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In response to seasonal habitats, migratory lepidopterans,

exemplified by the monarch butterfly, have evolved migration

to deal with dynamic conditions. During migration, monarchs

use orientation mechanisms, exploiting a time-compensated

sun compass and a light-sensitive inclination magnetic

compass to facilitate fall migration south. The sun compass is

bidirectional with overwintering coldness triggering the change

in orientation direction for remigration northward in the spring.

The timing of the remigration and milkweed emergence in the

southern US have co-evolved for propagation of the migration.

Current research is uncovering the anatomical and molecular

substrates that underlie migratory-relevant sensory

mechanisms with the antennae being critical components.

Orientation mechanisms may be detrimentally affected by

environmental factors such as climate change and sensory

interference from human-generated sources.
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Introduction
Many diverse animal taxa undergo long-distance migra-

tions, in which individuals travel up to thousands of

kilometers between different season-appropriate sites,

in direct response to seasonally changing environments

[1�]. Recent research has elucidated critical aspects of

migration, an evolved behavioral strategy used by several

lepidopteran species, including both butterflies (e.g. the

North American monarch butterfly, Danaus plexippus
[2–4,5��,6,7��]; the painted lady butterfly, Vanessa cardui
[8,9]) and moths (e.g. the silver Y moth, Autographa gamma
[10–12]). To reach their destinations during the migratory

journey, migrants likely use either compasses alone or a

map and compasses, for navigation [1�]. A map sense
Current Opinion in Neurobiology 2015, 34:20–28 
allows migrants to know their location relative to their

destination, whereas compasses provide migrants with

the ability to orient in the proper migratory direction

during travel. Although there is debate as to whether or

not migrant lepidopterans can possess a map sense (e.g.

the monarch; see below), a body of work exists that

demonstrates that these species have various and separate

compass senses (e.g. [2–4,5��,6,7��]), in which they de-

pend on reliable environmental cues to obtain directional

information [13,14]. Having multiple modes for direction-

ality may be advantageous for individuals, because they

better inform and fine-tune navigational decision-making

during migration.

In this review, we discuss recent findings that further

delineate the characteristics of several orientation tools

used by migratory lepidopterans, as well as examine the

potential relationships between them. Here, we highlight

the eastern North American monarch butterfly, and its

use of multiple compass mechanisms during migration.

This iconic long-distance migratory insect migrates each

fall to mountainous overwintering sites in central Mexico,

as part of its annual migration cycle (depicted in

Figure 1a). We also highlight the role of the antennae,

multimodal sensory organs that are a key component in

these different mechanisms. Finally, we consider how the

threats of global climate change and human-generated

sensory noise may interfere with orientation mechanisms.

Skylight cues
Among diurnal migratory lepidopterans, the sun compass

is the most common orientation process involving the use

of skylight cues. Here, individuals use daylight cues, such

as the sun’s azimuthal (horizontal) position in the sky and

daylight polarization patterns [13,14], to obtain direction-

al information to orient in the proper migratory heading

[13,14,15�]. In its simplest form, use of the sun compass

consists of individuals using daylight cues to maintain

their proper migratory heading, as seen in painted lady

butterflies [8,15�]. In contrast, some individuals use a

more complex sun compass as it is time-compensated,

in which information from daylight cues is adjusted for

the time of day. Of special note are migrating monarch

butterflies that use circadian clocks in their antennae as a

timekeeping mechanism to adjust their directional flight

throughout the day (Figure 2), as daylight cues appear to

constantly shift in the sky as the day progresses

[13,14,15�]. Brain clocks, which reside in the par lateralis

regions appear to have no role in the monarch time-

compensated sun compass, but they likely are important
www.sciencedirect.com
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The direction and recalibration of the time-compensated sun compass of migrant monarchs appears to have co-evolved with the seasonal

development of milkweed plants, the obligate food source of monarch larvae. (a) Annual migration cycle of the eastern North American monarch

butterfly. (Left) Migration south. As part of the migratory syndrome, monarchs possess a time-compensated sun compass that allows them to

orient in the proper southerly direction during the fall migration (converging red lines with arrow on map) to their overwintering grounds in Mexico

(yellow oval). (Middle) Overwintering period in Mexico with migrants congregated at the overwintering sites (red oval). Inset, photograph of

monarchs clustered on a tree trunk at an overwintering site (courtesy of Getty Images). (Right) Remigration north. Overwintering monarchs use

their recalibrated sun compass during the northwards remigration (red arrows). The offspring of these spring remigrants continue the migratory

cycle by repopulating the northern ranges of the monarch habitat throughout the spring and summer (black arrows). It is unclear if these

generations of monarchs also migrate northwards or whether they are simply dispersing. Brown line on the maps, Rocky Mountains. (b) North

American environmental conditions during migration. (Left) Decreasing day length during migration south. (Center) Overwintering site conditions.

Coldness experienced by migrants while at the overwintering sites (blue line and blue circle on Overwintering map above) is the environmental

cue, independent of photoperiod that recalibrates the orientation of the sun compass. The cue that initiates the actual remigration north is likely

the sensing of increasing photoperiod (yellow line, bracketed section) at the overwintering sites. The temperature data and day length data are

modified from Ref. [5��], and the black vertical dashed lines indicate the beginning and end of the time spent by migratory monarchs at the

overwintering sites. (Right) Increasing day length during movement north. (c) Annual milkweed cycle. (Left) Milkweed growth, pollination, and

seeding. (Middle) The vernalization of milkweed plants and seeds via coldness coincides with the recalibration of the sun compass. (Right)

Vernalization conveys to milkweed plants the ability to sprout and flower in the spring by conferring them the competence to respond to

appropriate spring inductive cues. Similarly, vernalization facilitates the germination of milkweed seeds. As with remigration, the sensing of

increasing photoperiod is a reliable cue that is correlated with warmer spring temperatures, the emergence of milkweed, and subsequent spring

flowering. Photograph of milkweed flower courtesy of Monarch Watch (www.monarchwatch.org).
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Figure 2
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Redrawn from Ref. [30].
for sensing decreasing daylength to trigger the migratory

generation. Daylight cues used for sun compass orienta-

tion are sensed by the compound eyes, in which different

regions have been specialized for the detection of specific

cues; sun position is sensed by the main retina, while

ultraviolet plane polarized skylight is detected by the

dorsal rim area [13,14]. Directional information from

these cues are relayed from the eye downstream through

complex circuitry to the brain, in particular the central

complex region which is the proposed site for the sun

compass and in which daylight cues are thought to be

processed and integrated (Figure 2) [13,14]. The neuro-

anatomical structures and putative neural pathways for

sun compass integration have been described in several

insect species [16], including migratory monarchs [17–
19]. Time-compensated directional information from the

central complex ultimately communicates with the motor

system to direct flight orientation (Figure 2).

It has been recently shown that the time-compensated sun

compass can be bidirectional, in which it is used by migrants

on both legs of the migratory journey, with sun compass

directionality adjusted towards the appropriate seasonal

heading. Migrant monarchs use their time-compensated
Current Opinion in Neurobiology 2015, 34:20–28 
sun compass throughout their migratory journey — the sun

compass is initially tuned southwards during the fall migra-

tion and is then recalibrated to have a northwards bearing

during the spring remigration [5��]. Coldness, temperature

conditions consistent with those found at the overwintering

high altitude coniferous forests during the overwintering

period, is the environmental trigger that underlies the

switch in orientation direction in monarchs [5��]. It still

remains to be determined, however, what minimum degree

and duration of coldness are needed to recalibrate the time-

compensated sun compass of monarchs.

Once having a re-tuned sun compass after appropriate

cold exposure, we propose that increasing daylength

initiates the actual departure of remigrants northward

from their overwintering sites (Figure 1). Interestingly,

the effect of coldness on the time-compensated sun

compass of monarchs occurs in parallel with the vernali-

zation of milkweed (genus Asclepias) [20,21], the

obligate food source of monarch larvae. Here, a period

of cold temperatures in the late fall and winter serves to

effectuate appropriate responses by milkweed towards

conditions in the following spring. This necessary effect

of coldness on both monarchs and milkweed suggests

that the recalibration of the monarch sun compass,

and the initiation of the return northwards by increasing

photoperiod, have likely co-evolved with the timing and

onset of newly emerged milkweed in the spring

(Figure 1). In this way, remigrant females can ovipo-

sit on freshly emerged milkweed at the appropriate

time and place. This monarch-milkweed synchrony is

critical for the subsequent northward perpetuation of

spring and summer generations to repopulate monarchs

throughout their range and complete the migration cycle

(Figure 1a, right).

As direct sun cues are unavailable to nocturnal lepidop-

teran migrants, individuals may rely on lunar or stellar

compasses for orientation information [14]. The use of

lunar or stellar cues by nocturnal migrants is possible,

since nocturnal insects, including lepidopterans (moths),

have been shown to have surprisingly acute visual capa-

bilities [22�]. Thus one way insects can detect nighttime

cues, such as moonlight, is via their compound eyes, in

which photoreceptor cells mediate moonlight perception

[23]. Moreover, nocturnal insects have been shown to use

night sky cues, such as the faint light provided by the

Milky Way, for orientation [24�]. Further work is needed

to elucidate the likely celestial compass mechanisms

utilized by nocturnal migratory lepidopterans.

Magnetic compass
Similar to other migratory taxa [25,26], a magnetic com-

pass is another orientation tool that is used by migratory

lepidopterans, in which individuals use aspects of the

Earth’s magnetic field (polarity, inclination angle, inten-

sity) as sources of directional information (Figure 3a).
www.sciencedirect.com
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Fall migrant monarch butterflies possess an inclination-based magnetic compass [7��]. (a) Geomagnetic components used for directionality. The

magnetic field of the Earth can be viewed as a large magnet with the north and south polar components. (Left side) Earth’s magnetic field originates

from the Southern hemisphere, encircles the planet, and then re-enters in the Northern hemisphere. (Right side) The intersection of magnetic field lines

with the horizontal surface of the earth provides the inclination angle of magnetic dip; there is a gradual change in the inclination angle and intensity of

the Earth’s magnetic field from each pole to the equator (represented by the angle and length of the magenta arrowed lines). Modified from Ref. [14].

(b) A magnetic compass sense by monarchs was examined in flight simulator orientation trials, in which the orientation direction of tethered flying

monarchs (monarch in cut-away view of flight simulator) was monitored by computer. Individual monarchs were tested under diffuse light conditions

within a magnetic coil system that allowed for the presentation of a generated magnetic field in which the relevant magnetic field parameters (polarity,

inclination, and intensity) could be manipulated during the flight trials. Modified from Ref. [7��]. (c) Expanded view of the latitudinally positioned

inclination angles. The angle ranges from 08 at the equator (dashed line) to 908 at the magnetic poles. Inclination angles in the Northern hemisphere

are designated as positive, with a +908 at the North magnetic pole, while inclination angles in the Southern hemisphere are designated negative, with

a �908 at the South magnetic pole. As inclination angles vary with latitude, an inclination-based magnetic compass provides monarchs the ability to

approximate their latitudinal position on Earth. (d) Orientation behavior of monarchs is consistent with an inclination-based magnetic compass [7��].

Orientation of monarchs to different artificially generated inclination angles with the polar components (north-south magnetic axis) unchanged. (Top)

Monarchs orient equatorward away from the North magnetic pole when tested under positive inclination angle conditions, consistent with a bearing

that will bring them towards their overwintering sites in Mexico. (Middle) Monarchs flew northward when the inclination angle of the generated

magnetic field was reversed. Reversing the inclination angle alters the directional information provided by the inclination angle (1808 shift) and is a true

test for the existence of an inclination compass [7��]. (Lower) Monarchs tested under 08 inclination angle conditions, as though they were flying at the

equator, flew in a non-directional manner, suggesting that the detection of an inclination angle is necessary for proper directionality. Despite being

exposed to consistent polarity components during these conditions, monarchs flew in a disoriented manner, supporting the notion that the inclination

magnetic compass is the dominant magnetic sense in monarchs. For each circlegram, a single dot represents the orientation of an individual monarch

that flew continuously for 5 min (assessed by video monitoring); arrows indicate mean group orientation; shaded area is 95% confidence interval; mN

is magnetic north.Modified from Ref. [7��].
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Although earlier work provided conflicting evidence for

and against the use of a magnetic compass in fall mon-

archs [13], current work has demonstrated that individuals

can use an Earth-strength, light-dependent inclination

magnetic compass, to maintain the proper southwards fall

migratory bearing in the absence of directional daylight

cues (Figure 3) [7��]. An inclination magnetic compass

uses the inclination angle of the Earth’s magnetic field to

guide latitudinal movement (see Figure 3). The exposure

of monarchs to ultraviolet-A/blue light between 380 and

420 nm is necessary for a functioning inclination compass,

a light requirement that was not considered in past studies

[7��,13]. This light requirement supports a light-sensitive,

chemical-based mechanism for magnetoreception in

monarchs [7��]. Here, the magnetic compass sense is

likely activated via photochemical reactions involving

cryptochrome (CRY) proteins, in which the occurrence

of these reactions requires specific wavelengths of light

(see below) [27].

The idea that migrant insects, such as the monarch,

possess a map sense along with having different compass

senses is unclear [13], especially given preliminary results

from longitudinal displacement studies [6]. Future

experiments testing the use of the magnetic compass

as part of a geomagnetic map sense in monarchs, as seen

in other animals that use an inclination magnetic compass

[28,29], can help resolve this issue. If monarchs do possess

a geomagnetic map sense, it may help answer the long-

standing question of how migrants find their overwinter-

ing sites, a handful of oyamel fir groves in a small

mountainous area of central Mexico, year after year.

Similar to the geomagnetic map sense of other animals

that can be imprinted at juvenile stages [29], the map

sense of migrant monarchs that is involved in finding the

overwintering sites is likely encoded genetically as part of

their migratory syndrome [30,31��], as individuals migrat-

ing to Mexico in the fall are on their maiden voyage.

Wind-based movement
Certain migratory lepidopteran species, including mon-

archs, have been observed to facilitate their migration via

a windborne movement strategy [9,12,13]. For example,

these migrants will fly at high-altitudes and select to

ride high-speed winds moving in the appropriate sea-

sonal migratory heading [9,12,13,32,33]. Moreover, if

winds become unfavorable during flight and are no

longer consistent with preferred orientation directions,

individuals have been shown to actively compensate

their flight behavior, for example, adopt flight headings

to compensate for crosswind drift, to stay on course

[10,34].

Integration of compass systems
Despite our current understanding of these separate

orientation mechanisms used by migratory lepidopterans,

there still remains a paucity of work that examines
Current Opinion in Neurobiology 2015, 34:20–28 
the potentially important relationships between these

different orientation processes. It has been proposed that

the magnetic compass serves as an important backup

orientation mechanism to the primary time-compensated

sun compass, when directional daylight cues are unavail-

able to monarchs, such as on overcast days when the sun

and blue sky are obscured from view [7��]. Clock-shift

experiments testing aspects of the sun compass used by

monarchs supports the dominant position of the sun

compass and the secondary nature of the magnetic com-

pass in the hierarchy of orientation tools used by mon-

archs. Clock-shifted migrants will fly in the predicted,

adjusted orientation direction during clear, sunny skies,

even when the Earth’s magnetic field is perceivable and

remains unmanipulated [2–4,5��]. During overcast eve-

nings, the magnetic compass may also serve as a backup

mechanism for nocturnal lepidopteran migrants that use

night sky cues for orientation.

In addition to serving as a backup mechanism, the mag-

netic compass may also serve as a key calibrator of the sun

compass in monarchs, where it can augment time-com-

pensated sun compass usage. The magnetic compass may

calibrate for increased accuracy in the time-compensated

sun compass of monarchs at specific times of the day in

relation to the individual’s current location along the

migratory route, such as before the current day’s (i.e. at

sunrise) or the next day’s (i.e. at sunset) bout of migratory

flight. A similar mediating effect of the magnetic compass

may occur in nocturnal migrants that use lunar or stellar

compasses for orientation as a major mechanism for

directionality.

Critical role of the antennae in orientation
The antennae, multimodal sensory organs that perceive

various cues, are common to all aspects of the orientation

and sensory mechanisms described previously (Figure 4).

As already mentioned, the antennae are necessary for a

functioning time-compensated sun compass (Figure 2)

[3,4,5��]. The antennae are paired organs that contain the

light-entrained circadian clocks that comprise the rele-

vant timing mechanism for the time compensation of

integrated skylight cues in the sun compass [3,4,5��].
As part of a distinct circadian clock mechanism, monarchs

possess two types of CRY proteins, a Drosophila-like type

1 CRY (dpCRY1) and a vertebrate-like type 2 CRY

(dpCRY2) [13,14]. These are two important circadian

clock molecules, because dpCRY1 functions as a circadi-

an photoreceptor for light entrainment, and dpCRY2

functions as the major transcriptional repressor of the

clockwork feedback loop of the monarch circadian clock

[13,14].

Recent results support the idea that the monarch anten-

nae contain magnetosensors, with antennal dpCRYs the

likely molecular candidates involved in light-dependent

magnetoreception (Figure 4) [7��]. This is consistent with
www.sciencedirect.com
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The monarch antennae are multimodal sensors of orientation information during long-distance migration. The antennae are involved in sensing

potential migration-relevant olfactory cues derived from social interactions with conspecific migrants (orange). Cryptochrome (CRY) proteins in the

antennae have a dual role as they are involved in time-compensated sun compass use (red) and likely in magnetic compass use (purple). The

antennae are potentially the sensors of coldness, the environmental cue that recalibrates the time-compensated sun compass in migrant

monarchs (blue). The antennae also contain Johnston’s organ, the organ in the pedicel that senses various forms of migration-relevant

mechanosensory stimuli such as wind (black). The placement of the cue symbols on the antenna are arbitrary and do not denote regionalization of

the antenna in which these cues are sensed.
the light-dependent activity of antennal dpCRY1 as part

of the monarch circadian clock that crucially underlies

time-compensated sun compass use, a phenomenon also

observed using orientation trials in which the antennae

were painted either black (to block clock light entrain-

ment) or clear (as a control) [3,4,5��]. Moreover, corrobo-

rating the role of monarch CRYs in magnetosensation is

the finding that dpCRY1 and dpCRY2 can each rescue

magnetosensitivity in a light-dependent manner when

expressed as transgenes in CRY-deficient Drosophila
[13,14]. With a sequenced genome [30], along with viable

genetic approaches for targeting specific genes [35�],
the stage is set in monarchs for exciting and timely

experiments that can genetically evaluate and verify

the role of the dpCRYs and the mechanism of action

in the magnetic compass.

The antennae are also likely involved in wind-assisted

lepidopteran migration (Figure 4), as the antennae can

serve as mechanoreceptors for wind detection as seen in

several insect species [36,37]. In this case, Johnston’s

organ, a chordotonal organ found in the pedicel of the
www.sciencedirect.com 
antenna (second antennal segment) of insects, is respon-

sible for detecting mechanical stimuli [38,39].

Although the mechanisms involved in sensing coldness

for sun compass recalibration remain unknown in mon-

archs, one possibility is that coldness, and temperature in

general, is also sensed by the antennae (Figure 4). In

Drosophila, the antennae are important temperature-sens-

ing organs that form part of the neural circuits responsible

for thermosensation, as they contain temperature-sensi-

tive transient receptor potential channels (thermoTRP)

channels. ThermoTRP channels are found in thermo-

sensory antennal neurons that detect a wide range of

temperature conditions and are involved in mediating

behavior [40,41].

Given their role in detecting chemosensory cues, such as

volatile species-specific pheromones, migration-relevant

olfactory cues would also be sensed by the antennae

during social interactions such as those that might occur

during migratory flight or within roosts (Figure 4).

Although much of the work on olfaction in lepidopterans
Current Opinion in Neurobiology 2015, 34:20–28



26 Molecular biology of sensation
has been done with moths, butterflies, despite being

diurnal and thought of to not rely on olfactory cues, have

been recently shown to have an olfactory system that is

similar in many respects to that of moths, albeit with a

reduced number of olfactory sensilla and olfactory recep-

tor neurons [30,42].

The central complex region, the already highlighted site

of the sun compass that integrates eye-sensed skylight

cues and is time-compensated by antennal clocks

(Figure 2), is also the potential location for the integration

of different orientation stimuli [16]. The pathways that

connect the antennae to the central complex have yet to

be completely determined; directional information from

the various compass senses is likely transmitted in yet to

be defined neural pathways or neuronal-independent

pathways involving diffusible molecules [4,13].

Environmental pollution
Although not fully understood, environmental conditions

may have a significant effect on the usage of the orienta-

tion mechanisms in migrant lepidopterans, thereby mak-

ing it possible that current threats to the environment can

adversely affect migration in these species. For example,

as coldness is necessary for sun compass recalibration in

monarchs, global warming and overall climate change

may disrupt the migratory cycle in this species [5��].
Changes in global wind patterns due to climate

change [43], for example, stronger winds that may carry

migrants too far or weaker winds that may not carry

individuals far enough, can hamper windborne migratory

strategies.

Similarly, human-induced noise and pollution in relevant

sensory modalities are other vulnerabilities. For example,

electromagnetic noise, which can disrupt normal move-

ment [44] or geomagnetic orientation [45�] in other spe-

cies, may similarly hinder magnetic compass usage by

migrant lepidopterans [7��]. Similarly, nocturnal migrants

that may rely on night sky cues for orientation potentially

face disruptive influences from nighttime artificial light

pollution. Artificial light can significantly alter natural

nighttime light regimes and patterns, on spatial and

temporal scales, and across wavelengths, as well as po-

tentially obscure celestial cues used for orientation

[46,47].

The future
Recent work with migratory lepidopterans, especially

with monarch butterflies, has greatly increased our knowl-

edge of the different orientation mechanisms used by

migratory species. To push the field forward, experimen-

tal approaches that examine the use of these different

mechanisms together are now necessary to better under-

stand how different directional information is used

by migrants. Furthermore, recent advances such as

population genetic studies [31��] have increased our
Current Opinion in Neurobiology 2015, 34:20–28 
understanding of the evolutionary history of the migration

and of the mechanistic aspects of the migration. The

breadth of orientation mechanisms at the disposal of mi-

grant monarchs, along with the availability of powerful

nuclease-mediated genetic approaches for studying and

manipulating these mechanisms [35�], make migratory

monarchs an exemplary model system. Taken together,

the migratory monarch rivals even the most complex of

vertebrate systems, for studying orientation, long-distance

migration, and environmental spatial awareness in animals.
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