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Summary
Heterochromatin plays a key role in protection of chromosome integrity by suppressing homologous
recombination. In Saccharomyces cerevisiae, Sir2p, Sir3p, and Sir4p are structural components of
heterochromatin found at telomeres and the silent mating type loci. Here we have investigated
whether incorporation of Sir proteins into minichromosomes regulates early steps of recombinational
repair in vitro. We find that addition of Sir3p to a nucleosomal substrate is sufficient to eliminate
yRad51p-catalyzed formation of joints, and that this repression is enhanced by Sir2p/Sir4p.
Importantly, Sir-mediated repression requires histone residues that are critical for silencing in vivo.
Moreover, we demonstrate that the SWI/SNF chromatin remodeling enzyme facilitates joint
formation, thereby promoting subsequent Rad54p-dependent formation of a strand invasion product.
These results suggest that recombinational repair in the context of heterochromatin presents
additional constraints that can be overcome by ATP-dependent chromatin remodeling enzymes.
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Introduction
Eukaryotic genomes are organized into two structurally distinct chromatin regions,
heterochromatin and euchromatin. Early cytological studies defined heterochromatin as the
region of the genome that remained visibly condensed and deeply stained throughout the cell
cycle whereas euchromatin underwent decondensation as the cells progressed from metaphase
to interphase (Passarge, 1979). These regions that remain condensed throughout the cell cycle
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are mainly found at centromeres and telomeres and are referred to as constitutive
heterochromatin. Heterochromatin-like structures are also found at developmentally regulated
loci where the chromatin state can change in response to cellular signals and gene activity.
Highly conserved features that characterize heterochromatin and distinguish it from
euchromatin include a high percentage of repetitive DNA sequences, repressed RNA
polymerase II transcription, low or absent gene density, late S phase replication timing, regular
nucleosome spacing, less accessibility of chromatin to nucleases, and hypoacetylation of
histones (Grewal and Jia, 2007; Henikoff, 2000; Richards and Elgin, 2002). Heterochromatin
is required for the organization and function of centromeres (White and Allshire, 2008),
protection of telomeres, and limitation of telomere length in Drosophila (Savitsky et al.,
2002). In addition, heterochromatin protects genome integrity by repressing the transposition
of abundant transposable elements and by preventing extensive or illicit recombination
between dispersed repetitive DNA elements (Peng and Karpen, 2007, 2008). Heterochromatin
also shows suppressed crossing-over frequencies during meiosis (Allshire et al., 1994; Barton
et al., 2008; Westphal and Reuter, 2002), and repressed mitotic recombination (Jaco et al.,
2008). However, recombination does occur at measurable frequencies within heterochromatin
(Jaco et al., 2008; Paques and Haber, 1999), and in the case of the yeast transposon Ty5,
transpositions into heterochromatin are actually preferred (Zou et al., 1996).

In Saccharomyces cerevisiae, heterochromatin-like domains are localized to the rDNA gene
cluster, sub-telomeric regions, and the silent mating type loci, HMLα and HMRa. At
subtelomeric and silent mating type loci, heterochromatin assembly requires the Silent
information regulators, Sir2p, Sir3p, and Sir4p. The assembly of Sir-dependent
heterochromatin is a stepwise process in which DNA binding proteins like Rap1p or the ORC
complex recruits Sir4p, which is required for subsequent recruitment of Sir2p and Sir3p
(Rusche et al., 2003). All three Sir proteins are then required for spreading of the
heterochromatic domain. Sir2p is a NAD+-dependent histone deacetylase whose HDAC
activity is required for heterochromatin assembly (Imai et al., 2000). Sir2p removes the acetyl
group from histone H4 K16, thereby promoting the binding of Sir3p and Sir4p to the
hypoacetylated histone H4 N-terminal domain. Multiple cycles of histone deacetylation and
Sir3p/Sir4p binding thus control the spreading of the heterochromatic domain from the initial
point of recruitment.

Several studies indicate that Sir3p is the dominant structural component of Sir-dependent
heterochromatin. In vitro, Sir3p can bind to DNA (Georgel et al., 2001) and to nucleosomes,
and nucleosome binding requires H4 K16 (Onishi et al., 2007). Binding of Sir3p to
nucleosomes also requires histone H3 K79, as well as several other surrounding histone
residues (Onishi et al., 2007). These and other studies have defined a putative nucleosome
binding surface for Sir3p that includes the globular domain of H3 and the N-terminus of H4
(Hecht et al., 1996; Onishi et al., 2007). Within cells, overexpression of Sir3p extends the
domain of transcriptional silencing (Hecht et al., 1996; Renauld et al., 1993; Strahl-Bolsinger
et al., 1997). Within the extended domain, Sir3p spreads in the absence of Sir2p or Sir4p.
Furthermore, inactivation of the Sas2p histone acetylase leads spreading of Sir3p at telomeres
in the absence of Sir2p (Suka et al., 2002).

Mating type switching in Saccharomyces cerevisiae requires the recombinational repair of a
DSB formed at the MAT locus on chromosome III with homologous sequences located at the
heterochromatic HM donor loci (Haber, 1998). Previous studies have shown that five different
ATP-dependent chromatin remodeling enzymes – Rad54p, SWI/SNF, RSC, Ino80.com,
Swr1.com -- are recruited to an HO-induced DSB, and that each enzyme plays distinct roles
during DSB repair (Osley et al., 2007). For instance, formation of the initial joint between the
DSB at MAT and the heterochromatic HMLα donor requires the SWI/SNF chromatin
remodeling enzyme (Chai et al., 2005), while Rad54p is required for subsequent extension of
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the joint by DNA polymerases (Sugawara al., 2003; Wolner and Peterson, 2005). In contrast,
RSC is involved in nucleosome re-arrangements during early steps of DSB processing and for
the final ligation of the repair product (Chai et al., 2005). The role of Swr1.com is not yet clear,
but Ino80.com may control nucleosome loss at the HM donor that occurs either during or after
joint formation (Tsukuda et al., 2009).

In this study, we studied the mechanism for how heterochromatin-like structures suppress
homologous recombination and tested the hypothesis that the ATP-dependent chromatin
remodeling enzyme, SWI/SNF, can counteract such repression. To this goal, we reconstituted
Sir3p-nucleosome and Sir2p/Sir3p/Sir4p-nucleosome complexes with purified components
and used them in an assay that monitors the early steps of HR. We find that Sir3p-nucleosome
complexes are sufficient to block formation of the initial, Rad51p-mediated joint, and that this
repression requires the histone H4 N-terminal domain, and the key histone residues, H4 K16,
H3 K79. In addition, Sir2p/Sir4p enhances repression by Sir3p, especially at lower ratios of
Sir3p to nucleosomes. Furthermore, we demonstrate that the chromatin remodeling activity of
SWI/SNF facilitates formation of a joint and a strand invasion product. Interestingly, the
remodeling activities of RSC, Ino80.com, Swr1.com, or Rad54p can not substitute for SWI/
SNF. Hence, our findings recapitulate the repression of recombination mediated by
heterochromatin in vivo, and they provide insight into probable roles of chromatin remodeling
enzymes during recombinational repair when the homologous target is buried in
heterochromatin.

Results
Repair of a DSB by homologous recombination (HR) requires that the Rad51p recombinase
assembles onto ssDNA to form a presynaptic filament. This filament can search and capture a
homologous donor sequence that is encompassed in chromatin. Previously, we developed a
biotin-streptavidin capture assay to study these early events of HR on nucleosomal substrates
(Sinha and Peterson, 2008). The key feature of this assay is the use of recombinant histone
octamers that contain a derivative of histone H2A that is site-specifically biotinylated at an
engineered cysteine residue within its C-terminal domain. Nucleosomal donors are assembled
by depositing these biotinylated octamers onto a circular plasmid that contains two head-to-
tail arrays of five 5S rDNA nucleosome positioning sequences flanking a di-nucleosome length
E4 promoter (Top panel, Figure 1A; see also Sinha and Peterson, 2008). The Rad51-presynaptic
filament is then assembled with recombinant yRad51p and a radioactively end-labeled
oligonucleotide that is homologous to DNA sequences encompassed within one of the E4
promoter nucleosomes (arrow, top panel, Figure 1A). A typical joint formation assay involves
incubation of the presynaptic filament with the nucleosomal donor, and joints are captured with
streptavidin magnetic beads and quantified by scintillation counting (Figure 1B). Using this
assay, joints are formed on 20–30% of the nucleosomal donors in the absence of chromatin
remodeling enzymes (Sinha and Peterson, 2008; see also Figure 1C).

Sir3p inhibits early steps of HR
To study the impact of heterochromatin on the early steps of HR, Sir3p was purified from yeast
and bound to nucleosomal donors. We added Sir3p at ratios of 1.0, 2.0, or 4.0 monomers per
nucleosome, yielding nucleosomal donors with different levels of bound Sir3p. These
nucleosomal donors were first analyzed by EcoRI analysis to ensure that all donors had
comparable nucleosome densities. EcoRI restriction sites flank each 5S rDNA repeat, and
therefore extensive EcoRI digestion of the nucleosomal donor followed by native gel
electrophoresis allows the quantification of nucleosomal occupancy. Similar to our previous
results (Sinha and Peterson, 2008), when donors were assembled at a ratio of 0.7 histone
octamers per 200 bp of DNA, EcoRI digestion released mononucleosomes and very little free,
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5S DNA repeats (Figure S1). These results are indicative of a 5S nucleosomal array in which
>90% of the 5S rDNA repeats are occupied by nucleosomes both in the presence or absence
of Sir3p.

One hallmark of heterochromatin is a diminished accessibility to nucleases and restriction
enzymes (Loo and Rine, 1994). To probe the accessibility of Sir3p-nucleosomal donors,
minichromosomes were digested with increasing concentrations of micrococcal nuclease
(Mnase) which preferentially cleaves DNA within the linker between nucleosomes. Mnase
digests were electrophoresed on agarose gels and Southern blots were probed with a 32P-
labelled E4 oligonucleotide (arrow, top panel, Figure 1A). When this analysis was performed
on minichromosomes that lacked Sir3p, the E4 oligonucleotide hybridized to
mononucleosomal DNA and to an extensive nucleosomal ladder (Figure 1A, lane1–3),
confirming that this E4 promoter sequence is fully encompassed by nucleosomes (Sinha and
Peterson, 2008). Strikingly, minichromosomes assembled with 4 Sir3p monomers per
nucleosome were more resistant to Mnase digestion, requiring >10-fold higher concentrations
of Mnase before significant digestion products were released (Figure 1A, compare lanes 2 and
5). However, at these higher Mnase concentrations, the E4 oligonucleotide also detected an
extensive nucleosomal ladder (Figure 1A, lane 6). Interestingly, the nucleosomal ladder was
more distinct in the presence of Sir3p, suggesting that the binding of Sir3p may lead to more
homogeneous positioning of the E4 promoter and/or 5S nucleosomes. Thus, the binding of
Sir3p to nucleosomal donors is sufficient to create a chromatin structure that is less accessible
to nuclease digestion.

Biotin-streptavidin capture assays were performed with yRad51p presynaptic filaments and
nucleosomal donors that contain different amounts of Sir3p. Markedly, Sir3p inhibited
yRad51p-mediated joint formation in a concentration dependent manner (Figure 1C). At a ratio
of 1.0 Sir3p monomer per nucleosome, joint formation was reduced 2-fold, but addition of
Sir3p at a ratio of 4 monomers per nucleosome decreased joint formation by at least 20-fold
(Figure 1C). Importantly, incorporation of Sir3p into minichromosomes had no influence on
the capture efficiency of minichromosomes by streptavidin beads (M.S. and C.L.P., data not
shown). Since Sir3p has been shown to bind cooperatively and nonspecifically to DNA
(Georgel et al., 2001), we investigated whether Sir3p would also inhibit joint formation in
assays where the joint was formed on a nucleosome-free region. To this end, nucleosomal
donors were assembled at a ratio of 0.35 octamers per 200 bp of DNA, conditions that yield a
donor in which the E4 promoter is nucleosome-free (Sinha and Peterson, 2008). In this case,
the presence or absence of Sir3p yielded a similar level of joints, even at a ratio of 4 monomers
of Sir3p per 200 bp of DNA (Fig. 1C). Importantly, the binding of Sir3p to saturated and
subsaturated nucleosomal donors was equivalent (Figure S2). Thus, Sir3p-dependent inhibition
of joint formation requires that the homologous donor sequences be encompassed by
nucleosomes.

Sir3p-dependent inhibition requires key histone residues, the H4 N-terminal domain, and the
Sir3p BAH domain

In vivo studies have demonstrated that assembly and function of Sir3p-containing
heterochromatin requires an intact histone H4 N-terminal domain, and histone residues, H4
K16 and H3 K79 (Hecht et al., 1995; Hecht et al., 1996; Ng et al., 2002). To investigate whether
Sir3p-dependent inhibition of joint formation might reflect assembly of heterochromatin-like
structures, nucleosomes were reconstituted with histone octamers that either lacked the H4 N-
terminal domain (H4ΔN), or contained H4K16Q or H3K79E derivatives. First, the ability of
Sir3p to bind to mononucleosomes that harbor each of these derivatives was tested by gel shift
assay. Each of these histone alterations decreased the binding affinity of Sir3p for these
mononucleosome substrates (Figure 2A).
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H4 ΔN, H4 K16Q, and H3 K79E histone octamers were next assembled into nucleosomal
donors that were used in biotin-streptavidin capture assays. In each case, Sir3p-dependent
inhibition of joint formation was strongly alleviated (Figure 2B). Specifically, donors
assembled with nucleosomes that lacked the H4 N-terminal domain or contained H4K16Q
were remarkably resistant to Sir3p-dependent inhibition compared to wildtype nucleosomal
donors, whereas donors assembled with H3 K79E responded weakly to Sir3p-dependent
repression (Figure 2B). Thus, Sir3p-dependent inhibition of joint formation not only requires
nucleosomes, but inhibition requires key histone residues that are known to regulate
heterochromatin assembly and function in vivo.

Previous studies have shown that the conserved bromo-adjacent homology (BAH) domain
within Sir3p is essential for heterochromatin function in vivo and that this domain binds to
nucleosomes in vitro (Onishi et al., 2007). As expected, a derivative of Sir3p that lacks the
BAH domain (Sir3ΔBAHp) does not bind well to nucleosomes (Figure 2A, right panel; see
also Onishi et al., 2007). We added Sir3ΔBAHp to nucleosomal donors and performed biotin-
streptavidin capture assays and found that the BAH domain is essential for Sir3p-dependent
inhibition of Rad51p-mediated joints. Addition of 4 Sir3ΔBAHp monomers per nucleosome
had no affect on the ability of Rad51p presynaptic filaments to capture the homologous duplex
(Figure 2C). Taken together, these results indicate that the Sir3p-dependent inhibition of
Rad51p-catalyzed joints has many of the hallmarks of functional Sir3p-containing
heterochromatin.

ATP-dependent chromatin remodeling disrupts Sir3p-containing heterochromatin
Mating type switching in Saccharomyces cerevisiae requires the recombinational repair of a
DSB with a heterochromatic HM donor, and formation of the joint between the DSB at MAT
and the heterochromatic donor requires the ATP-dependent chromatin remodeling enzyme,
SWI/SNF (Chai et al., 2005). As an initial test for whether SWI/SNF might be required for HR
only when the homologous donor was assembled into heterochromatin, we deleted the SWI2
gene, which encodes the catalytic subunit of SWI/SNF, in a yeast strain that contains a
MATainc donor locus at an ectopic site on chromosome V. In this strain, a single DSB can be
created within the MAT locus on chromosome III by expression of the HO endonuclease from
the galactose-inducible GAL10 promoter. This strain also lacks both HMLα and HMRa, and
thus the DSB is repaired using the euchromatic MATainc donor. Both DSB induction and the
formation and extension of the initial strand invasion product at the MATainc locus are
monitored by PCR (See Figure 3A schematic). In a SWI2+ strain, DSB induction occurred
within 1.5 hours, and appearance of the initial strand invasion/extension product at the
MATainc donor occurred by 5 hours (Figure 3A, left panel). In contrast, and as expected, no
strand invasion/extension product was detected in a rad54Δ strain (data not shown).
Inactivation of SWI/SNF led to slower kinetics of DSB induction (7–8 hours; Figure 3A, right
panel), presumably due to decreased expression of the HO endonuclease. However, following
formation of the DSB, appearance of the initial, strand invasion/extension product was
efficient, reaching 70% wildtype levels by 12 hours (Figure 3A, right panel). Although we
cannot rule out the possibility that SWI/SNF is required for optimal kinetics of joint formation,
these data confirm that SWI/SNF is not essential for recombinational repair, and furthermore
that SWI/SNF may only be required for early steps of HR when the homologous donor is
assembled into heterochromatin.

To directly test whether SWI/SNF might antagonize Sir3p-dependent inhibition of HR, we
employed biotin-streptavidin capture assays (Figure 3B). As shown previously, SWI/SNF does
not enhance joint formation with nucleosomal donors (Figure 3B; Sinha and Peterson, 2008).
However, addition of a low concentration of SWI/SNF (1 SWI/SNF per 15 nucleosomes)
restored joint formation on the Sir3p-nucleosomal donors to ~50% of the level observed for
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the nucleosomal donor (Figure 3B). Importantly, the stimulation by SWI/SNF was not observed
in the absence of ATP, indicating that the catalytic activity of SWI/SNF is required (Figure
3B). Furthermore, the effect of SWI/SNF was dependent on both the concentration of enzyme
and time of remodeling (Figure 3C). Interestingly, Rad54p was not able to substitute for SWI/
SNF, but addition of both SWI/SNF and Rad54p further stimulated joint formation (Figure
3B). Thus, these data indicate that SWI/SNF is essential for early steps of HR with a
heterochromatic donor, and that the ATPase activity of Rad54p can augment SWI/SNF
function.

In vivo studies have demonstrated that SWI/SNF, RSC, Ino80.com, and Swr1.com remodeling
enzymes are all recruited to a DSB, but only SWI/SNF is required for synapsis of the Rad51p
filament with the HM donor (Chai et al., 2005; Papamichos-Chronakis et al., 2006). These
results suggest that SWI/SNF may be uniquely capable of antagonizing Sir3p-dependent
inhibition of joint formation. To directly address this hypothesis, we purified RSC, Ino80.com,
and Swr1.com and tested whether these enzymes could restore joint formation with the Sir3p-
nucleosomal donor. When equal amounts (20 nM) of each remodeling enzyme were added,
only SWI/SNF showed robust stimulation of joint formation with Sir3p-nucleosomal donors.
RSC and Ino80.com provided a ~2-fold stimulation of joint formation, but addition of even 5-
fold higher levels of RSC was not sufficient to restore joint formation to the level obtained
with 20 nM SWI/SNF (M.S. and C.L.P., data not shown). Thus, these in vitro reactions
recapitulate the unique requirement for the SWI/SNF remodeling enzyme for early steps of
HR on a heterochromatic donor.

During a mating type switching event, it is essential that disruption of heterochromatin is
reversible so that both sets of mating type information are not expressed. Therefore, we tested
whether SWI/SNF action on the Sir3p-nucleosomal donor was reversible in vitro (Figure 4A).
Joint formation assays were assembled that contained yRad51p presynaptic filament, Sir3p-
nucleosomal donor, SWI/SNF, and ATP. After 5’ of incubation, half of the reaction was
captured on magnetic beads to quantify joint formation, while the second half received either
buffer or 1.0 units of apyrase to remove ATP and eliminate SWI/SNF activity (Figure S3).
Reactions were further incubated, aliquots removed, and joints captured on magnetic beads at
time intervals. As shown, inactivation of SWI/SNF led to the time-dependent decrease in joint
formation, reaching near background levels by 60 minutes of apyrase treatment. Notably, this
decrease in joint formation in the presence of apyrase was not observed with donors that lacked
Sir3p (M.S. and C.L.P., data not shown). These data indicate that once SWI/SNF is inactivated,
Sir3p can re-establish nucleosomal structures that block joint formation.

The biotin-streptavidin capture assay measures formation of the initial, unstable joint and the
stable plectonemic joint (Riddles and Lehman, 1985). Whereas the initial joint is stabilized by
protein-DNA interactions, the plectonemic joint or D-loop is stable even in the absence of
protein (e.g. yRad51p). To monitor formation of stable D-loop products, reactions were de-
proteinized and DNA products separated on agarose gels. As we showed previously, Rad54p
is essential for formation of stable D-loops on nucleosomal donors, whereas SWI/SNF could
not substitute for Rad54p nor did it stimulate Rad54p activity (Figure 4B, lanes 2 and 3; see
also Jaskelioff et al., 2003; Sinha and Peterson, 2008). In contrast to nucleosomal donors,
Rad54p did not promote formation of a D-loop product on the Sir3p-nucleosomal donor (Figure
4B, lane 8). Strikingly, addition of SWI/SNF and ATP led to significant levels of D-loop
product (33 +/− 7.5% of D-loop product formed in absence of Sir3p; Figure 4B, lane 6), and
further addition of Rad54p led to levels of D-loops that paralleled the amount of stable joints
formed in the absence of Sir3p (88 +/− 3.7% of D-loop; Figure 4B, lane 9). Since SWI/SNF
does not promote D-loops on a nucleosomal donor that lacks Sir3p, these data indicate that
assembly of a Sir3p-nucleosome complex can facilitate the ability of SWI/SNF to convert
unstable joints to stable D-loops.
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SWI/SNF catalyzes the ATP-dependent displacement of Sir3p
To investigate how SWI/SNF antagonizes the repressive effects of Sir3p on HR, we tested
whether SWI/SNF can remodel Sir3p-nucleosomal substrates. One hallmark of ATP-
dependent chromatin remodeling enzymes is their ability to mobilize (“slide”) nucleosomes in
cis (Cairns, 2007). Centrally-positioned mononucleosomes were assembled on a 343 bp DNA
fragment that contains a‘601’ nucleosome positioning element. Mononucleosomes or Sir3p-
mononucleosome complexes (see Figure 2A) were incubated with SWI/SNF and ATP, and
aliquots were removed at several timepoints and electrophoresed on a native polyacrylamide
gel. (Note that excess DNA is added to each reaction just prior to gel loading to remove SWI/
SNF from the substrate; DNA addition also removes Sir3p.) As shown in Figure 5A, SWI/SNF
action mobilizes the nucleosome, leading to formation of faster migrating species and the
appearance of a free DNA product. Notably, addition of 4 Sir3p monomers per nucleosome
had no obvious effect on the kinetics or extent of SWI/SNF remodeling.

As a second measure of SWI/SNF remodeling activity, we monitored kinetics of HhaI digestion
of the 601-mononucleosome substrate (Figure 5B) and the kinetics of SalI digestion of a
nucleosomal array substrate (Figure 5C). For both substrates, the restriction enzyme site is
located near the center of a positioned nucleosome, and thus little digestion occurs in the
absence of SWI/SNF activity (Figure 5B, C). However, SWI/SNF-dependent remodeling leads
to greatly enhanced digestion rates for both mononucleosomal and array substrates (Figure
5B,C). Furthermore, incorporation of 2–4 monomers of Sir3p per nucleosome had very little
impact on the apparent rates of SWI/SNF remodeling activity (Figure 5B, C). Taken together,
these data indicate that SWI/SNF is effective at remodeling Sir3p-nucleosome substrates.

We tested whether SWI/SNF action might lead to the displacement of Sir3p from the
minichromosome donors. The Sir3p-nucleosomal donor was incubated for 15’ with SWI/SNF,
and the donor was captured on magnetic beads. Supernatant and bead-bound fractions were
analyzed by western blot with antibodies to Sir3p. As shown, Sir3p is exclusively found in the
bound (B) fraction in the absence of SWI/SNF or when ATP is omitted from reactions that
contain SWI/SNF. However, addition of SWI/SNF and ATP catalyzed the eviction of the Sir3p
into the supernatant (U) fraction (Figure 5D and data not shown). SWI/SNF-mediated eviction
of Sir3p was concentration dependent and increased with time of incubation, though we observe
a maximum displacement of ~40% of Sir3p even at higher concentrations of SWI/SNF (20
nM; 1 SWI/SNF per 10 nucleosomes; Figure 5D, lower panel). Interestingly, the ATPase
activity of Rad54p cannot evict Sir3p, even when Sir3p is present at a low ratio of Sir3p per
nucleosome (Figure 5E, bottom panel). Likewise, Sir3p was not evicted by the remodeling
activities of RSC or Ino80.com (Figure 5E, top two panels). Thus, SWI/SNF seems uniquely
able to evict Sir3p from nucleosomal templates, and this activity correlates with the stimulation
of joint formation.

SWI/SNF facilitates joint formation with a Sir2p/Sir3p/Sir4p heterochromatin donor
Although Sir3p-nucleosome complexes exhibit many of the properties of native, Sir-dependent
heterochromatin, it remained a possibility that a complete heterochromatic structure,
containing Sir2p, Sir3p, and Sir4p, might be a more potent repressor of recombination. We
purified Sir2p/Sir4p from yeast cells and added increasing amounts of Sir2p/Sir4p to biotin-
streptavidin capture assays. Due to an inability to extensively concentrate Sir2p/Sir4p, these
assays included only 4 nM donor minichromosome (100 nM nucleosomes), rather than the 17
nM (400 nM nucleosomes) used in other assays. Importantly, the overall efficiency of joint
formation in the absence of Sir2p/Sir4p was not greatly affected by this change in donor
minichromosome concentration (Figure 6A). When Sir2p/Sir4p was added to assays at a ratio
of 1 Sir2p/Sir4p heterodimer per nucleosome, there was only a minor repressive effect, whereas
higher concentrations led to a 2-fold repression (Figure 6A and data not shown). Unlike
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repression by Sir3p, the weak repression due to Sir2p/Sir4p was largely insensitive to
substitution of H4 K16 (Figure 6A).

To investigate whether Sir2p/Sir4p might enhance the repressive effects of Sir3p, we added
Sir2p/Sir4p to biotin-streptavidin capture assays that contained different amounts of Sir3p
(Figure 6A and data not shown). At 4 nM minichromosome donor, we found that higher
concentrations of Sir3p monomers were required to observe repression of joint formation
(compare Figure 1C and 6A). For instance, addition of 2 Sir3p monomers per nucleosome
yielded only ~ 2-fold repression, 4 monomers of Sir3p per nucleosome led to ~3-fold
repression, and 8 Sir3p monomers per nucleosome was required for complete repression
(Figure 6A and data not shown). Strikingly, addition of 1 Sir2p/Sir4p heterodimer per
nucleosome led to complete and synergistic repression of joint formation at 4 monomers of
Sir3p per nucleosome (Figure 6A). In contrast, 1 Sir2p/Sir4p heterodimer and 2 Sir3p
monomers per nucleosome yielded very little repression of joint formation (data not shown).
Thus, Sir2p/Sir4p can enhance repression of recombination by Sir3p, but this role for Sir2p/
Sir4p requires a threshold concentration of Sir3p. Importantly, repression by Sir2p/Sir3p/Sir4p
was alleviated by the H4 K16Q substitution, consistent with a physiologically relevant
heterochromatic structure. These results are consistent with a recent study showing that Sir2p/
Sir4p enhances the affinity of Sir3p for a trinucleosomal substrate (Martino et al., 2009).

We then tested whether SWI/SNF action could restore joint formation with the Sir2p/Sir3p/
Sir4p-nucleosomal donors. SWI/SNF was added to biotin-streptavidin capture assays in which
the nucleosomal donor contained 1 Sir2p/Sir4p heterodimer and 4 Sir3p monomers per
nucleosome. Similar to the results with Sir3p-nucleosomal donors, SWI/SNF remodeling
restored joint formation to nearly 50% of the level observed in the absence of Sir proteins
(Figure 6B and C). Likewise, SWI/SNF could efficiently remodel mononucleosomes that
contained Sir2p/Sir3p/Sir4p (data not shown). The Rad54p, RSC, Ino80.com, and Swr1.com
remodeling enzymes could not substitute for SWI/SNF (Figure 6C). Thus, although addition
of Sir2p/Sir4p enhanced Sir3p repression, SWI/SNF was still able to promote efficient joint
formation.

Discussion
In vivo, assembly of Sir-dependent heterochromatin requires Sir2p, Sir3p, and Sir4p, and these
three proteins form a complex in vitro (Rusche et al., 2003). Moreover, an intact Sir2/3/4
complex is required to form extended filaments on yeast nucleosomal arrays in vitro (Onishi
et al., 2007), and the intact complex is apparently required to observe transcriptional silencing
on nucleosomal templates in vitro (A.J. and D.M., submitted). These data are consistent with
a model in which all three Sir proteins contribute to the structural and functional properties of
Sir-dependent heterochromatin. Although we find that Sir2p/Sir4p enhances the repressive
effects of Sir3p, Sir3p is sufficient to assemble an Mnase resistant nucleosomal structure and
to repress early steps of recombination. This may be due in part to the fact that our in vitro
study employed histones that lack posttranslational modifications, obviating the need for the
HDAC activity of Sir2p. In addition, Sir3p is bound to all nucleosomes within the
minichromosome substrate, eliminating the need for the known targeting activity of Sir4p
(Rusche et al., 2003).

What is the stoichiometry of Sir proteins within heterochromatin? In vivo chromatin
immunoprecipitation studies do not yield insights into this question, although the purification
of Sir complexes from yeast cells indicates that Sir2p and Sir4p form a heterodimer. Recently,
Gasser and colleagues have monitored the binding of Sir2p, Sir3p, and Sir4p to a trinucleosome
in vitro (Martino et al., 2009). Their data indicate that one Sir2p/Sir3p/Sir4p heterotrimer may
bind to each linker between two nucleosomes, although they also showed that nucleosomes
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are competent to bind additional Sir complexes. Our joint formation assays monitor the amount
of Sir proteins required to assemble heterochromatin that represses joint formation, and under
our assay conditions, Sir3p must be in excess to the Sir2/Sir4 heterodimer. Our results suggest
that functional heterochromatin may require a minimum of one heterodimer of Sir2/Sir4 and
four monomers (or two dimers) of Sir3p per nucleosome.

We were surprised to find that SWI/SNF was able to displace Sir3p from minichromosomes,
even when SWI/SNF was present at a low ratio of enzyme to nucleosome. Furthermore, the
extent of displacement correlated with joint formation, suggesting that these two activities are
mechanistically linked. How does SWI/SNF action evict Sir3p? ATP-dependent remodeling
enzymes are able to use the energy from ATP hydrolysis to translocate DNA, and in the case
of SWI/SNF-like enzymes, DNA translocation is key for mobilizing nucleosomes (Cairns,
2007). Thus, SWI/SNF might displace Sir3p simply by its DNA translocation activity.
However, Rad54p and RSC also have potent DNA translocase activities (Cairns, 2007;
Jaskelioff et al., 2003), but none of these enzymes can evict Sir3p from nucleosomal substrates.
Furthermore, the RSC remodeling enzyme is highly related to SWI/SNF, and RSC typically
performs identically, if not better than SWI/SNF, in other remodeling assays (Carey et al.,
2006; Zhang et al., 2006). Recent studies indicate that a nucleosome may bind to SWI/SNF
within a shallow cleft, whereas RSC may completely envelope the nucleosome (Chaban et al.,
2008; Dechassa et al., 2008). Once a nucleosome is bound, both SWI/SNF and RSC initiate
DNA translocation ~2 DNA turns from the dyad axis (Dechassa et al., 2008). Based on these
structural studies, we favor a model in which RSC is unable to envelop a Sir3p-nucleosome
complex and thus is unable to initiate DNA translocation, whereas SWI/SNF is competent to
bind such a structure, initiate DNA translocation and displace Sir3p. Displacement could be
the result of altered histone-DNA interactions or destabilization of histone-histone interactions,
which also occurs during SWI/SNF remodeling (Bruno et al., 2003).

Numerous studies have demonstrated that in vitro formation of a stable D-loop requires the
combined actions of Rad51p and the Rad54p ATPase, even when naked DNA is used as the
donor molecule. Sung and colleagues have shown that Rad54p can alter DNA topology,
presumably through its DNA translocase activity, and changes in topology are likely to drive
DNA duplex opening and strand invasion (Van Komen et al., 2000). SWI/SNF can not
substitute for Rad54p with either a DNA or nucleosomal donor, even though SWI/SNF can
also function as a translocase (Jaskelioff et al., 2003; Sinha and Peterson, 2008; Cairns,
2007). Based on these previous results, it was unexpected that SWI/SNF activity was able to
drive formation of D-loops on the Sir3p-nucleosomal donor in the absence of Rad54p. This
suggests that the Sir3p that is not evicted from the donor plays an active role in facilitating
SWI/SNF action. We envision that Sir-nucleosomes that surround the initial joint molecule
might constrain SWI/SNF-dependent changes in DNA topology that drive D-loop formation;
topology changes that would normally be insufficient or rapidly dissipated in the absence of
Sir3-nucleosomal structures. This novel activity of SWI/SNF on a heterochromatic donor may
provide an explanation for why a surprisingly large percentage of yeast cells can switch mating
type in the absence of Rad54p (Schmuckli-Maurer and Heyer, 1999).

Our data suggest a model that explains the sequence of events for recombinational repair in
the context of euchromatic and heterochromatic donor loci (Figure 7). After formation and
exonucleolytic processing of a DSB, Rad51p polymerizes onto the resulting ssDNA with the
help of mediators such as Rad52p. The Rad51p presynaptic filament then searches for a
homologous duplex, and this filament is sufficient to capture homology within euchromatin.
However, if the donor is located within a heterochromatic domain, our data suggest that the
Rad51p presynaptic filament is no longer sufficient to locate homology and form an initial
joint. In this case, the ATP-dependent remodeling enzyme, SWI/SNF, plays an essential role
in the initial capture event, disrupting heterochromatin. Once the initial joint is formed, the
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combination of SWI/SNF and the Rad54p ATPase converts this metastable joint into a stable
D-loop in which the 3’ end of the presynaptic filament is engaged in base-pairing interactions
with the donor and is thus competent for subsequent events of recombinational repair.

Heterochromatin is generally associated with telomeric and centromeric regions of the genome
that are characterized by a high percentage of repetitive elements. Typically these genomic
regions are characterized by a general suppression of mitotic and meiotic cross-over events,
and many studies indicate that the suppression of recombination requires heterochromatin
components (Westphal and Reuter, 2002; Peng and Karpen, 2007; Jaco et al., 2008; Allshire
et al., 1994). However, DSBs are certainly formed and repaired within heterochromatin, so it
is not too surprising that recombination within heterochromatin does occur (Jaco et al., 2008;
Peng and Karpen, 2008).Presumably heterochromatin functions as a brake on the
recombination machinery, such that DSBs can be repaired but promiscuous recombination is
suppressed. Our data suggest that the recombination machinery that functions within
heterochromatin must acquire additional chromatin remodeling activities in order to repair
DSBs in this repressive environment. The mechanisms that control recruitment of chromatin
remodeling enzymes like SWI/SNF to sites of DNA damage are still being elucidated, but it
seems likely that the recruitment of such enzymes will be strictly controlled in order to preserve
genome integrity.

Experimental Procedures
Reagent Preparation

DNA—Oligonucleotide E4
(5’CAAAATAGCACCCTCCCGCTCCAGAACAACATACAGCGCTTCCACAGCGGCA
GCCATAACAGTCAGCCTTACCAGTAAAAAAGAAAA) was obtained from Integrated
DNA Technologies, Inc. (Coralville, IA) and was 5’ end labeled with 32P using γ-32P -ATP
and T4 polynucleotide kinase (New England Biolabs, Inc.; Beverly, MA). Plasmid CP943
(p2085S-G5E4) (Ikeda et al., 1999), CP1024 (601-Mono) and CP589 (208-11array) were
prepared by standard alkaline lysis method.

Proteins—Recombinant yRad51 was over expressed in E.coli and purified as described
(Zaitseva et al., 1999). GST-yRad54, Swi2-TAP and Sir3-FLAG were purified from yeast as
described (Buchberger et al., 2008; Smith et al., 2003; Solinger et al., 2001). Sir2-HA/Sir4-
TAP (Liou et al., 2005), RSC2-TAP, Ino80 -TAP, and Swr1 -TAP were purified essentially
as described for Swi2-TAP. All remodeling enzymes were analyzed by SDS-PAGE and silver-
staining (Figure S4). Subunit compositions were confirmed by mass spectrometry. To ensure
that equal amounts of active enzyme were added to all assays, ATPase activity was determined
for each enzyme and equal ATPase units were used in assays. Notably, equal ATPase units
also yielded equivalent levels of mononucleosome sliding activity, with the exception of
Swr1.com which does not mobilize nucleosomes. Concentrations of GST-yRAD54, yRAD51,
Sir3-FLAG and Sir2-HA/Sir4-TAP heterodimer were estimated by Bradford assay and
comparing to known concentrations of BSA on the same coomassie-stained gel. Recombinant
H2B, H3, H4, H2AS113C, H4K16Q, H3K79E and globular domain of H4 (H4ΔN) Xenopus
histones were purified and octamers containing different modified histones were reconstituted
as described (Luger et al., 1999). Biotinylated octamers were reconstituted as described (Sinha
and Peterson, 2008).

Nucleosome assembly—To assemble all nucleosomal templates, salt step dialysis of
supercoiled or linear DNA and recombinant octamers were used as described (Logie and
Peterson, 1999). Nucleosomes were reconstituted at different ratios of histone octamer per 200
bp of donor DNA (R value). To prepare nucleosomal array template for the restriction enzyme
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accessibility assay, plasmid CP589 was digested with NotI and HindIII generating a 2.3kb
DNA fragment that contains 11 5S repeats (208-11). To reconstitute mononucleosomes, a 343-
bp DNA fragment (601) was generated by digesting CP1024 with EcoRI and HindIII.
Following digestion, 208-11 and 601 templates were purified from agarose gels and end labeled
with [alpha-32P] dCTP by Klenow fill-in at 37 °C and purified through a Sephadex G-25
column after phenol-chloroform extraction. Reconstituted mononucleosomes were analyzed
by native polyacrylamide gel electrophoresis in 1xTBE buffer. In reactions containing Sir3p/
Sir2p/Sir4p, the minichromosomes, mononucleosomes or linear nucleosomal arrays were
incubated with Sir proteins at different molar ratios (M/N: monomer per nucleosome) in a
buffer containing 35mM Tris-HCl, pH 7.5, 2.5mM MgCl2, 30mM KCl, 1mM DTT at room
temperature for 30 min. Binding of Sir3p to mononucleosomes was analyzed by subjecting the
products to 4% native polyacrylamide gel electrophoresis in 0.5× TBE.

Mnase assay—Minichromosomes (200ng DNA equivalent ), bound or unbound to Sir3 were
subjected to Mnase analysis as described (Sinha and Peterson, 2008).

Joint capture assays—Joints were captured essentially as described with some minor
modifications (Sinha and Peterson, 2008). To form the presynaptic filaments, 3µM of yRad51p
was incubated with radio-labeled oligonucleotide (3µM nucleotides) in a buffer containing
35mM Tris-HCl, pH 7.5, 2.5mM MgCl2, 30mM KCl, 1mM DTT at 30°C for 5 min in a 10µl
reaction volume. As a nucleotide cofactor, 0.3mM AMP-PNP was used. Then, 3µl of
minichromosome donor (pre-bound to Sir proteins at indicated ratios or unbound) at a final
concentration of 17nM DNA (~400nM nucleosomes) was added to the reaction and allowed
to form joints at 30°C for 15 min. For Sir2/Sir3/Sir4 reactions, minichromosome donor was
added at ~4nM DNA / 100nM nucleosomes, and the Rad51 preynaptic filament was present
at 0.75 µM. In reactions containing yRad54p, 200nM yRad54p and 2mM ATP were added
during formation of presynaptic filaments after incubating the oligonucleotide with yRad51
for 2 min, and then reactions were incubated for an additional 3 min. In reactions containing
remodeling enzymes, 20nM of each of the remodeling enzymes (unless indicated otherwise)
was preincubated with minichromosome donors in presence of 2mM Mg-ATP at 30°C

Remodeling assays—Remodeling assays were performed as described (Logie and
Peterson, 1999).

Sir3p displacement assay—Standard Sir3p-containing heterochromatin was assembled
in 3µl with 17nM DNA equivalent of biotinylated minichromosomes and Sir3p at a molar ratio
of 2–4 monomers per nucleosome at room temperature for 30 minutes in the same reaction
buffer as in joint-capture assay. Subsequently, 200nM yRad54p or 20nM of remodeling
enzymes and 2mM ATP were added, allowing a minimal volume expansion and incubated for
another 15 minutes at 30°C. Finally, the minichromosomes were captured on magnetic beads,
and the supernatant and bead-bound fractions were analyzed by 8% SDS-PAGE and
immunoblotting with anti-FLAG antibody (Courtesy of Tony Imbalzano, UMMS).

Yeast strains and DSB/SI monitor assay—The MATα ectopic recombination strain
(yJK17) lacks HMLα or HMRa on Chr III and the donor sequence is a MATa locus containing
an incleavable HO site (MATa-inc) on Chr V (Vaze et al., 2002). The SWI2 and RAD54 genes
were disrupted in this strain background by replacing the coding regions with KAN-MX6
(Longtine et al., 1998). Kinetics of DSB formation and strand invasion by PCR as described
(Keogh et al., 2006). Specifically, cultures were grown in media containing 2% glucose until
an OD600 of ≈ 0.6–0.8, then expression of HO endonuclease was induced by 2% galactose.
Cells were harvested at the times indicated followed by genomic DNA isolation, which was
used in PCR reactions containing primers previously described (Keogh et al., 2006). Efficiency
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of DSB formation and strand invasion was arbitrarily set to 100% for the WT DSB product
i.e. at 0 timepoint. All values were normalized to a PHO5 internal control.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sir3p-nucleosomes pose a barrier to nucleosome accessibility and Rad51p-dependent
joint formation
(A) Top: Schematic of the minichromosome donor. Black ovals; nucleosomes on 5S repeats;
grey ovals, nucleosomes on E4 sequences; black arrow, 87-nucleotide E4 oligonucleotide.
Bottom: Minichromosomes (R=0.7; 0.7 octamers per 200bp of DNA) were analyzed in absence
(lanes 1–4, 9–11) or presence (lanes 5–8, 12–14) of Sir3p (4 monomers per 200 bp) by MNase
digestion. Units of MNase enzyme and time of incubation at 23°C are indicated at top. DNA
size markers (kb) are shown on left. Black arrows on the right denote MNase cleavages. (B)
Schematic of biotin-streptavidin joint capture assay. (C) Results of joint capture assays, with
minichromosome donors subsaturated (R=0.35) or saturated (R=0.7) with nucleosomes. Sir3p
was bound to minichromosomes at 1 (+), 2 (++), or 4 (++++) monomers of Sir3p per 200 bp
of DNA. AMP-PNP was the NTP cofactor. Results are from at least three independent
experiments; error bars indicate standard deviations.
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Figure 2. Histone residues and the Sir3p BAH-domain regulate Sir3p-dependent inhibition of
yRad51p-mediated joints
(A) Mononucleosome binding assays. Mononucleosomes were reconstituted on a ‘601’
positioning sequence, incubated with increasing amounts of Sir3p or Sir3pΔBAH, and
electrophoresed on native PAGE. M/N: Monomers of Sir3p or Sir3pΔBAH per nucleosome.
Mononucleosomes carried either wild type (WT), truncated histone H4 (H4 ΔN), H4 K16Q,
or H3 K79E. (B–C) Results of joint capture assays with saturated (R=0.7) minichromosomes.
AMP-PNP was the NTP cofactor. Results are from at least three independent experiments;
error bars indicate standard deviations. (B) Donors contained either wild type histones (WT),
H4 ΔN, H4 K16Q, or H3 K79E as indicated. Where indicated, Sir3p was present at 4 monomers
per nucleosome. (C) Minichromsomes contained WT histones, buffer, Sir3p, or Sir3p (ΔBAH)
at molar ratios of 4 monomers per nucleosome.
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Figure 3. SWI/SNF antagonizes Sir3p-dependent inhibition of HR
(A) Top Panel: Schematic of the strand invasion intermediate of the HR pathway. Black arrows
indicate primers used for monitoring double strand break (DSB) and strand invasion/extension
(SI) product formation. Bottom panels: Graphs show kinetics of DSB formation and SI product
formation in wild type (WT) or swi2Δ strains that contain a MATainc donor locus at an ectopic
site on chromosome V. Efficiency of DSB formation and strand invasion was set to 100% for
the WT DSB product at 0 timepoint. All values were normalized to a PHO5 internal control.
(B) Joint capture assays with saturated (R=0.7) minichromosomes in absence or presence of
Sir3p at a molar ratio of four monomers per nucleosome. Indicated reactions were
supplemented with 30nM SWI/SNF or 200nM Rad54p. (C) Joint capture assays as in B,
showing kinetics of joint formation in presence or absence of different concentrations of SWI/
SNF. (D) Joint capture assays as in B; reactions were supplemented with 20nM of the indicated
remodeling enzyme. Results are from at least three independent experiments; error bars
indicate standard deviations.
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Figure 4. SWI/SNF action on the Sir3p-nucleosomal donor is reversible and stimulates D-loop
formation
(A) Joint capture assays with saturated (R=0.7) minichromosomes and Sir3p at 4 monomers
per nucleosome. yRad51p-presynaptic filament was assembled in presence of 0.3mM AMP-
PNP and allowed to form joints on Sir3p-minichromosomes pre-incubated with 30nM SWI/
SNF and 2mM ATP, unless indicated otherwise. After 5 minutes, half of the reaction received
1U of Apyrase (Apy) and kinetics of joint formation was assayed for 90 min. (B) Representative
autoradiograph shows yRad51p-catalyzed D-loop formation on minichromosomes in presence
or absence of Sir3p (4 monomers per nucleosome). Reactions contained 2mM ATP as
nucleotide cofactor unless indicated and either 30nM SWI/SNF and/or 200nM Rad54 as
indicated.
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Figure 5. SWI/SNF remodels Sir3p-heterochromatin by evicting Sir3p
(A) Representative native PAGE analysis of a 343-bp mononucleosome (2nM) with (Bottom)
or without (Top) 4 monomers of Sir3p, incubated with 1nM SWI/SNF or buffer as indicated.
Predicted nucleosome positions are shown at right. (B) HhaI accessibility assay on the 601-
mononucleosome (2nM) in absence or presence of 4 monomers of Sir3p and 1nM SWI/SNF
as indicated. (C) SalI accessibility assay on 208-11 nucleosomal array (2nM). Reactions
contained 2nM SWI/SNF and Sir3p at a molar ratio of 2 or 4 monomers per nucleosome, unless
indicated otherwise (D, E) Representative immunoblot analysis of Sir3p, probed with anti-
FLAG antibody. Reactions contained biotinylated minichromosomes (17nM), 10nM or 20nM
SWI/SNF (D) or 20nM RSC, 20 nM Ino80.com, or 200nM yRad54 (E) and 2 mM ATP where
indicated. B, bead-bound fractions; U, unbound supernatants. Kinetics of Sir3p displacement
was monitored in at least 3 independent experiments and % Sir3p displaced was calculated as
U/(B+U) for each time point (Lower panel, D). Error bars indicate standard deviations. Molar
ratio of Sir3p was 4 monomers per nucleosomes in all reactions (D–E) except for left two lanes
of Rad54p reactions (E), in which Sir3p was reduced to 2 monomers per nucleosome.
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Figure 6. SWI/SNF restores joint formation on SIR-heterochromatin
(A) Joint capture assays with saturated (R=0.7) minichromosomes in absence or presence of
Sir3p, Sir2p/Sir4p, or Sir2p/Sir3p/Sir4p. Sir3p was present in all reactions at a ratio of 4
monomers (++) per nucleosome. Where indicated, Sir2p/Sir4p was present at either 1 (+) or 2
(++) heterodimer(s) per nucleosome. (B) Joint capture assays with R=0.7 minichromosomes
in absence or presence of 4 monomers Sir3p and 1 heterodimer Sir2p/Sir4p per nucleosome.
Kinetics of joint formation was measured in presence or absence of different concentrations
of SWI/SNF remodeling enzymes as indicated. (C) Joint capture assays as in B. Indicated
reactions were supplemented with 20nM remodeling enzymes. Results are from at least three
independent experiments; error bars indicate standard deviations.

Sinha et al. Page 20

Cell. Author manuscript; available in PMC 2010 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7. Model depicting early events of recombinational repair on a Sir3p-heterochromatic donor
See text for details. Note that cartoons are not drawn to scale, nor do they implicate specific
stoichiometry or structures.
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