2 Sidechain Optimization
	2.3.3 Example Script

	3 Methods
	3.1 Running RosettaScripts
	3.2 Determining Appropriate Linker Length and Structure
	3.3 Generation of Complete Linker Designs
	3.4 Analyzing Linker Designs

	4 Notes
	References

	Chapter 21: Modeling of Protein–RNA Complex Structures Using Computational Docking Methods
	1 Introduction
	2 Nomenclature, Materials and Software
	2.1 Nomenclature
	2.2 RNA–Protein Structures Used in This Study
	2.3 ModeRNA
	2.4 GRAMM
	2.5 Filtrest3D
	2.6 DARS-RNP
	2.7 NPDock Web Server
	2.8 Files

	3 Methods
	3.1 Preparation of Molecules to Be Docked
	3.2 Bound Docking
	3.2.1 Automated Protein–RNA Docking Using NPDock Web Server
	3.2.2 Comparison of the Docked Model to the Experimentally Observed Complex

	3.3 Unbound Docking
	3.3.1 Preparation of Molecules to Be Docked
	3.3.2 Manual Protein–RNA Docking
	Protein–RNA Decoy Generation Using GRAMM
	Decoy Filtering According to Restraints
	Scoring of Decoys Using the DARS-RNP Potential
	Selection of the Most Promising Complex Model
	Comparison of the Docked Model to the Experimentally Solved Structure

	3.4 Summary

	4 Notes
	References

	Index

